Click here to load reader
View
7
Download
1
Embed Size (px)
133MAE40 Linear Circuits 133
Why Laplace transforms? First-order RC cct
KVL
instantaneous for each t Substitute element relations
Ordinary differential equation in terms of capacitor voltage
Laplace transform
Solve
Invert LT
+_
R
VA
i(t)t=0
CvcvS vR+ + +
-
-
- 0)()()( =−− tvtvtv CRS
dt tdvCtitRitvtuVtv CRAS )()(),()(),()( ===
)()()( tuVtv dt tdvRC ACC =+
ACCC Vs sVvssVRC 1)()]0()([ =+−
RCs v
RCss RCVsV CAC /1
)0( )/1(
/)( +
+ +
=
Volts)()0(1)( tueveVtv RC t
CRC t
AC ! "
# $ %
& +'' (
) ** +
, −=
−−
134MAE40 Linear Circuits 134
Laplace transforms
The diagram commutes Same answer whichever way you go
Linear cct
Differential equation
Classical techniques
Response signal
Laplace transform L
Inverse Laplace transform L-1
Algebraic equation
Algebraic techniques
Response transform
Ti m
e do
m ai
n (t
do m
ai n) Complex frequency domain(s domain)
135MAE40 Linear Circuits 135
Laplace Transform - definition
Function f(t) of time Piecewise continuous and exponential order
0- limit is used to capture transients and discontinuities at t=0 s is a complex variable (s+jw)
There is a need to worry about regions of convergence of the integral
Units of s are sec-1=Hz A frequency
If f(t) is volts (amps) then F(s) is volt-seconds (amp-seconds)
btKetf
136MAE40 Linear Circuits 136
Laplace transform examples Step function – unit Heavyside Function
After Oliver Heavyside (1850-1925)
Exponential function After Oliver Exponential (1176 BC- 1066 BC)
Delta (impulse) function d(t)
î í ì
³ <
= 0for,1 0for,0
)( t t
tu
137MAE40 Linear Circuits 137
Laplace transform examples Step function – unit Heavyside Function
After Oliver Heavyside (1850-1925)
Exponential function After Oliver Exponential (1176 BC- 1066 BC)
Delta (impulse) function d(t)
0if1)()( 0
)(
000 >=
+ −=−===
∞+−∞−∞
−
− ∞
−
− ∫∫ σωσ
ωσ
sj e
s edtedtetusF
tjst stst
î í ì
³ <
= 0for,1 0for,0
)( t t
tu
138MAE40 Linear Circuits 138
Laplace transform examples Step function – unit Heavyside Function
After Oliver Heavyside (1850-1925)
Exponential function After Oliver Exponential (1176 BC- 1066 BC)
Delta (impulse) function d(t)
0if1)()( 0
)(
000 >=
+ −=−===
∞+−∞−∞
−
− ∞
−
− ∫∫ σωσ
ωσ
sj e
s edtedtetusF
tjst stst
î í ì
³ <
= 0for,1 0for,0
)( t t
tu
€
F(s) = e−αte−stdt = e−(s+α )tdt = −e −(s+α )t
s+α 0
∞
= 1
s+α if σ > −α
0
∞
∫ 0
∞
∫
139MAE40 Linear Circuits 139
Laplace transform examples Step function – unit Heavyside Function
After Oliver Heavyside (1850-1925)
Exponential function After Oliver Exponential (1176 BC- 1066 BC)
Delta (impulse) function d(t)
0if1)()( 0
)(
000 >=
+ −=−===
∞+−∞−∞
−
− ∞
−
− ∫∫ σωσ
ωσ
sj e
s edtedtetusF
tjst stst
î í ì
³ <
= 0for,1 0for,0
)( t t
tu
€
F(s) = e−αte−stdt = e−(s+α )tdt = −e −(s+α )t
s+α 0
∞
= 1
s+α if σ > −α
0
∞
∫ 0
∞
∫
sdtetsF st allfor1)()( 0
== ∫ ∞
−
−δ
140MAE40 Linear Circuits 140
Laplace Transform Pair Tables Signal Waveform Transform impulse step
ramp
exponential
damped ramp
sine
cosine
damped sine
damped cosine
)(tδ
22)( βα
α
++
+
s
s
22)( βα
β
++s
22 β
β
+s
22 β+s
s
1
s 1
2 1
s
α+s 1
2)(
1
α+s
)(tu
)(ttu
)(tue tα−
)(tutte α−
( ) )(sin tutβ
( ) )(cos tutβ
( ) )(sin tutte βα−
( ) )(cos tutte βα−
141MAE40 Linear Circuits 141
Laplace Transform Properties
Linearity – absolutely critical property Follows from the integral definition
Example
{ } { } { } )()()()()()( 2121 sBFsAFtBtAtBftAf +=+=+ 21 fLfLL
€
L(Acos(βt)) =
142MAE40 Linear Circuits 142
Laplace Transform Properties
Linearity – absolutely critical property Follows from the integral definition
Example
{ } { } { } )()()()()()( 2121 sBFsAFtBtAtBftAf +=+=+ 21 fLfLL
€
L(Acos(βt)) = L A 2 e jβt + e − jβt( )
$ % &
' ( ) =
A 2
L e jβt( ) + A 2
L e − jβt( )
= A 2
1 s− jβ
+ A 2
1 s+ jβ
= As
s 2 +β 2
143MAE40 Linear Circuits 143
Laplace Transform Properties
Integration property
Proof
( ) s sFdf
t =
! " #
$ % & ∫ 0
)( ττL
dtste t
df t
df −∫ ∞
∫=∫ $ %
& ' (
)
* + ,
- . /
0 0 )(
0 )( ττττL
144MAE40 Linear Circuits 144
Laplace Transform Properties
Integration property
Proof
Denote
so
Integrate by parts
( ) s sFdf
t =
! " #
$ % & ∫ 0
)( ττL
dtste t
df t
df −∫ ∞
∫=∫ $ %
& ' (
)
* + ,
- . /
0 0 )(
0 )( ττττL
)(and,
0 )(and,
tf dt dy
e dt dx
t dfy
s
ste x
st ==
∫= −−
=
−
ττ
∫∫∫ ∞
− ∞
− +
$ $ %
&
' ' (
)− =
$ $ %
&
' ' (
)
0000 )(
1 )()( dtetf
s df
s edf st
tstt ττττL
145MAE40 Linear Circuits 145
Laplace Transform Properties
Differentiation Property
Proof via integration by parts again
Second derivative
)0()()( −−= " # $
% & ' fssF dt tdf
L
€
L df (t) dt
" # $
% & '
= df (t) dt
e−stdt 0−
∞ ∫ = f (t)e−st[ ]0−
∞ + s f (t)e−stdt 0−
∞ ∫
= sF(s)− f (0−)
)0()0()(2
)0()()(2 )(2
−"−−−=
−− # $ %
& ' (=
# $ %
& ' (
)* +
,- .=
/#
/ $ %
/&
/ ' (
fsfsFs
dt df
dt tdfs
dt tdf
dt d
dt
tfd LLL
146MAE40 Linear Circuits 146
Laplace Transform Properties General derivative formula
Translation properties s-domain translation
t-domain translation
€
L dm f (t)
dtm " # $
% & '
= s m F(s) − sm−1 f (0−) − sm−2 ) f (0−) −− f (m−1)(0−)
)()}({ αα +=− sFtfe tL
{ } 0for)()()( >=−− − asFeatuatf asL
147MAE40 Linear Circuits 147
Laplace Transform Properties
Initial Value Property
Final Value Property
Caveats: Laplace transform pairs do not always handle
discontinuities properly Often get the average value
Initial value property no good with impulses Final value property no good with cos, sin etc
)(lim)(lim 0
ssFtf st ∞→+→
=
)(lim)(lim 0
ssFtf st →∞→
=
148MAE40 Linear Circuits 148
Rational Functions We shall mostly be dealing with LTs which are
rational functions – ratios of polynomials in s
pi are the poles and zi are the zeros of the function K is the scale factor or (sometimes) gain
A proper rational function has n³m A strictly proper rational function has n>m An improper rational function has n
149MAE40 Linear Circuits 149
A Little Complex Analysis
We are dealing with linear ccts Our Laplace Transforms will consist of rational functions
(ratios of polynomials in s) and exponentials like e-st These arise from • discrete component relations of capacitors and inductors • the kinds of input signals we apply
– Steps, impulses, exponentials, sinusoids, delayed versions of functions
Rational functions have a finite set of discrete poles e-st is an entire function and has no poles anywhere
To understand linear cct respons