water distribution system project

  • Published on
    20-Dec-2014

  • View
    123

  • Download
    0

DESCRIPTION

hydrosystem engineering

Transcript

ALMA MATER STUDIORUM UNIVERSITY OF BOLOGNAFACULTY OF ENGINEERINGCIVIL ENGINEERINGDICAM Department of Civil and Environmental Engineering and Materials Science Course of Advanced Hydrosystems EngineeringWATER DISTRIBUTION NETWORK DESIGN AND ANALYSIS DESIGNInstructors: Dott. Ing. Andrea Bolognesi Dott. Ing. Cristiana BragalliStudent: Tommaso CignaliAcademic Year 2012 2013 1The objective of the following project is to build a Water Distribution Network for an assigned area. The distribution conduits and nodes has been already designed from the delivery of the project data:Starting from this map already georeferenced on EPANET, we have determined some useful data of the design project: Minimum Hydraulic Head for each node: Minimum hydraulic head is calculated only once and it is the value with which to compare the hydraulic head that resulting from the single-period simulation: Hmin = Minimum Head for each node (m) Hmin = znode + p +Hbuild,max + f Where: znode = elevation of axis pipe znode = zground p (zground by the map; p = 1.8 m is assumed as average depth of the axis pipe) Hbuild,max = maximum height of the building in the area adjacent the node (Hbuild,max by map) f = 5 m (height above the base of the roof) Water demand Residential usage rate per capita: d = 300 liters/capita/day Population considered for the design (Geometric Increase Method) = (1 + ) = 9184 (1 + 0.009) = 13.143 2P0 = 9184 inhabitants at 2001 r = 9 rate of increase of the population T = 40 years (In the case of WDNs, the higher are the years value, the safer is the design project) Base demand for each node Base demand for each node is calculated as follows: = = = 86400 2 (/ ) =( , )Demand multipliers: Peak Hour Demand:,= 3 (the average rate of usage during the maximum hour of usage in the year)Minimum Hour Demand: , = 0.3 (the average rate of usage during the minimum hour of usage in the year) These are the results obtained for each nodes:Pipe ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Length (m) 132,76 374,68 119,74 312,72 289,09 336,33 135,81 201,26 132,53 144,66 175,72 112,17 210,74 75,41 181,42 146,96 162,69 99,64 52,98 162,97 83,96 49,82 78,5 99,27 82,29 147,49 197,32 83,3 113,8 80,82 340,97 Diam 150 125 100 100 60 60 60 60 100 125 125 200 200 250 200 125 80 60 60 60 80 100 100 100 80 60 60 100 100 100 100 Unit Cost /m 39,4 37 27,2 27,2 19,8 19,8 19,8 19,8 27,2 37 37 54,4 54,4 72,9 54,4 37 24,5 19,8 19,8 19,8 24,5 27,2 27,2 27,2 24,5 19,8 19,8 27,2 27,2 27,2 27,2 Cost 5230,744 13863,16 3256,928 8505,984 5723,982 6659,334 2689,038 3984,948 3604,816 5352,42 6501,64 6102,048 11464,256 5497,389 9869,248 5437,52 3985,905 1972,872 1049,004 3226,806 2057,02 1355,104 2135,2 2700,144 2016,105 2920,302 3906,936 2265,76 3095,36 2198,304 9274,384332 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 5877,39 112,37 37,34 108,85 182,82 136,02 56,7 124,08 234,6 203,83 248,05 65,19 210,09 147,57 103,8 210,95 75,08 180,29 149,05 215,05 144,44 34,74 59,93 165,67 119,97 83,17 180 80 100 100 125 150 150 125 60 80 60 60 80 80 80 60 80 80 80 80 100 125 150 80 100 100 30024,5 24,5 27,2 27,2 37 39,4 39,4 37 19,8 24,5 19,8 19,8 24,5 24,5 24,5 19,8 24,5 24,5 24,5 24,5 27,2 37 39,4 24,5 27,2 27,2 90,7 TOT. COST1896,055 2753,065 1015,648 2960,72 6764,34 5359,188 2233,98 4590,96 4645,08 4993,835 4911,39 1290,762 5147,205 3615,465 2543,1 4176,81 1839,46 4417,105 3651,725 5268,725 3928,768 1285,38 2361,242 4058,915 3263,184 2262,224 90,7TOTAL Node n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 258405,86 zground 65,5 63,7 62,3 61,9 60,4 64,9 67,3 65,5 65,6 63,8 62,8 61,5 60,3 61 62,4 63 65,2 63,4 61 61,2 61,5 62,7 61,4 66,5 63,6239.228 f 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 Hmin 97,4 85,4 97,6 85,1 99,5 96,7 89,8 82,6 97,4 98,5 101,2 85,7 88,9 81,1 100,9 85,7 100,8 98,6 96,6 100,2 93,3 95,4 90,7 92,6 80,4 Hmax 133,7 131,9 130,5 130,1 128,6 133,1 135,5 133,7 133,8 132 131 129,7 128,5 129,2 130,6 131,2 133,4 131,6 129,2 129,4 129,7 130,9 129,6 134,7 131,8 H 120,99 114,64 111,59 106,93 105,02 105,15 107,26 113,5 117,97 118,81 114,28 106,34 105,79 107,69 111 114,14 119,45 117,58 108,63 108,23 106,88 109,1 110,31 111,58 111,97 test OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OKHbuild,max 26,9 16,7 30,3 18,2 34,1 26,8 17,5 12,1 26,8 29,7 33,4 19,2 23,6 15,1 33,5 17,7 30,6 30,2 30,6 34 26,8 27,7 24,3 21,1 11,8426 27 28 29 30 31 32 33 34 35 3662,1 62,4 65,8 63,9 64,1 64,1 63,9 64,6 64,7 64,9 6633,9 17,1 10,9 17,1 15,4 30,6 23,6 29,4 17,9 16,5 21,45 5 5 5 5 5 5 5 5 5 5101 84,5 81,7 86 84,5 99,7 92,5 99 87,6 86,4 92,4130,3 130,6 134 132,1 132,3 132,3 132,1 132,8 132,9 133,1 134,2113,07 115,12 115,23 115,53 116,16 120,45 117,94 119,29 119,78 117,84 118,71OK OK OK OK OK OK OK OK OK OK OKAfterthatIsearched availablethe andpipes haveCommerciallyassigned to each pipe its diameter and relative roughness; considering this scheme with a polyethylene pipes with PN 16 bar and roughness equal to 0.0015 mm. 5The assignment of the diameters of the pipes is probably the most delicate part of the project, as derived from this all the results calculated later. The design criteria is performed through an iterative method, parallel to a first verification of the criteria set out below, and check if the network is more or less balance. After several attempts, have been adopted for this network of diameters between 60 125 mm. and a few diameters between 125 250 mm while the diameter of the reservoir is used as diameter of 300 mm Once you have assigned to all pipes diameters must run the program and verify that all scenarios, that after describe, satisfy the following design criteria: = 0.2 N = set of nodes R = set of pipes The Hi test is already done in the excel table reported above. When OK means that the Hi is between Hmin and Hmax. While the velocity test is reported as follows: / ( ) ( ) = =2 + 70 /6All the velocities into the networks conduits are above 0.2 m/s and below 2 m/s. So, also the velocity test is satisfied. I can proceed now with network analysis (Steady State Simulation). Inversion flow must not take place. Velocity and unit headloss should have a certain uniformity.7STEADY STATE SIMULATIONS Normal operation of the Water distribution Network. Steady- state simulation (single period) for the following water demand conditions:,1.1 Peak Hour Demand Demand Multiplier = 1.3 Average Demand Demand Multiplier = 1=3,1.2 Minimum Hour Demand Demand Multiplier == 0.31.1 - Peak Hour Demand Demand Multiplier =follows).Node n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 zground 65,5 63,7 62,3 61,9 60,4 64,9 67,3 65,5 65,6 63,8 62,8 61,5 60,3 61 62,4 63 65,2 63,4 61 61,2 61,5 62,7 61,4 66,5 63,6 62,1 62,4 65,8 63,9 64,1 64,1 63,9 64,6 64,7 64,9 66 Hbuild,max 26,9 16,7 30,3 18,2 34,1 26,8 17,5 12,1 26,8 29,7 33,4 19,2 23,6 15,1 33,5 17,7 30,6 30,2 30,6 34 26,8 27,7 24,3 21,1 11,8 33,9 17,1 10,9 17,1 15,4 30,6 23,6 29,4 17,9 16,5 21,4 f 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 Hmin 97,4 85,4 97,6 85,1 99,5 96,7 89,8 82,6 97,4 98,5 101,2 85,7 88,9 81,1 100,9 85,7 100,8 98,6 96,6 100,2 93,3 95,4 90,7 92,6 80,4 101 84,5 81,7 86 84,5 99,7 92,5 99 87,6 86,4 92,4,=(*already previously verified, asHmax 133,7 131,9 130,5 130,1 128,6 133,1 135,5 133,7 133,8 132 131 129,7 128,5 129,2 130,6 131,2 133,4 131,6 129,2 129,4 129,7 130,9 129,6 134,7 131,8 130,3 130,6 134 132,1 132,3 132,3 132,1 132,8 132,9 133,1 134,2tot head 120,99 114,64 111,59 106,93 105,02 105,15 107,26 113,5 117,97 118,81 114,28 106,34 105,79 107,69 111 114,14 119,45 117,58 108,63 108,23 106,88 109,1 110,31 111,58 111,97 113,07 115,12 115,23 115,53 116,16 120,45 117,94 119,29 119,78 117,84 118,71test OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK8All criteria are satisfied.91.2 - Minimum Hour Demand Demand Multiplier =,= .Hmax 133,7 131,9 130,5 130,1 128,6 133,1 135,5 133,7 133,8 132 131 129,7 128,5 129,2 130,6 131,2 133,4 131,6 129,2 129,4 129,7 130,9 129,6 134,7 131,8 130,3 130,6 134 132,1 132,3 132,3 132,1 132,8 132,9 133,1 134,2 test OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OKNode n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36H 121 120,91 120,87 120,8 120,78 120,78 120,81 120,89 120,96 120,97 120,91 120,79 120,79 120,81 120,86 120,9 120,98 120,95 120,83 120,82 120,8 120,83 120,85 120,87 120,89 120,92 120,92 120,92 120,93 120,99 120,96 120,98 120,98 120,96 120,97 120,95Hmin 97,4 85,4 97,6 85,1 99,5 96,7 89,8 82,6 97,4 98,5 101,2 85,7 88,9 81,1 100,9 85,7 100,8 98,6 96,6 100,2 93,3 95,4 90,7 92,6 80,4 101 84,5 81,7 86 84,5 99,7 92,5 99 87,6 86,4 92,4From the previous table collected on Excel its immediate to understand that all the Head verifies are satisfied but from the following picture comes that none velocity is verified (every velocity is below the minimum velocity limit: 0.2 [m/s]10All the Head are met but none Velocity is met.111.3 - Average Demand Demand Multiplier =Node n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 H 121 120,17 119,77 119,16 118,91 118,93 119,2 120,02 120,6 120,71 120,12 119,08 119,01 119,26 119,69 120,1 120,8 120,55 119,38 119,82 119.96 120,23 120,25 120,29 120,37 120,93 120,6 120,78 120,84 120,59 120,7 120,46 120,32 120,1 120,38 120,81 Hmin 97,4 85,4 97,6 85,1 99,5 96,7 89,8 82,6 97,4 98,5 101,2 85,7 88,9 81,1 100,9 85,7 100,8 98,6 96,6 100,2 93,3 95,4 90,7 92,6 80,4 101 84,5 81,7 86 84,5 99,7 92,5 99 87,6 86,4 92,4 Hmax 133,7 131,9 130,5 130,1 128,6 133,1 135,5 133,7 133,8 132 131 129,7 128,5 129,2 130,6 131,2 133,4 131,6 129,2 129,4 129,7 130,9 129,6 134,7 131,8 130,3 130,6 134 132,1 132,3 132,3 132,1 132,8 132,9 133,1 134,2 test OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OKAlso for the Average demand multiplier (equal to 1) all the Heads are verified. The following picture reports which pipes do not satisfy the velocity test (that is, the ones which has velocity below the minimum velocity limit: 0.2 [m/s]):12The pipes that don t satisfy the velocity test are: 5 6 40 41 42 47 50 .13Breakdown of a pipe in the Water distribution Network: Steady- state simulation (single period) for the average water demand conditions.I must choose to Close three main pipes in my network and analyze the consequences of these outof-service pipes. (Considering one break at a time): A. Break Pipe number 1 B. Break Pipe number 13 C. Break Pipe number 15Pipe n. 1Pipe n. 13Pipe n. 15Pipe in which there is the breakdown Status: Closed.14A. Break Pipe number 1:Node n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Head 120,86 116,99 116,99 116,99 117,16 117,75 118,32 119,5 120,73 119,42 117,28 117,32 118,12 118,92 119,56 116,98 118,98 118,27 118,09 118,62 118,9 119,18 119,21 119,26 119,72 119,78 119,83 119,94 120,74 120,22 120,52 120,62 120,3 120,49 119,76 119,96 Pressure 55,71 52,59 53,64 54,49 55,92 53,35 50,42 53 54,22 56,16 55,72 54,64 55,42 55,52 55,42 55,26 51,48 54,88 55,37 55,44 55,29 54,72 54,7 52,68 54,81 55,86 55,82 54,13 55,33 55,84 56,34 56,02 55,92 55,92 54,87 54,59 Hmin 97,4 85,4 97,6 85,1 99,5 96,7 89,8 82,6 97,4 98,5 101,2 85,7 88,9 81,1 100,9 85,7 100,8 98,6 96,6 100,2 93,3 95,4 90,7 92,6 80,4 101 84,5 81,7 86 84,5 99,7 92,5 99 87,6 86,4 92,4 Hmax 133,7 131,9 130,5 130,1 128,6 133,1 135,5 133,7 133,8 132 131 129,7 128,5 129,2 130,6 131,2 133,4 131,6 129,2 129,4 129,7 130,9 129,6 134,7 131,8 130,3 130,6 134 132,1 132,3 132,3 132,1 132,8 132,9 133,1 134,2 test OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OKAll the Heads in every node are verified within the limits.15Some velocities in some pipes are not placed within the minimum and maximum limit. Those pipes are: 2 3 4 5 41 42 50. (The 1 pipe is the broken one). (Vmin has not to be considered at this stage). Its very important to say that the weve checked that red conduits do not overtake the maximum velocity limit: 2 [m/s].16B. Break Pipe number 13:We can immediately see that all the Heads at nodes are within the Heads limits (max and min.), in (max. case of pipe 13 as a broken pipe. 17Now, lets check the velocities for each pipe.Its immediate to see how the break of Pipe 13 causes 9 non-verified velocities on pipes under the minimum velocity limit. (Vmin has not to be considered at this stage). Its very important to say that the weve checked that red conduits do not overtake the maximum velocity limit: 2 [m/s].18B. Break Pipe number 15:19Even for the breakdown of Pipe 15 all the Heads for each node are verified (within their own max. and min. Head).Even in the case of Pipe 15 breakdown, 9 velocities of 9 conduits are below the minimum velocity limit. (Vmin has not to be considered at this stage). Its very important to say that the weve checked that red conduits do not overtake the maximum velocity limit: 2 [m/s].20Fire Condition in Water distribution Network: Two fire conditions are considered: fire in correspondence of the node with grater population (Maximum Base Demand) and fire in the node of the network faraway to the reservoir.Steady state simulation (single period) for the average water demand condition Demand Multiplier = 1. Two fire condition are considered, fire in correspondence of : A. Node number 17: the node with great population; B. Node number 6: the node of the network faraway to the reservoir. Fire flow is valuated with the formula of Conti: =6 Where P in the population express in thousands of inhabitants. Fire is added to the Base Demand of the node.A. Fire Condition in Node 17: the most populated node:All the Heads are verified in case of Fire Condition in the most populated node: Node 17. Now, lets check the velocities in every conduit:21The pipes where is not satisfied the Velocity test in case of fire condition in Node 17 are: 5 6 40 41 42 47 50. (Vmin has not to be considered at this stage). Its very important to say that the weve checked that red conduits do not overtake the maximum velocity limit: 2 [m/s].22A. Fire Condition in Node 6: the one faraway to the reservoirThe Heads in each node are all verified in case of fire in Node 6: the most faraway node to the reservoir. Now lets check the velocities in the same case:23Only two pipes dont supply the minimum velocity limit in case of fire conditions at node 6: the most faraway to the reservoir. Its very important to say that the weve checked that red conduits do not overtake the maximum velocity limit: 2 [m/s].24EXTENDED PERIOD SIMULATION SIMULATIONSIn this part of the project three different simulations have been analyzed: 1. Extended period simulation with leakage allocation; 2. Extended period simulation with leakage allocation and water age analysis; 3. Extended period simulation with leakage allocation and water quality analysis. The input data are as follows: Leakage: p = 0.39 (real losses rate that is the fraction of water that is lost) emitter exponent n = 1.1 Demand Pattern: ( )= D BD ( ) Actual Demand Base Demand (users consumption + leakage)BD= (1 p) BD (user consumption only) ( ) = ( )Chlorine parameters: Global Bulk Coeff. = - 1.2 Global Wall Coeff. = - 1.1 Source quality (reservoir) = 0.4 mg/lInputting data into the program we obtain the following pattern:25Before starting the actual analysis is necessary to calculate: : : : = = = = 45.63 = 0.36 = 44.13 = 17.796Where is the average pressure at node i-th (obtain from Demand Multiplier = 1). After this I insert as Emitter coefficient in each node.Node IDs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34Tot Length 418,91 657,39 629,78 654,79 702,81 682,23 678,04 424,68 411,97 462,16 590,27 356,45 393,59 214,9 486,29 500,4 742,04 481,53 510,38 394,24 422,85 673,16 389,83 544,74 304,86 377,39 358,06 469,43 556,82 300,75 316,76 272,76 394,23 260,34Half Length 209,455 328,695 314,89 327,395 351,405 341,115 339,02 212,34 205,985 231,08 295,135 178,225 196,795 107,45 243,145 250,2 371,02 240,765 255,19 197,12 211,425 336,58 194,915 272,37 152,43 188,695 179,03 234,715 278,41 150,375 158,38 136,38 197,115 130,17Node BD 1,1371 1,7844 1,7095 1,7774 1,9077 1,8518 1,8405 1,1528 1,1183 1,2545 1,6022 0,9675 1,0684 0,5833 1,3200 1,3583 2,0142 1,3071 1,3854 1,0701 1,1478 1,8272 1,0582 1,4786 0,8275 1,0244 0,9719 1,2742 1,5114 0,8164 0,8598 0,7404 1,0701 0,7067Pressure 55,85 55,77 56,42 56,66 57,67 53,53 51,3 53,52 54,6 56,54 56,42 54,44 57,11 56,66 56,19 55,8 55,3 56,45 56,48 56,51 56,35 55,54 55,4 52,27 55,42 56,56 56,33 54,6 55,79 56,27 56,53 56,4 56,18 56,14alpha 0,005 0,008 0,008 0,008 0,009 0,009 0,009 0,006 0,005 0,006 0,007 0,005 0,005 0,003 0,006 0,006 0,009 0,006 0,006 0,005 0,005 0,009 0,005 0,007 0,004 0,005 0,004 0,006 0,007 0,004 0,004 0,003 0,005 0,003ql 0,441 0,692 0,663 0,690 0,740 0,719 0,714 0,447 0,434 0,487 0,622 0,375 0,415 0,226 0,512 0,527 0,782 0,507 0,538 0,415 0,445 0,709 0,411 0,574 0,321 0,397 0,377 0,494 0,586 0,317 0,334 0,287 0,415 0,2742635 36 TOTAL368,81 406,08184,405 203,04 TOT. BD1,0011 1,1023 45,628355,16 54,80,005 0,0050,388 0,4281 - EXTENDED PERIOD SIMULATION WITH LEAKAGE ALLOCATION: Demand Multiplier = 0.61 Total Duration= 24:00 h Emitter exponent = 1.1 Hydraulic Time Step = 1:00 h1.1 - Graph with velocity versus all pipes at some particular time.Velocities in each conduit at 7:00 AM27Velocities in each conduit at 8:00 PM28Total Heads for each node at 7:00 AM29Total Head for each node at 8:00 PM30The velocity changes according to the demand; in fact, during the night (low demand) we obtained low speeds (0.10 0.30 m/s), but at eight oclock in the morning, when we have peak demand day, the higher speeds are three times the lower ones (0.30 0.90 m/s). 1.2 - Table with hydraulic head versus all nodes at some particular timeNode n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Head at 7:00 120,74 119,17 118,4 117,23 116,74 116,77 117,29 118,78 119,82 120,2 119,06 117,07 116,93 117,4 118,21 118,97 120,36 119,89 117,65 117,54 117,2 117,74 118,02 118,32 118,43 118,74 119,24 119,19 119,3 119,45 120,61 119,97 120,31 120,44 119,95 120,21 Head at 20:00 120,79 119,52 118,9 117,95 117,55 117,58 118 119,2 120,05 120,35 119,43 117,82 117,71 118,09 118,75 119,36 120,49 120,11 118,29 118,21 117,93 118,36 118,6 118,83 118,93 119,18 119,58 119,54 119,63 119,74 120,69 120,17 120,44 120,55 120,15 120,36From the values in this table we can find the relation that exists between the speed and the head.311.3 - Graph with velocity V versus time for some selected pipes.Here you can see in detail what was stated in paragraph 1.1, namely that the velocity of the water varies throughout the day according to demand.1.4 - Graph with hydraulic head H versus time for some nodesFor example, comparing the speed and the head at 8.00 am is well known that when the demand for water increases, there is a parallel increase in speed and decrease in head. Then the two graphs (1.3 and 1.4) will be one the opposite of the other.321.5 Graph frequency plot (value of V for pipe or H for node versus fraction not exceeding the value)Frequency graph gives us the speed distribution as a percentage. For example if we look we see that the graph of 4.00 am in 95% of the water pipe has a velocity of about 0.28 m/s, but at 8.00 am in 95% of the water pipe has a velocity of about 0.85 m/s. We see that within 24 hours, the speed changes in all the pipes.33Same thing for the distribution of the head. See for example, that at 4.00 am to 50% of the pipes has a head of 118.15 m, while at 8.00 am, 50% of the pipes has a head of about 116.5 m.342 - EXTENDED PERIOD SIMULATION WITH LEAKAGE ALLOCATION AND WATER AGE ANALYSIS. For this analysis we consider the second 24 hours. 2.1 Table with Water Age versus all nodes at some particular timeWater Age analysis at 31:00 hours35Water age analysis at 44:00 hrsIn this pictures we can see how long it takes water from the reservoir to reach the various node at certain hours. And we can see that the growth in demand less time spent using the water to reach the various nodes.362.2 Graph with Water Age versus time for some nodesIn these graph we can see how much water takes to get to node during the different hours of the day.2.3 Graph frequency plot (value of Water Age for node versus fraction not exceeding the value)37Here we observe at certain hours, how long it takes water to each a percentage of the nodes. For example at 28.00 am per hour to reach 60% of the nodes, while at 32.00 am per hour to reach 93% of the nodes.2.4 Contour plot some instant of Water Ages.Here we see graphically how long does the water take to reach the different nodes of the network during the different hours of the day.383 - EXTENDED PERIOD SIMULATION WITH LEAKAGE ALLOCATION AND WATER QUALITY ANALYSIS. hlorine 3.1 Pictures with Chlorine concentration versus all nodes at some particular time. Chlorine Concentration at 32:00 hrs39Chlorine concentration at 44:00 hrs40This pictures provides us with the chlorine levels in the nodes during the different hours of the day, the level of chlorine increases with the passing of the day. 3.2 Graph with Chlorine concentration versus time for some nodesThis is the distribution of the concentration level of chlorine knowing that the reservoir was given as a value of 0.4 mg/l. In all nodes is lower during the night and higher during the day.3.3 Graph frequency plot (value of Chlorine concentration for node versus fraction not exceeding the value)41We see the percentage distribution of chlorine at different times of the day.423.4 Contour plot for some instant of Chlorine concentration.Chlorine concentration levels at 28:00 hrsChlorine concentration levels at 32:00 hrsChlorine concentration levels at 44:00 hrsChlorine concentration levels at 47:00 hrsThis is the distribution of chlorine levels during the different hours of the day.43CONCLUSIONS: I had considered important to conclude the project in terms of costs. As I have reported at the beginning, (first table) the pipe cost and consequently the final sum is:Pipe ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Length (m) 132,76 374,68 119,74 312,72 289,09 336,33 135,81 201,26 132,53 144,66 175,72 112,17 210,74 75,41 181,42 146,96 162,69 99,64 52,98 162,97 83,96 49,82 78,5 99,27 82,29 147,49 197,32 83,3 113,8 80,82 340,97 77,39 112,37 37,34 108,85 182,82 136,02 56,7 124,08 234,6 203,83 248,05 65,19 210,09 147,57 103,8 210,95 75,08 180,29 149,05 Diam 150 125 100 100 60 60 60 60 100 125 125 200 200 250 200 125 80 60 60 60 80 100 100 100 80 60 60 100 100 100 100 80 80 100 100 125 150 150 125 60 80 60 60 80 80 80 60 80 80 80 Unit Cost /m 39,4 37 27,2 27,2 19,8 19,8 19,8 19,8 27,2 37 37 54,4 54,4 72,9 54,4 37 24,5 19,8 19,8 19,8 24,5 27,2 27,2 27,2 24,5 19,8 19,8 27,2 27,2 27,2 27,2 24,5 24,5 27,2 27,2 37 39,4 39,4 37 19,8 24,5 19,8 19,8 24,5 24,5 24,5 19,8 24,5 24,5 24,5 Cost 5230,744 13863,16 3256,928 8505,984 5723,982 6659,334 2689,038 3984,948 3604,816 5352,42 6501,64 6102,048 11464,256 5497,389 9869,248 5437,52 3985,905 1972,872 1049,004 3226,806 2057,02 1355,104 2135,2 2700,144 2016,105 2920,302 3906,936 2265,76 3095,36 2198,304 9274,384 1896,055 2753,065 1015,648 2960,72 6764,34 5359,188 2233,98 4590,96 4645,08 4993,835 4911,39 1290,762 5147,205 3615,465 2543,1 4176,81 1839,46 4417,105 3651,7254451 52 53 54 55 56 57 58TOTAL215,05 144,44 34,74 59,93 165,67 119,97 83,17 18405,8680 100 125 150 80 100 100 30024,5 27,2 37 39,4 24,5 27,2 27,2 90,75268,725 3928,768 1285,38 2361,242 4058,915 3263,184 2262,224 90,7TOT. COST239.228 The previous table is based on the following costs list:Cost TableD (mm)60 80 100 125 150 200 250 300/m19,8 24,5 27,2 37 39,4 54,4 72,9 90,7Now, is reported the whole amount of the project due to: valves (2 for pipe), Cutting Asfalt, Excavation, Supply and installation of polyethylene pipe, with PN 16 including fittings and covering with sand, Backfilling with gravel, Base layer, binder layer and wear layer of asphalt:ARTICLE000JOB DESCRIPTIONCleaning the proposed site from all dirt or any un-required top soil up to 25cm and leveling the site, all according to drawings, specifications, conditions and directed instructions by the engineer.UNITS QUANTITYUNIT PRICETOTALL.S.1,0017694,00106945,0045001 002Cutting Asfalt. 0,60 x 8.302,00 Excavation. The item also includes the demolition and transport a refusal of the asphalt. 0,60 x 2,00 x 8320,13 Supply and installation of polyethylene pipe, with PN 16, including fittings and covering with sand. With the following diameters: 60 80 100 125 150 200 250 300 Supply and installation of valves, with following diameters: 60 80 100 125 150 200 250 300 Backfilling with gravel. 0,60 x 1,20 x 8320,13 Asphalt. Base layer. 0,60 x 0,15 x 8320,13 Asphalt. Binder. 0,60 x 0,07 x 8320,13 Asphalt. Wear layer. 0,60 x 8320,13m m4992,08 9984,175,00 15,0024960,40 149762,55003a b c d e f g h 004ml. ml. ml. ml. ml. ml. ml. ml.2381,70 1969,13 1905,24 1183,66 385,66 504,33 75,41 1,0019,80 24,50 27,20 37,00 39,40 54,40 72,90 90,7047157,66 48243,69 51822,53 43795,42 15195,00 27435,55 5497,39 90,70a b c d e f g h 005 006cad. cad. cad. cad. cad. cad. cad. cad. m m26 28 30 14 8 6 2 1 5990,49 748,81200,00 250,00 313,00 386,00 459,00 530,00 850,00 1000,00 35,00 40,005200,00 7000,00 9390,00 5404,00 3672,00 3180,00 1700,00 1000,00 209667,15 29952,40007m349,45150,0052417,50008m4992,0816,5082369,32TOTAL EURO931858,26 46

Recommended

View more >