29
133 MAE40 Linear Circuits 133 Why Laplace transforms? First-order RC cct KVL instantaneous for each t Substitute element relations Ordinary differential equation in terms of capacitor voltage Laplace transform Solve Invert LT + _ R V A i(t) t=0 C v c v S v R + + + - - - 0 ) ( ) ( ) ( = t v t v t v C R S dt t dv C t i t Ri t v t u V t v C R A S ) ( ) ( ), ( ) ( ), ( ) ( = = = ) ( ) ( ) ( t u V t v dt t dv RC A C C = + A C C C V s s V v s sV RC 1 ) ( )] 0 ( ) ( [ = + RC s v RC s s RC V s V C A C / 1 ) 0 ( ) / 1 ( / ) ( + + + = Volts ) ( ) 0 ( 1 ) ( t u e v e V t v RC t C RC t A C ! " # $ % & + ' ' ( ) * * + , =

Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

  • Upload
    others

  • View
    12

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

133MAE40 Linear Circuits 133

Why Laplace transforms?First-order RC cct

KVL

instantaneous for each tSubstitute element relations

Ordinary differential equation in terms of capacitor voltage

Laplace transform

Solve

Invert LT

+_

R

VA

i(t)t=0

CvcvSvR+ +

+-

-

-0)()()( =−− tvtvtv CRS

dttdvCtitRitvtuVtv C

RAS)()(),()(),()( ===

)()()( tuVtvdttdvRC AC

C =+

ACCC Vs

sVvssVRC 1)()]0()([ =+−

RCsv

RCssRCVsV CA

C /1)0(

)/1(/)(

++

+=

Volts)()0(1)( tueveVtv RCt

CRCt

AC !"

#$%

&+''(

)**+

,−=

−−

Page 2: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

134MAE40 Linear Circuits 134

Laplace transforms

The diagram commutesSame answer whichever way you go

Linearcct

Differentialequation

Classicaltechniques

Responsesignal

Laplacetransform L

Inverse Laplacetransform L-1

Algebraicequation

Algebraictechniques

Responsetransform

Tim

e do

mai

n (t

dom

ain) Complex frequency domain

(s domain)

Page 3: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

135MAE40 Linear Circuits 135

Laplace Transform - definition

Function f(t) of timePiecewise continuous and exponential order

0- limit is used to capture transients and discontinuities at t=0s is a complex variable (s+jw)

There is a need to worry about regions of convergence of the integral

Units of s are sec-1=HzA frequency

If f(t) is volts (amps) then F(s) is volt-seconds (amp-seconds)

btKetf <)(

ò¥

-=0-

)()( dtetfsF st

Page 4: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

136MAE40 Linear Circuits 136

Laplace transform examplesStep function – unit Heavyside Function

After Oliver Heavyside (1850-1925)

Exponential functionAfter Oliver Exponential (1176 BC- 1066 BC)

Delta (impulse) function d(t)

îíì

³<

=0for,10for,0

)(tt

tu

Page 5: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

137MAE40 Linear Circuits 137

Laplace transform examplesStep function – unit Heavyside Function

After Oliver Heavyside (1850-1925)

Exponential functionAfter Oliver Exponential (1176 BC- 1066 BC)

Delta (impulse) function d(t)

0if1)()(0

)(

000>=

+−=−===

∞+−∞−∞

−∞

−∫∫ σ

ωσ

ωσ

sje

sedtedtetusF

tjststst

îíì

³<

=0for,10for,0

)(tt

tu

Page 6: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

138MAE40 Linear Circuits 138

Laplace transform examplesStep function – unit Heavyside Function

After Oliver Heavyside (1850-1925)

Exponential functionAfter Oliver Exponential (1176 BC- 1066 BC)

Delta (impulse) function d(t)

0if1)()(0

)(

000>=

+−=−===

∞+−∞−∞

−∞

−∫∫ σ

ωσ

ωσ

sje

sedtedtetusF

tjststst

îíì

³<

=0for,10for,0

)(tt

tu

F(s) = e−αte−stdt = e−(s+α )tdt = −e−(s+α )t

s+α 0

=1

s+αif σ > −α

0

∫0

Page 7: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

139MAE40 Linear Circuits 139

Laplace transform examplesStep function – unit Heavyside Function

After Oliver Heavyside (1850-1925)

Exponential functionAfter Oliver Exponential (1176 BC- 1066 BC)

Delta (impulse) function d(t)

0if1)()(0

)(

000>=

+−=−===

∞+−∞−∞

−∞

−∫∫ σ

ωσ

ωσ

sje

sedtedtetusF

tjststst

îíì

³<

=0for,10for,0

)(tt

tu

F(s) = e−αte−stdt = e−(s+α )tdt = −e−(s+α )t

s+α 0

=1

s+αif σ > −α

0

∫0

sdtetsF st allfor1)()(0

== ∫∞

−δ

Page 8: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

140MAE40 Linear Circuits 140

Laplace Transform Pair TablesSignal Waveform Transformimpulsestep

ramp

exponential

damped ramp

sine

cosine

damped sine

damped cosine

)(tδ

22)( βα

α

++

+

s

s

22)( βα

β

++s

22 β

β

+s

22 β+s

s

1

s1

21

s

α+s1

2)(

1

α+s

)(tu

)(ttu

)(tue tα−

)(tutte α−

( ) )(sin tutβ

( ) )(cos tutβ

( ) )(sin tutte βα−

( ) )(cos tutte βα−

Page 9: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

141MAE40 Linear Circuits 141

Laplace Transform Properties

Linearity – absolutely critical propertyFollows from the integral definition

Example

{ } { } { } )()()()()()( 2121 sBFsAFtBtAtBftAf +=+=+ 21 fLfLL

L(Acos(βt)) =

Page 10: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

142MAE40 Linear Circuits 142

Laplace Transform Properties

Linearity – absolutely critical propertyFollows from the integral definition

Example

{ } { } { } )()()()()()( 2121 sBFsAFtBtAtBftAf +=+=+ 21 fLfLL

L(Acos(βt)) = LA2e jβt + e − jβt( )

$ % &

' ( ) =

A2

L e jβt( ) +A2

L e − jβt( )

=A2

1s− jβ

+A2

1s+ jβ

=As

s 2 +β 2

Page 11: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

143MAE40 Linear Circuits 143

Laplace Transform Properties

Integration property

Proof

( )ssFdf

t=

!"#

$%&∫0

)( ττL

dtstet

dft

df −∫∞

∫=∫ $%

&'(

)

*+,

-./

0 0)(

0)( ττττL

Page 12: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

144MAE40 Linear Circuits 144

Laplace Transform Properties

Integration property

Proof

Denote

so

Integrate by parts

( )ssFdf

t=

!"#

$%&∫0

)( ττL

dtstet

dft

df −∫∞

∫=∫ $%

&'(

)

*+,

-./

0 0)(

0)( ττττL

)(and,

0)(and,

tfdtdy

edtdx

tdfy

s

stex

st ==

∫=−−

=

ττ

∫∫∫∞

−∞

−+

$$%

&

''(

)−=

$$%

&

''(

)

0000)(

1)()( dtetf

sdf

sedf st

tsttττττL

Page 13: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

145MAE40 Linear Circuits 145

Laplace Transform Properties

Differentiation Property

Proof via integration by parts again

Second derivative

)0()()(−−=

"#$

%&' fssFdttdf

L

Ldf (t)dt

" # $

% & '

=df (t)dt

e−stdt0−

∞∫ = f (t)e−st[ ]0−

∞+ s f (t)e−stdt0−

∞∫

= sF(s)− f (0−)

)0()0()(2

)0()()(2)(2

−"−−−=

−−#$%

&'(=

#$%

&'(

)*+

,-.=

/#

/$%

/&

/'(

fsfsFs

dtdf

dttdfs

dttdf

dtd

dt

tfdLLL

Page 14: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

146MAE40 Linear Circuits 146

Laplace Transform PropertiesGeneral derivative formula

Translation propertiess-domain translation

t-domain translation

Ldm f (t)

dtm

" # $

% & '

= s m F(s) − sm−1 f (0−) − sm−2 ) f (0−) −− f (m−1)(0−)

)()}({ αα +=− sFtfe tL

{ } 0for)()()( >=−− − asFeatuatf asL

Page 15: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

147MAE40 Linear Circuits 147

Laplace Transform Properties

Initial Value Property

Final Value Property

Caveats:Laplace transform pairs do not always handle

discontinuities properlyOften get the average value

Initial value property no good with impulsesFinal value property no good with cos, sin etc

)(lim)(lim0

ssFtfst ∞→+→

=

)(lim)(lim0

ssFtfst →∞→

=

Page 16: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

148MAE40 Linear Circuits 148

Rational FunctionsWe shall mostly be dealing with LTs which are

rational functions – ratios of polynomials in s

pi are the poles and zi are the zeros of the functionK is the scale factor or (sometimes) gain

A proper rational function has n³mA strictly proper rational function has n>mAn improper rational function has n<m

)())(()())((

)(

21

21

011

1

011

1

n

m

nn

nn

mm

mm

pspspszszszsK

asasasabsbsbsbsF

−−−−−−

=

++++

++++=

−−

−−

Page 17: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

149MAE40 Linear Circuits 149

A Little Complex Analysis

We are dealing with linear cctsOur Laplace Transforms will consist of rational functions

(ratios of polynomials in s) and exponentials like e-stThese arise from • discrete component relations of capacitors and inductors• the kinds of input signals we apply

– Steps, impulses, exponentials, sinusoids, delayed versions of functions

Rational functions have a finite set of discrete polese-st is an entire function and has no poles anywhere

To understand linear cct responses you need to look at the poles – they determine the exponential modes in the response circuit variables.Two sources of poles: the cct – seen in the response to Ics

the input signal LT poles – seen in the forced response

Page 18: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

150MAE40 Linear Circuits 150

Residues at poles

Functions of a complex variable with isolated, finite order poles have residues at the polesSimple pole: residue =

Multiple pole: residue =

The residue is the c-1 term in the Laurent Series

Bundle complex conjugate pole pairs into second-order terms if you want

but you will need to be careful

Inverse Laplace Transform is a sum of complex exponentialsFor circuits the answers will be real

)()(lim sFasas

−→

1(m−1)!

lims→ a

d m−1

dsm−1(s− a)m F(s)( )

( )[ ]222 2))(( βααβαβα ++−=+−−− ssjsjs

MAE40 Linear Circuits

Page 19: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

151MAE40 Linear Circuits 151

Inverting Laplace Transforms in Practice

We have a table of inverse LTsWrite F(s) as a partial fraction expansion

Now appeal to linearity to invert via the tableSurprise!Computing the partial fraction expansion is best done by

calculating the residues

F(s) =bms

m + bm−1sm−1 ++ b1s+ b0

ansn + an−1s

n−1 ++ a1s+ a0= K (s− z1)(s− z2)(s− zm)

(s− p1)(s− p2)(s− pn )

=α1s− p1( )

+α2s− p2( )

+α31(s− p3)

+α32s− p3( )2

+α33s− p3( )3

+ ...+αqs− pq( )

Page 20: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

152MAE40 Linear Circuits 152

Inverting Laplace TransformsCompute residues at the poles

Example

)()(lim sFasas

−→

!"#

$%& −

→−)()(1

1lim

)!1(1 sFmasmds

mdasm

( ) ( ) ( ) ( )313

21

112

31

3)1(2)1(231

522

+−

++

+=

+

−+++=

+

+

ssss

ss

s

ss

Page 21: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

153MAE40 Linear Circuits 153

Inverting Laplace TransformsCompute residues at the poles

Example

)()(lim sFasas

−→

!"#

$%& −

→−)()(1

1lim

)!1(1 sFmasmds

mdasm

( ) ( ) ( ) ( )313

21

112

31

3)1(2)1(231

522

+−

++

+=

+

−+++=

+

+

ssss

ss

s

ss

3)1(

)52()1(lim 3

23

1-=

+

++

-® ssss

s1

)1()52()1(lim 3

23

1=

úúû

ù

êêë

é

+

++

-® ssss

dsd

s

2)1(

)52()1(lim!2

13

23

2

2

1=

úúû

ù

êêë

é

+

++

-® ssss

dsd

s

( ) )(32)1(52 23

21 tutte

sss t -+=úúû

ù

êêë

é

+

+ --L

MAE40 Linear Circuits

Page 22: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

154MAE40 Linear Circuits 154

T&R, 5th ed, Example 9-12

Find the inverse LT of )52)(1(

)3(20)( 2 +++

+=sss

ssF

Page 23: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

155MAE40 Linear Circuits 155

T&R, 5th ed, Example 9-12

Find the inverse LT of )52)(1(

)3(20)( 2 +++

+=sss

ssF

21211)(

*221js

kjs

ksksF

+++

−++

+=

π45

255521)21)(1(

)3(20)()21(21

lim2

101522

)3(20)()1(1

lim1

jej

jsjssssFjs

jsk

sss

ssFss

k

=−−=+−=+++

+=−+

+−→=

=−=++

+=+

−→=

)()452cos(21010

)(252510)( 45)21(

45)21(

tutee

tueeetf

tt

jtjjtjt

!"#

$%& ++=

!!

"

#

$$

%

&++=

−−

−−−++−−

π

ππ

MAE40 Linear Circuits

Page 24: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

156MAE40 Linear Circuits 156

Not Strictly Proper Laplace Transforms

Find the inverse LT of34

8126)( 2

23

++

+++=ssssssF

Page 25: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

157MAE40 Linear Circuits 157

Not Strictly Proper Laplace Transforms

Find the inverse LT of

Convert to polynomial plus strictly proper rational functionUse polynomial division

Invert as normal

348126)( 2

23

++

+++=ssssssF

35.0

15.02

3422)( 2

++

+++=

++

+++=

sss

sssssF

)(5.05.0)(2)()( 3 tueetdttdtf tt

!"#

$%& +++= −−δδ

MAE40 Linear Circuits

Page 26: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

158MAE40 Linear Circuits 158

Multiple Poles

Look for partial fraction decomposition

Equate like powers of s to find coefficients

Solve

)())(()(

)())(()()(

12221212

211

22

22

2

21

1

12

21

1

pskpspskpskKzKs

psk

psk

psk

pspszsKsF

−+−−+−=−

−+

−+

−=

−−

−=

112221122

1

22212121

211

2

)(220

Kzpkppkpk

Kkppkpkkk

=−+

=++−−

=+

Page 27: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

159MAE40 Linear Circuits 159

Recall motivating example for LTFirst-order RC cct

KVL

instantaneous for each tSubstitute element relations

Ordinary differential equation in terms of capacitor voltage

Laplace transform

Solve

Invert LT

+_

R

VA

i(t)t=0

CvcvSvR+ +

+-

-

-0)()()( =−− tvtvtv CRS

dttdvCtitRitvtuVtv C

RAS)()(),()(),()( ===

)()()( tuVtvdttdvRC AC

C =+

ACCC Vs

sVvssVRC 1)()]0()([ =+−

RCsv

RCssRCVsV CA

C /1)0(

)/1(/)(

++

+=

Volts)()0(1)( tueveVtv RCt

CRCt

AC !"

#$%

&+''(

)**+

,−=

−−

Page 28: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

160MAE40 Linear Circuits 160

An Alternative s-Domain Approach

Transform the cct element relationsWork in s-domain directly OK since L is linear

KVL in s-Domain

+_

R

VA

i(t)t=0

CvcvSvR+ +

+-

-

-

+_

R

VA

I(s)

Vc(s)

+

-

sC1

s1

+_ sCv )0(

)0()()(

)0()(1)(

CCC

CCC

CvssCVsIs

vsICs

sV

−=

+= Impedance + source

Admittance + source

ACCC Vs

sVCRvssCRV 1)()0()( =+−

Page 29: Why Laplace transforms? - University of California, San Diegocarmenere.ucsd.edu/jorge/teaching/mae40/w20/lectures/5laplace.pdf · Our Laplace Transforms will consist of rational functions

161MAE40 Linear Circuits 161

Time-varying inputsSuppose vS(t)=VAcos(bt), what happens?

KVL as before

Solve

+_

R i(t)t=0

CvcvSvR+ +

+-

-

-

+_

R I(s)

Vc(s)

+

-

sC1

22 β+sAsV

+_ sCv )0(

RCsv

RCssRC

sVsV

ssVRCvsVRCs

CA

C

ACC

1)0(

)1)(()(

)0()()1(

22

22

++

++=

+=−+

β

β

)()0(2)(1)cos(

2)(1)( tuRC

teCvRC

te

RCAVt

RCAVtCv !

"

#$%

& −+

+−+

+=

βθβ

β

VAcos(βt)