water distribution system project

Embed Size (px)

DESCRIPTION

hydrosystem engineering

Text of water distribution system project

ALMA MATER STUDIORUM UNIVERSITY OF BOLOGNA

FACULTY OF ENGINEERING

CIVIL ENGINEERING

DICAM Department of Civil and Environmental Engineering and Materials Science Course of Advanced Hydrosystems Engineering

WATER DISTRIBUTION NETWORK DESIGN AND ANALYSIS DESIGN

Instructors: Dott. Ing. Andrea Bolognesi Dott. Ing. Cristiana Bragalli

Student: Tommaso Cignali

Academic Year 2012 2013 1

The objective of the following project is to build a Water Distribution Network for an assigned area. The distribution conduits and nodes has been already designed from the delivery of the project data:

Starting from this map already georeferenced on EPANET, we have determined some useful data of the design project: Minimum Hydraulic Head for each node: Minimum hydraulic head is calculated only once and it is the value with which to compare the hydraulic head that resulting from the single-period simulation: Hmin = Minimum Head for each node (m) Hmin = znode + p +Hbuild,max + f Where: znode = elevation of axis pipe znode = zground p (zground by the map; p = 1.8 m is assumed as average depth of the axis pipe) Hbuild,max = maximum height of the building in the area adjacent the node (Hbuild,max by map) f = 5 m (height above the base of the roof) Water demand Residential usage rate per capita: d = 300 liters/capita/day Population considered for the design (Geometric Increase Method) = (1 + ) = 9184 (1 + 0.009) = 13.143 2

P0 = 9184 inhabitants at 2001 r = 9 rate of increase of the population T = 40 years (In the case of WDNs, the higher are the years value, the safer is the design project) Base demand for each node Base demand for each node is calculated as follows: = = = 86400 2 (/ ) =( , )

Demand multipliers: Peak Hour Demand:,

= 3 (the average rate of usage during the maximum hour of usage in the year)

Minimum Hour Demand: , = 0.3 (the average rate of usage during the minimum hour of usage in the year) These are the results obtained for each nodes:Pipe ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Length (m) 132,76 374,68 119,74 312,72 289,09 336,33 135,81 201,26 132,53 144,66 175,72 112,17 210,74 75,41 181,42 146,96 162,69 99,64 52,98 162,97 83,96 49,82 78,5 99,27 82,29 147,49 197,32 83,3 113,8 80,82 340,97 Diam 150 125 100 100 60 60 60 60 100 125 125 200 200 250 200 125 80 60 60 60 80 100 100 100 80 60 60 100 100 100 100 Unit Cost /m 39,4 37 27,2 27,2 19,8 19,8 19,8 19,8 27,2 37 37 54,4 54,4 72,9 54,4 37 24,5 19,8 19,8 19,8 24,5 27,2 27,2 27,2 24,5 19,8 19,8 27,2 27,2 27,2 27,2 Cost 5230,744 13863,16 3256,928 8505,984 5723,982 6659,334 2689,038 3984,948 3604,816 5352,42 6501,64 6102,048 11464,256 5497,389 9869,248 5437,52 3985,905 1972,872 1049,004 3226,806 2057,02 1355,104 2135,2 2700,144 2016,105 2920,302 3906,936 2265,76 3095,36 2198,304 9274,384

3

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

77,39 112,37 37,34 108,85 182,82 136,02 56,7 124,08 234,6 203,83 248,05 65,19 210,09 147,57 103,8 210,95 75,08 180,29 149,05 215,05 144,44 34,74 59,93 165,67 119,97 83,17 1

80 80 100 100 125 150 150 125 60 80 60 60 80 80 80 60 80 80 80 80 100 125 150 80 100 100 300

24,5 24,5 27,2 27,2 37 39,4 39,4 37 19,8 24,5 19,8 19,8 24,5 24,5 24,5 19,8 24,5 24,5 24,5 24,5 27,2 37 39,4 24,5 27,2 27,2 90,7 TOT. COST

1896,055 2753,065 1015,648 2960,72 6764,34 5359,188 2233,98 4590,96 4645,08 4993,835 4911,39 1290,762 5147,205 3615,465 2543,1 4176,81 1839,46 4417,105 3651,725 5268,725 3928,768 1285,38 2361,242 4058,915 3263,184 2262,224 90,7

TOTAL Node n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

8405,86 zground 65,5 63,7 62,3 61,9 60,4 64,9 67,3 65,5 65,6 63,8 62,8 61,5 60,3 61 62,4 63 65,2 63,4 61 61,2 61,5 62,7 61,4 66,5 63,6

239.228 f 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 Hmin 97,4 85,4 97,6 85,1 99,5 96,7 89,8 82,6 97,4 98,5 101,2 85,7 88,9 81,1 100,9 85,7 100,8 98,6 96,6 100,2 93,3 95,4 90,7 92,6 80,4 Hmax 133,7 131,9 130,5 130,1 128,6 133,1 135,5 133,7 133,8 132 131 129,7 128,5 129,2 130,6 131,2 133,4 131,6 129,2 129,4 129,7 130,9 129,6 134,7 131,8 H 120,99 114,64 111,59 106,93 105,02 105,15 107,26 113,5 117,97 118,81 114,28 106,34 105,79 107,69 111 114,14 119,45 117,58 108,63 108,23 106,88 109,1 110,31 111,58 111,97 test OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Hbuild,max 26,9 16,7 30,3 18,2 34,1 26,8 17,5 12,1 26,8 29,7 33,4 19,2 23,6 15,1 33,5 17,7 30,6 30,2 30,6 34 26,8 27,7 24,3 21,1 11,8

4

26 27 28 29 30 31 32 33 34 35 36

62,1 62,4 65,8 63,9 64,1 64,1 63,9 64,6 64,7 64,9 66

33,9 17,1 10,9 17,1 15,4 30,6 23,6 29,4 17,9 16,5 21,4

5 5 5 5 5 5 5 5 5 5 5

101 84,5 81,7 86 84,5 99,7 92,5 99 87,6 86,4 92,4

130,3 130,6 134 132,1 132,3 132,3 132,1 132,8 132,9 133,1 134,2

113,07 115,12 115,23 115,53 116,16 120,45 117,94 119,29 119,78 117,84 118,71

OK OK OK OK OK OK OK OK OK OK OK

After

that

I

searched available

the and

pipes have

Commercially

assigned to each pipe its diameter and relative roughness; considering this scheme with a polyethylene pipes with PN 16 bar and roughness equal to 0.0015 mm. 5

The assignment of the diameters of the pipes is probably the most delicate part of the project, as derived from this all the results calculated later. The design criteria is performed through an iterative method, parallel to a first verification of the criteria set out below, and check if the network is more or less balance. After several attempts, have been adopted for this network of diameters between 60 125 mm. and a few diameters between 125 250 mm while the diameter of the reservoir is used as diameter of 300 mm Once you have assigned to all pipes diameters must run the program and verify that all scenarios, that after describe, satisfy the following design criteria: = 0.2 N = set of nodes R = set of pipes The Hi test is already done in the excel table reported above. When OK means that the Hi is between Hmin and Hmax. While the velocity test is reported as follows: / ( ) ( ) = =2 + 70 /

6

All the velocities into the networks conduits are above 0.2 m/s and below 2 m/s. So, also the velocity test is satisfied. I can proceed now with network analysis (Steady State Simulation). Inversion flow must not take place. Velocity and unit headloss should have a certain uniformity.

7

STEADY STATE SIMULATIONS Normal operation of the Water distribution Network. Steady- state simulation (single period) for the following water demand conditions:,

1.1 Peak Hour Demand Demand Multiplier = 1.3 Average Demand Demand Multiplier = 1

=3,

1.2 Minimum Hour Demand Demand Multiplier =

= 0.3

1.1 - Peak Hour Demand Demand Multiplier =follows).Node n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 zground 65,5 63,7 62,3 61,9 60,4 64,9 67,3 65,5 65,6 63,8 62,8 61,5 60,3 61 62,4 63 65,2 63,4 61 61,2 61,5 62,7 61,4 66,5 63,6 62,1 62,4 65,8 63,9 64,1 64,1 63,9 64,6 64,7 64,9 66 Hbuild,max 26,9 16,7 30,3 18,2 34,1 26,8 17,5 12,1 26,8 29,7 33,4 19,2 23,6 15,1 33,5 17,7 30,6 30,2 30,6 34 26,8 27,7 24,3 21,1 11,8 33,9 17,1 10,9 17,1 15,4 30,6 23,6 29,4 17,9 16,5 21,4 f 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 Hmin 97,4 85,4 97,6 85,1 99,5 96,7 89,8 82,6 97,4 98,5 101,2 85,7 88,9 81,1 100,9 85,7 100,8 98,6 96,6 100,2 93,3 95,4 90,7 92,6 80,4 101 84,5 81,7 86 84,5 99,7 92,5 99 87,6 86,4 92,4

,

=

(*already previously verified, as

Hmax 133,7 131,9 130,5 130,1 128,6 133,1 135,5 133,7 133,8 132 131 129,7 128,5 129,2 130,6 131,2 133,4 131,6 129,2 129,4 129,7 130,9 129,6 134,7 131,8 130,3 130,6 134 132,1 132,3 132,3 132,1 132,8 132,9 133,1 134,2

tot head 120,99 114,64 111,59 106,93 105,02 105,15 107,26 113,5 117,97 118,81 114,28 106,34 105,79 107,69 111 114,14 119,45 117,58 108,63 108,23 106,88 109,1 110,31 111,58 111,97 113,07 115,12 115,23 115,53 116,16 120,45 117,94 119,29 119,78 117,84 118,71

test OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

8

All criteria are satisfied.

9

1.2 - Minimum Hour Demand Demand Multiplier =

,

= .Hmax 133,7 131,9 130,5 130,1 128,6 133,1 135,5 133,7 133,8 132 131 129,7 128,5 129,2 130,6 131,2 133,4 131,6 129,2 129,4 129,7 130,9 129,6 134,7 131,8 130,3 130,6 134 132,1 132,3 132,3 132,1 132,8 132,9 133,1 134,2 test OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Node n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

H 121 120,91 120,87 120,8 120,78 120,78 120,81 120,89 120,96 120,97 120,91 120,79 120,79 120,81 120,86 120,9 120,98 120,95 120,83 120,82 120,8 120,83 120,85 120,87 120,89 120,92 120,92 120,92 120,93 120,99 120,96 120,98 120,98 120,96 120,97 120,95

Hmin 97,4 85,4 97,6 85,1 99,5 96,7 89,8 82,6 97,4 98,5 101,2 85,7 88,9 81,1 100,9 85,7 100,8 98,6 96,6 100,2 93,3 95,4 90,7 92,6 80,4 101 84,5 81,7 86 84,5 99,7 92,5 99 87,6 86,4 92,4

From the previous table collected on Excel its immediate to understand that all the Head verifies are satisfied but from the following picture comes that none velocity is verified (every velocity is below the minimum velocity limit: 0.2 [m/s]

10

All the Head are met but none Velocity is met.

11

1.3 - Average Demand Demand Multiplier =Node n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 H 121 120,17 119,77 119,16 118,91 1