43
Verso l’apertura di una sigla SHIP per 2015 Walter M. Bonivento CERN/INFN Cagliari CNS1 Elba 20/05/2014 CERN, Universität Zürich, EPFL Lausanne, INFN Cagliari, Università Federico II and INFN Napoli, Imperial College London (in forte crescita) (segue presentazione CNS1 6/2)

Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Embed Size (px)

Citation preview

Page 1: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Verso l’apertura di una sigla SHIP per 2015!

Walter M. Bonivento CERN/INFN Cagliari

!

CNS1 Elba 20/05/2014

CERN, Universität Zürich, EPFL Lausanne, INFN Cagliari, Università Federico II and INFN Napoli, Imperial College London

(in forte crescita)

(segue presentazione CNS1 6/2)

Page 2: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Cosa e’ SHIPSHIP e’ una proposta di esperimento di beam dump al SPS (400GeV p) del CERN !

Obiettivi (per ora…): !

A. rivelazione particelle a lunga vita media debolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo x10000 !

B. rivelazione 𝜈𝝉 con sensibilità’ statistica rispetto a esperimenti precedenti x200

2

Page 3: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Δ(>>0!) rispetto al talk del 6/2 (i)

• Estensione del programma di Fisica!

• Manifestazione di interesse di altri gruppi italiani!

• contributi attivi su vari fronti per il TP!

• partecipazione ad apertura sigla a Settembre!

• Manifestazione di interesse di altri gruppi stranieri!

• Workshop di Zurigo 10-12 Giugno —>estensione della collaborazione

3

Page 4: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Δ(>>0!) rispetto al talk del 6/2 (ii)

• Proposte dettagliate di alcune tecnologie di rivelatore —>quasi definizione di alcune; discussione approfondita su altre!

• Task force fascio e infrastrutture (nominata dal DG) !

• Studi con GEANT del filtro di muoni: confronto filtro attivo/filtro passivo!

• Definizione preliminare della schedule!

• Indicazione possibile esistenza di N dark matter in spettri X

4

Page 5: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Layout esperimento

Walter M. Bonivento - CERN/INFN Cagliari

lead/iron

tungsten

60m

magnet

5m

50m

5 CNS1 Elba 20/05/2104

x2p

rivelatore ντ

muon

UT+VETOECAL

tracking

Page 6: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Perche’ e’ importante il fattore 10000?

Walter M. Bonivento - CERN/INFN Cagliari 6 CNS1 Elba 20/05/2104

Page 7: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari 7 CNS1 Elba 20/05/2104

John Ellis, QFPP, CERN, 6/5/2014

Page 8: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Una nuova idea: il 𝜈MSM! Premessa: Massa del Higgs misurata a ≈125 GeV —> SM teoria di campo effettiva, auto-consistente, debolmente accoppiata fino a grandi scale (almeno fino a 1010GeV, vedi Strumia, Giudice, Isidori ecc.)!

Oggetto: 𝜈MSM e’ un modello che estende lo SM, in modo minimale, cioe’ senza introdurre nuovi principi fisici (SUSY or ED) o nuove scale di energia (GU)!

Modo: 3 partner di Majorana (HNL), singoletti destrorsi e sterili dei neutrini ordinari con MN<MW!

Soluzione: In un particolare spazio dei parametri (N2 e N3 quasi degeneri e con m=O(GeV) e N1 disaccoppiato con m=O(keV) ) il 𝜈MSM risolve i tre problemi osservativi del MS: massa dei neutrini (see-saw), bariogenesi (via lepto-genesi) e materia oscura (N1)!!

8

long-awaited Higgs boson of the Standard Model (SM) [3]. This discovery implies that the Landaupole in the Higgs self-interaction is well above the quantum gravity scale MPl ' 1019 GeV (see, e.g.Ref. [4]). Moreover, within the SM, the vacuum is stable, or metastable with a lifetime exceeding thatof the Universe by many orders of magnitude [5]. Without the addition of any further new particles,the SM is therefore an entirely self-consistent, weakly-coupled, e↵ective field theory all the way up tothe Planck scale (see Refs. [5, 6] for a recent discussion).

Nevertheless, it is clear that the SM is incomplete. Besides a number of fine-tuning problems (such asthe hierarchy and strong CP problems), the SM is in conflict with the observations of non-zero neutrinomasses, the excess of matter over antimatter in the Universe, and the presence of non-baryonic darkmatter.

The most economical theory that can account simultaneously for neutrino masses and oscillations,baryogenesis, and dark matter, is the neutrino minimal Standard Model (⌫MSM) [7,8]. It predicts theexistence of three Heavy Neutral Leptons (HNL) and provides a guideline for the required experimentalsensitivity [9]. The search for these HNLs is the focus of the present proposal.

In addition to HNLs, the experiment will be sensitive to many other types of physics models thatproduce weakly interacting exotic particles with a subsequent decay inside the detector volume, seee.g. Refs. [10, 11, 12, 13, 14, 15]. Longer lifetimes and smaller couplings would be accessible comparedto analogous searches performed previously by the CHARM experiment [16].

In the remainder of this document the theoretical motivation for HNL searches is presented inSection 2 and the limits from previous experimental searches are then detailed in Section 3. Theproposed experimental set-up is presented in Section 4 and in Section 5 the background sources arediscussed, before the expected sensitivity is calculated in Section 6. The conclusions are presented inSection 7.

2 Theoretical motivation

In type-I seesaw models (for a review see Ref. [17]) the extension of the SM fermion sector by threeright-handed (Majorana) leptons, NI , where I = (1, 2, 3), makes the leptonic sector similar to thequark sector (see Fig. 1). Irrespective of their masses, these neutral leptons can explain the flavouroscillations of the active neutrinos. Four di↵erent domains of HNL mass, MN , are usually considered:

Left

Left

Rig

ht

Left

Rig

ht

Left

Left

Rig

ht

Left

Left

Rig

ht

Left

Rig

ht

Left

Rig

ht

Left

Rig

ht

Left

Rig

ht

Left

Rig

htuup

2.4 MeV

⅔ ccharm

1.27 GeV

⅔ ttop

173.2 GeV

ddown

4.8 MeV

-⅓ sstrange

104 MeV

-⅓ bbottom

4.2 GeV

-⅓

νeelectronneutrino

0 νμmuon

neutrino

0 ντtau

neutrino

0

eelectron

0.511 MeV

-1 μmuon

105.7 MeV

-1 τtau

1.777 GeV

-1

ggluon

0

0

γphoton

0

0

Z091.2 GeV

0

weakforce

80.4 GeV

± 1

weakforce

mass→

charge→

Qu

ark

sL

ep

ton

s

Three Generations

of Matter (Fermions) spin ½

Bo

so

ns (

Fo

rce

s)

sp

in 1

I II III

name→

H126 GeV

0

0

Higgsboson

spin 0

Left

Left

Rig

ht

Left

Rig

ht

Left

Left

Rig

ht

Left

Left

Rig

ht

Left

Rig

ht

Left

Rig

ht

Left

Rig

ht

Left

Rig

ht

Left

Rig

htuup

2.4 MeV

⅔ ccharm

1.27 GeV

⅔ ttop

173.2 GeV

ddown

4.8 MeV

-⅓ sstrange

104 MeV

-⅓ bbottom

4.2 GeV

-⅓

νeelectronneutrino

0 νμmuon

neutrino

0 ντtau

neutrino

0

eelectron

0.511 MeV

-1 μmuon

105.7 MeV

-1 τtau

1.777 GeV

-1

ggluon

0

0

γphoton

0

0

Z091.2 GeV

0

weakforce

80.4 GeV

± 1

weakforce

mass→

charge→

Qu

ark

sL

ep

ton

s

Three Generations

of Matter (Fermions) spin ½

Bo

so

ns (

Fo

rce

s)

sp

in 1

I II III

name→

H126 GeV

0

0

Higgsboson

spin 0

N~10 keV

1 N~GeV

2 N~GeV

3

Figure 1: Particle content of the SM and its minimal extension in the neutrino sector. In the (left) SM theright-handed partners of neutrinos are absent. In the (right) ⌫MSM all fermions have both left- and right-handedcomponents and masses below the Fermi scale.

2

T.Asaka e M.Shaposhnikov, PLB620 (2005) 17

Page 9: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

!

• nel νMSM forti limitazioni nello spazio dei parametri (U2,m)!

• molte ricerche di HNL in passato ma, per m>mK, con sensibilità’ non di interesse cosmologico (es LHCb in decadimenti del B raggiunge U2≈10-4, arXiv:1401.5361)

• questa proposta: ricerca in decadimenti dei mesoni D (prodotti ad alta statistica nella collisione di p di 400 GeV su bersaglio fisso)!

• Considerati i fasci esistenti e possibili in un futuro non troppo remoto, questo e’ il migliore esperimento che possa sondare la regione di interesse cosmologico

9

Future Hadron Collider meeting, CERN, February 6, 2014 R. Jacobsson

� Production in mixing with active neutrino from leptonic/semi-leptonic weak decays of charm mesons

• Total production depend on ଶ = σ κூ ଶூୀଵ,ଶκୀ,ఓ,ఛ

• Relation between ଶ,ఓ

ଶand ఛଶ depends on exact flavour mixing

Î For the sake of determining a search strategy, assume scenario with a predominant coupling to the muon flavour

� Production mechanism “probes” ఓଶ = σ ௩మ ഋ

ೃమ

ூୀଶ,ଷ

Î Br(ܦ ՜ ) ~ 10 െ 10ଵଶ

12

ఓߥܪ

௦ܦ

ଶ,ଷ

ߤ

ఓߥܪ

ܦ

ଶ,ଷ

ߤ

ߨ

(arXiv:0705.1729)

Produzione di N2,3

Future Hadron Collider meeting, CERN, February 6, 2014 R. Jacobsson

1. See-saw: Lower limit on mixing angle with active neutrinos to produce oscillations and masses 2. BAU: Upper limit on mixing angle to guarantee out-of-equilibrium oscillations (Ȟேమ,య < H)

3. BBN: Decays of ଶ and ଷ must respect current abundances of light nuclei Î Limit on lifetime ேమ,య < 0.ͳݏ ( > (ܯ 3

4. Experimental: No observation so far Î Constraints 1-3 now indicate that previous searches were largely outside interesting parameter space

10

gerarchia inversa di massa dei neutrini

Page 10: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Decadimenti del N2,3• Accoppiamento HNL-ν attivo molto debole

—>N2,3 hanno vita media molto lunga

• distanze di decadimento O(km)!: per U2

μ=10-7, τN =1.8x10-5s

• Vari modi di decadimento : i BR’s dipendono dal mescolamento tra sapori

• Probabilità’ che N2,3 decada nel volume fiduciale dell’esperimento ∝Uμ

2

—> numero di eventi ∝Uμ4

10

—>aumento di sensibilita’ x10000 permette di accedere alla regione di interesse cosmologico!

Page 11: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

New!

Portali verso Hidden sectors!

!

!

Le particelle dello SM non sono sensibili direttamente all’interazione di gauge GD ma attraverso un mediatore: gli operatori SM di dimensione piu’ piccola sono detti “portali”!

recentemente si e’ rivitalizzata l’attenzione verso questo tipo di interazioni per spiegare alcune anomalie astrofisiche (e.g. aumento e+/e- con energia , concentrazione di linea a 511keV dal centro galattico), interpretate nel contesto di dark matter; il range di masse suggerito, da qualche MeV a qualche GeV, con 𝝉<1sec e 𝝉>100ns e’ peculiare per esperimenti fixed-target (PhysRevD.80.095024)!

In questo esperimento simile metodologia di esperimenti già effettuati come CHARM ma con molta maggiore statistica e/o con maggiore energia del fascio (es. rispetto a U70) —>stiamo studiando le sensibilita’ in SHIP

11

The idea of the existence of a hidden gauge sector weakly coupled with the  SM  through  some  mixing  mechanism  dates  back  to  the  early  80’s.  (see  for instance P. Fayet Nucl. Phys. B 347 (1990) 743) It has nowadays been reproposed by several authors, as a possible explanation of recent puzzling astrophysical observations

3

Basically  all  of  these  models  postulate  the  existence  of  a  sort  of  “dark”  or  “hidden”  world,  sensitive  to  a  specific  new  gauge  interaction  GD

SM particles are not charged under GD but,  as  specified  above,  can  “feel”  the new force because of mixing between it and the SM gauge interaction

Page 12: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Portali et al.Higgs portal —>mediatore inflatone (scalare); produzione diretta o da decadimento mesone; decadimenti e+e-, μ+μ-; accoppiamenti rinormalizzabili (μ𝜒+λ𝜒2)H+H!

Neutrino portal ->mediatore HNL, di cui sopra!

Vector portal —> mediatore para-fotone; produzione in mixing con fotoni; decadimenti e+e-, μ+μ-; accoppiamenti rinormalizzabili ϵFμ𝛎F’μ𝛎!

axion portal —> mediatore PNGB o axion-like particles (in questo caso non sono Dark Matter particles); produzione diretta mixing con π0; decadimenti e+e-, μ+μ-!

Anche sotto studio low-energy SUSY:!

! !

12

New!

Page 13: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Soppressione fondiInterazioni di neutrini muonici e di muoni non soppressi dal filtro!

1. nel tunnel di decadimento—>vuoto!

2. nell’ultima lunghezza di interazione del dump ->produzione di K0L—>μπν (eπν) !

—>rigettate da tagli cinematica sul parametro di impatto e p +muon ID e electron ID per canali Hidden sector!

inoltre un altro fattore 10-40 si puo’ ottenere equipaggiando l’ultima parte del dump con un rivelatore attivo per “taggare” le interazioni di neutrino —> ANCORA DA TROVARE CHI SE NE OCCUPA!

in ogni caso e’ importante sopprimere il K0L anche sopra 500MeV perche’ non sappiamo ancora come e se riusciremo a tenere sotto controllo le code non gaussiane della risoluzione in impulso!

Combinazioni casuali di due muoni dal PV —> risoluzione temporale spinta di almeno un rivelatore e alta efficienza del VETO cruciali (sotto studio)

13

Page 14: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Sensibilita’per HNLAssumendo 0 fondo (che pare ben giustificato dai nostri studi, ma sara’ comunque l’oggetto di simulazioni molto dettagliate) e 2x1020p.o.t. !

—> finestra di opportunità’ per questo esperimento di sondare la zona di interesse cosmologico

14

solo con N—>μπ(in uno scenario in cui l’accoppiamento !

al sapore muonico e’ dominante)

BBN

(gerarchia di massa dei neutrini attivi inversa)

/CHARM

Page 15: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Sensibilita’ per Hidden Photon

15

con canali e+e- e μ+μ-

VERY PRELIMINARY E UNOFFICIAL

New!

Page 16: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Fisica dei neutrini attivi: 𝛎𝝉 e 𝛎μApprofittando del beam dump, con un rivelatore dedicato che prende dati simultaneamente a quello per HNL, e’ possibile lo studio di interazioni del neutrino 𝝉 con statistica >200x attuale:!

• l’esperimento DONUT ha osservato 9 eventi (da charm) con 1.5 stimato di fondo!

• l’esperimento OPERA ha osservato 4 eventi (da oscillazione)!

In generale la terza generazione di leptoni puo’ essere piu’ sensibile a NF per la sua maggiore massa !

Inoltre la NF nel settore del 𝝉 e’ sperimentalmente limitata con minore precisione rispetto alle altre due famiglie. !

In particolare due “anomalie” sperimentali (su 3) nella fisica del charged flavor coinvolgono il 𝝉:!

A. ! R(D), R(D*) dalle B factories —>3.4𝝈 dal MS!

B. A(CP) (𝝉—>πK0

S𝛎𝝉) —>2.8𝝈 dal MS

16

Page 17: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Fisica dei neutrini attivi: 𝛎𝝉 e 𝛎μ—> Misure di sezioni d’urto e distribuzioni angolari nelle interazioni CC: stiamo studiando con i teorici (Datta, U.Massachussets) la sensibilita’ a Higgs carico, W’ e Leptoquarks!

Altre misure importanti:!

A. osservazione di anti-ντ (unica particella del MS non ancora osservata)!

B. produzione di charm in interazioni di νμ (grande aumento di statistica, >100x, rispetto a CHORUS in particolare per anti-νμ, : infatti in beam dump anti-νμ/νμ 60%)!

17

Page 18: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Bersaglio e filtro per muoni!

!

!

!

!• Bersaglio di W (50cm-1m) : il fascio va allargato e/o diluito sul bersaglio per evitare fusione,

seguito da assorbitore adroni e un filtro per muoni con due opzioni allo studio!

• Problema non banale perche’ il flusso di muoni e’ enorme: 1011/SPS-spill(5×1013 pot); !

• per ora la baseline per l’estrazione e’ 1sec (CNGS 10μs)!

• sicuramente il problema tecnico piu’ difficile dell’esperimento!

• Problemi radiologici sotto controllo con la costruzione di un target bunker e con circuito di raffreddamento chiuso

18

target Experimentmop−up shieldingabsorberhadron

muon shield (U / W)beam

(detector, fiducial volume)

~ 3m ~ 52m~ 1m ~ 1m~ 0.5m

wall / earth

Figure 7: Schematic view of the target, hadron absorber and muon shield in front of the experiment. The totallength from the target to the entrance of the fiducial volume is ⇠ 60 m.

4.2 Detector

The detector consists of a long decay volume followed by a spectrometer. For a given detector length,the detector diameter should be maximised. In the discussion below the 5 m aperture of the LHCbspectrometer [59] is taken as a realistic scale.

Figure 8 shows a scan of the length of the detector for both a single detector element and fortwo longitudinally arranged detector elements. For a given HNL lifetime and detector aperture, thenumber of HNLs decaying in the apparatus with the decay products going through the spectrometersaturates as a function of the length of the detector. The use of two magnetic spectrometers increasesthe geometric acceptance by 70% compared to a single element. Therefore, the proposed detectorwill have two almost identical detector elements as depicted in Fig. 9. A diagram of a single detectorelement is also shown in Fig. 10.

To reduce to a negligible level the background caused by interactions of neutrinos with the remainingair inside the decay volume, a pressure of less than ⇠ 10�2 mbar will be required (see Section 5). Eachdetector element therefore consists of a ⇠50 m long cylindrical vacuum vessel of 5m diameter. The first⇠ 40 m constitute the decay volume and the subsequent 10 m are used for the magnetic spectrometer.The combined calorimeter and muon detector have a length of 2 m.

The magnetic spectrometer includes a 4 m long dipole magnet, two tracking layers upstream of themagnet, and two tracking layers downstream of the magnet (see Fig. 9). For the required level ofvacuum, the tracking chamber thickness and resolution are matched to give a similar contributionto the overall spectrometer resolution (see Fig. 11). Using straw tubes with ⇠120 µm resolution andwith 0.5% X/X

0

, like those presently being produced for the NA62 experiment [60], simulation studiesindicate that 2.5m is required between tracking chambers, giving ⇠ 10 m length for each magneticspectrometer.

An electromagnetic calorimeter is located behind each vacuum vessel for ⇡0 reconstruction andlepton identification. The calorimeter material is also part of the muon filter for the muon detector,which consists of an iron wall followed by a tracking station. An additional tracking station at thebeginning of each decay vessel will be used to veto charged particles entering the fiducial volume.These stations will also reject upstream neutrino interactions.

For a mass MN = 1 GeV, 75% of the µ�⇡+ decay products have both tracks with momentump < 20 GeV. The momentum and hence mass resolution scales with the integrated field of the magnets.

11

Page 19: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Filtro passivo!

!

• Simulazione con PYTHIA8/GEANT4!

• Un cono di solo W troppo caro

• Miglior compromesso: nocciolo di W 250t di 40m (10M€ x costo al Kg/40€) circondato da Pb (2500t); totale 70m (100t di W per totale 60m per ottimizzazione costi)

• dopo 40m lo scattering multiplo e’ così grande che non vale la pena di continuare con un nocciolo di W

• rate di muoni stimato sullo spettrometro: 25k/spill da 5e13 (x10 con 100t)19

New!

Page 20: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari 20 CNS1 Elba 20/05/2104

New!

Page 21: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Rivelatori et al.• Quasi nessun R&D da fare, per ora non e’ emerso nessun parametro che

necessiti di un “nuovo” rivelatore: ce la possiamo fare con rivelatori già costruiti in passato, ottimizzando i parametri—> questo significa che dall’approvazione si puo’ iniziare subito a costruire il rivelatore!

• Rivelatore di Muoni. varie opzioni allo studio:!

• RPC di nuova generazione.!

• RPC ricuperate da OPERA!

• Scintillatori con fibre WLS e lettura SiPM (FNAL/NICADD) !

• HCAL!

• trigger e acquisizione dati: pensiamo di utilizzare il modello HLT dell’upgrade di LHCb (i.e. no L0)

• computing: FairRoot framework (F.Rademacher)

21

Page 22: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Un possibile calorimetro!

!

!

• Il calorimetro Shashlik a spirale proposto dal gruppo di IHEP Protvino (non ancora ufficialmente membro di SHIP)

• Uniformita’ qualche %, risoluzione temporale σ∼1ns quale σ(E)/E=6.5%/√E⊕1%

• con possibilmente un pre-shower per distinguere γ da π0

22

New!

Page 23: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Tracking e VETOStraw tubes simili a NA62 con

risoluzione spaziale di 120 μm, 0.5% X0/X Risoluzione in impulso ottenuta nel nostro caso

23

Principali differenze con NA62: A. 5m di lunghezza !B. vuoto 10-2 mbar C. 2kHz/straw di 1cm di diam D. configurazione X,X-θ,X+θ,X

con θ piccolo

possibile sinergia su vari fronti con NA62

Page 24: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Rivelatore per 𝛎Rivelatore a emulsioni con la tecnologia di OPERA ma con massa molto minore (750 mattoni) molto compatto (2m) posto davanti al tunnel di decadimento per il HNL —>immerso in campo B e seguito da un rivelatore di muoni (per sopprimere il fondo di charm)!

Si stima di dovere cambiare il rivelatore circa 10 volte nel corso del run —>totale di 5400 m

2 di piates di emulsioni —> 5% di OPERA!

Due opzioni allo studio:!

24

New!

Page 25: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Stato della proposta Raccomandazione SPSc —>gia detto a Febbraio!

L’Extended Directorat del CERN ha istituito recentemente una task force composta da fisici degli acceleratori del CERN (Saban, Goddard, Arduini, Gatignon ecc.) per dare un “first assessment” per la fattibilita’ e costi del nostro esperimento in termini di beam line e dump!

Un draft del documento e’ gia’ pronto (ma non ancora pubblico) e sara’ discusso probabilmente al prossimo RB!

Pagina web http://ship.web.cern.ch/ship/ !

Costo stimato: 100M (CERN) per il fascio 15M+15M+12M (F.A.) per il rivelatore (inclusi i contributi in-kind)

25

New!

Page 26: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Tempistica (moolto preliminare)

• Proposal : 1 meta’ del 2015

• Approvazione SPSc: seconda meta’ 2015

• incoraggiamento continuare —> council 2016

• Due anni per fare i TDR, meta’ 2017: approvazione fine 2017; Technical Design del fascio

• Prime richieste finanziarie per produzione rivelatori: 2018

• costruzione beam line: LS2

• 4-5 anni produzione-istallazione (durante LS3)

• Data taking: dopo LS3, 2022-2027

26

New!

Page 27: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Il workshop di ZurigoPrimo meeting open di Collaborazione il 10-12 Giugno a Zurigo: sara’ un workshop a cui sono invitati molti teorici e si discuteranno le opzioni per i vari sotto-sistemi

Ci sara’ una sessione in cui si decidera’ l’estensione della collaborazione a nuovi membri della collaborazione (che ovviamente ne facciano richiesta) a cui sara’ richiesto di dichiarare il tipo di impegno potenziale su:

a ) preparazione proposal, b) preparazione TDR, c) costruzione

Sara’ dato tempo fino a Settembre per le “late entries” per a)

27

Page 28: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Coordinamento• interim membership committee: io (firmatario della

EOI e uno dei progettisti iniziali) membro per Italia

• interim executive committee: i firmatari della EOI +Addendum —>G DeLellis + me

• Muon detector: io

• Neutrino detector: G DeLellis (e Panman)

28

New!

Page 29: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Partecipazione gruppi INFN• Ci sono due anime: provenienza G1 e G2 (soprattutto OPERA)

• interesse ex-OPERA particolarmente nel rivelatore di 𝜈𝝉

• Stiamo cercando sinergie tra le due parti —>una individuata nei rivelatori di muoni

• Bari (da G1 e G2): rivelatori MUON e rivelatore 𝜈𝝉

• Bologna (da G1): elettronica ECAL e rivelatore MUON

• Cagliari (da G1): rivelatore MUON e DAQ

• Lab.Naz.GranSasso (da G2): elettronica MUON e rivelatore 𝜈𝝉

• LNF (da G1 e da G2): rivelatori MUON e tracciatore per 𝜈𝝉 (opzione GEM)

• Napoli (da G1 e G2): rivelatori MUON e rivelatore 𝜈𝝉

29

New!

Page 30: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Scelta della Commissione

• Per ora facciamo l’ipotesi di fare le richieste in Gruppo Uno

• La Giunta si riserva di decidere una diversa collocazione entro Luglio

30

Page 31: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Percentuali• A oggi le percentuali non sono ancora definite

• Probabilmente ci saranno alcuni gruppi con la sigla locale (>2FTE) ed altri no (su DTZ): per una fase di TP va bene cosi'

• Sicuramente si aprira’ la sigla nazionale

• Probabile 7-10 FTE per il 2015 a ovviamente salire a esperimento approvato

• Necessita’ finanziarie:

• 2014: missioni su DTZ (per me e Giovanni) per il coordinamento dello sviluppo del progetto (se si vogliono nuove idee…)

• 2015: missioni e consumo per preparare TP per tutti i gruppi

• test beams

• test in laboratorio (e.g. riutilizzo muon detector di OPERA, test scanning, test traccianti per rivelatore di neutrini, ecc.)

• piano dettagliato a Settembre

31

New!

Page 32: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Gruppi stranieri • Da Zurigo probabilmente:

• Russia: 5 istituti

• UK: 3 istituti

• F: 3 istituti

• CH: 4 istituti

• CERN>7 fisici

• D: 1-2 istituti

• Svezia: 2 istituti

• Cile: 1-2 istituti

• Giappone: 4 istituti

32

New!

Page 33: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

N1: appena dopo la CNS1 di Febbraio!

!

!

!

!

!

• idea: mettere insieme 73 osservazioni di cluster di galassie per aumentare la statistica: analizzate le osservazioni di XMM-Newton e Chandra. Correzioni per il red-shift (0.01-0.35)

33

Submitted

to

ApJ,2014February10

Preprin

tty

pesetusin

gL ATEX

style

emulateapjv.04/17/13

DETECTIO

NOFAN

UNID

ENTIF

IED

EMISSIO

NLIN

EIN

THE

STACKED

X-R

AY

SPECTRUM

OFGALAXY

CLUSTERS

EsraBulbul

1,2

,Maxim

Markevitch

2

,Adam

Foster

1

,RandallK.Smith

1

MichaelLoewenstein

2

,and

ScottW

.Randall

1

1Harvard

-Smith

sonian

Cen

terfor

Astrop

hysics,

60Gard

enStreet,

Cam

brid

ge,MA

02138.2NASA

Goddard

Space

Fligh

tCen

ter,Green

belt,

MD,USA.

SubmittedtoApJ,2014February10

ABSTRACT

Wedetect

aweak

unidentifi

edem

issionlin

eat

E=

(3.55�

3.57)±

0.03keV

inastacked

XMM

spectru

mof

73galaxy

clusters

span

ningared

shift

range

0.01�

0.35.MOS

and

PN

observation

sindep

endently

show

thepresen

ceof

thelin

eat

consistent

energies.

When

thefullsam

ple

isdivid

edinto

three

subsam

ples

(Perseu

s,Centau

rus+

Ophiuchu

s+Com

a,an

dall

others),

thelin

eis

seenat

>3�

statisticalsign

ifican

cein

allthree

indep

endent

MOSspectra

andthePN

“alloth

ers”spectru

m.

Thelin

eisalso

detected

atthesam

eenergy

intheChan

dra

ACIS-S

andACIS-Ispectra

ofthePerseu

sclu

ster,with

afluxcon

sistentwith

XMM-N

ewton

(how

ever,it

isnot

seenin

theACIS-I

spectru

mof

Virgo).

Thelin

eis

present

evenifweallow

maxim

um

freedom

forall

thekn

owntherm

alem

issionlin

es.How

ever,itisvery

weak

(with

anequ

ivalentwidth

inthefullsam

pleof

only

⇠1eV

)an

dlocated

with

in50–110

eVof

severalkn

ownfaint

lines;

thedetection

isat

thelim

itof

thecurrent

instru

ment

capab

ilitiesan

dsubject

tosign

ificant

mod

elinguncertainties.

Ontheorigin

ofthislin

e,weargu

ethat

there

shou

ldbenoatom

ictran

sitionsin

therm

alplasm

aat

this

energy.

Anintrigu

ingpossib

ilityis

thedecay

ofsterile

neutrin

o,alon

g-sought

dark

matter

particle

candidate.

Assu

mingthat

alldark

matter

isin

sterileneutrin

oswith

ms=

2E=

7.1keV

,ou

rdetection

inthefullsam

ple

correspon

dsto

aneutrin

odecay

mixin

gan

glesin

2(2✓)⇡

7⇥10

�11,

below

thepreviou

supper

limits.

How

ever,based

ontheclu

stermasses

anddistan

ces,thelin

ein

Perseu

sismuch

brighter

than

expected

inthismod

el,sign

ificantly

deviatin

gfrom

other

subsam

ples.

This

appears

tobebecau

seof

anan

omalou

slybright

lineat

E=

3.62keV

inPerseu

s,which

could

bean

Arxviidielectron

icrecom

bination

line,

althou

ghits

emissivity

wou

ldhave

tobe30

times

theexp

ectedvalu

ean

dphysically

di�

cultto

understan

d.In

prin

ciple,

such

anan

omaly

might

explain

ourlin

edetection

inoth

ersubsam

ples

aswell,

thou

ghit

wou

ldstretch

thelin

eenergy

uncertainties.

Anoth

eraltern

ativeis

theab

ovean

omaly

intheArlin

ecom

bined

with

thenearby

3.51keV

Klin

ealso

exceedingexp

ectationby

factor10–20.

Con

firm

ationwith

Chan

dra

andSuzak

u,an

deventu

allyAstro-H

,are

required

todeterm

inethenatu

reof

this

new

line.

1.IN

TRODUCTIO

N

Galaxy

clusters

arethelargest

aggregationsof

hot

in-

tergalacticgas

and

dark

matter.

Thegas

isenrich

edwith

heavy

elements

(Mitch

ellet

al.(1976);

Serlem

itsoset

al.(1977)

andlater

works)

that

escapefrom

galaxiesan

daccu

mulate

intheintraclu

ster/intergalacticmedium

(ICM)over

billion

sof

yearsof

galactican

dstellar

evo-lution

.Thepresen

ceof

variousheavy

ionsis

seenfrom

their

emission

lines

intheclu

sterX-ray

spectra.

Data

fromlarge

e↵ective

areatelescop

eswith

spectroscop

icca-

pab

ilities,such

asASCA,Chan

dra,

XMM-N

ewton

and

Suzak

u,uncovered

thepresen

ceof

many

elements

inthe

ICM,inclu

dingO,Ne,

Mg,

Si,

S,Ar,

Ca,

Fe,

and

Ni

(forareview

see,e.g.,

Boh

ringer

&Wern

er2010).

Re-

cently,weak

emission

lines

oflow

-abundan

ceCran

dMn

were

discovered

(Wern

eret

al.2006;

Tam

ura

etal.

2009).Relative

abundan

cesof

variouselem

entscontain

valuab

leinform

ationon

therate

ofsupern

ovaeof

di↵erent

types

ingalaxies

(e.g.,Loew

enstein

2013)an

dillu

minate

theen-

richment

history

oftheIC

M(e.g.,

Bulbulet

al.2012b

).Lineratios

ofvariou

sion

scan

alsoprovid

ediagn

osticsof

thephysical

prop

ertiesof

theIC

M,uncover

thepres-

ence

ofmulti-tem

peratu

regas,

non

equilib

rium

ionization

ebulbul@

cfa.harva

rd.ed

u

statesan

dnonth

ermal

emission

processes

such

ascharge

exchan

ge(P

aerels&

Kah

n2003).

Asfor

dark

matter,

80years

fromits

discovery

by(Zwicky

1933,1937),

itsnatu

reisstill

unkn

own(th

ough

now

wedokn

owfor

sure

itexists

—from

X-ray

and

gravitational-len

singob

servationsof

theBullet

Cluster,

Clow

eet

al.(2006),

andwekn

owaccu

ratelyits

cosmo-

logicalab

undan

ce,e.g.,

Hinshaw

etal.

(2013)).Amon

gthevariou

splau

sible

dark

matter

candidates,

onethat

has

motivated

ourpresent

work

isthehyp

othetical

ster-ile

neutrin

othat

isinclu

ded

insom

eexten

sionsto

the

standard

mod

elof

particle

physics

(Dod

elson&

Widrow

(1994)an

dlater

works;

forrecent

reviewssee,

e.g.,Abaza

jianet

al.(2007);

Boyarsky

etal.

(2009)).Ster-

ileneutrin

osshou

lddecay

spontan

eously

with

therate

�� (m

s ,✓)=

1.38⇥

10�29s �

1

✓sin

22✓

10�7

◆⇣

ms

1keV

⌘5

,(1)where

theparticle

mass

msan

dthe“m

ixingan

gle”✓

areunkn

own

buttied

toeach

other

inany

particu

larneutrin

oprod

uction

mod

el(P

al&

Wolfen

stein1982).

Thedecay

ofsterile

neutrin

oshou

ldprod

uce

aphoton

ofE

=m

s /2an

dan

activeneutrin

o.Themass

ofthester-

ileneutrin

omay

liein

thekeV

range,

which

wou

ldplace

arXiv:1402.2301v1 [astro-ph.CO] 10 Feb 2014

Submitted to ApJ, 2014 February 10

Preprint typeset using LATEX style emulateapj v. 04/17/13

DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXYCLUSTERS

Esra Bulbul

1,2

, Maxim Markevitch

2

, Adam Foster

1

, Randall K. Smith

1

Michael Loewenstein

2

, and

Scott W. Randall

1

1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138.2 NASA Goddard Space Flight Center, Greenbelt, MD, USA.

Submitted to ApJ, 2014 February 10

ABSTRACT

We detect a weak unidentified emission line at E = (3.55 � 3.57) ± 0.03 keV in a stacked XMMspectrum of 73 galaxy clusters spanning a redshift range 0.01 � 0.35. MOS and PN observationsindependently show the presence of the line at consistent energies. When the full sample is dividedinto three subsamples (Perseus, Centaurus+Ophiuchus+Coma, and all others), the line is seen at> 3� statistical significance in all three independent MOS spectra and the PN “all others” spectrum.The line is also detected at the same energy in the Chandra ACIS-S and ACIS-I spectra of the Perseuscluster, with a flux consistent with XMM-Newton (however, it is not seen in the ACIS-I spectrum ofVirgo). The line is present even if we allow maximum freedom for all the known thermal emissionlines. However, it is very weak (with an equivalent width in the full sample of only ⇠ 1 eV) and locatedwithin 50–110 eV of several known faint lines; the detection is at the limit of the current instrumentcapabilities and subject to significant modeling uncertainties. On the origin of this line, we argue thatthere should be no atomic transitions in thermal plasma at this energy. An intriguing possibility isthe decay of sterile neutrino, a long-sought dark matter particle candidate. Assuming that all darkmatter is in sterile neutrinos with ms = 2E = 7.1 keV, our detection in the full sample corresponds toa neutrino decay mixing angle sin2(2✓) ⇡ 7⇥ 10�11, below the previous upper limits. However, basedon the cluster masses and distances, the line in Perseus is much brighter than expected in this model,significantly deviating from other subsamples. This appears to be because of an anomalously brightline at E = 3.62 keV in Perseus, which could be an Arxvii dielectronic recombination line, althoughits emissivity would have to be 30 times the expected value and physically di�cult to understand. Inprinciple, such an anomaly might explain our line detection in other subsamples as well, though itwould stretch the line energy uncertainties. Another alternative is the above anomaly in the Ar linecombined with the nearby 3.51 keV K line also exceeding expectation by factor 10–20. Confirmationwith Chandra and Suzaku, and eventually Astro-H, are required to determine the nature of this newline.

1. INTRODUCTION

Galaxy clusters are the largest aggregations of hot in-tergalactic gas and dark matter. The gas is enrichedwith heavy elements (Mitchell et al. (1976); Serlemitsoset al. (1977) and later works) that escape from galaxiesand accumulate in the intracluster/intergalactic medium(ICM) over billions of years of galactic and stellar evo-lution. The presence of various heavy ions is seen fromtheir emission lines in the cluster X-ray spectra. Datafrom large e↵ective area telescopes with spectroscopic ca-pabilities, such as ASCA, Chandra, XMM-Newton andSuzaku, uncovered the presence of many elements in theICM, including O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni(for a review see, e.g., Bohringer & Werner 2010). Re-cently, weak emission lines of low-abundance Cr and Mnwere discovered (Werner et al. 2006; Tamura et al. 2009).Relative abundances of various elements contain valuableinformation on the rate of supernovae of di↵erent types ingalaxies (e.g., Loewenstein 2013) and illuminate the en-richment history of the ICM (e.g., Bulbul et al. 2012b).Line ratios of various ions can also provide diagnosticsof the physical properties of the ICM, uncover the pres-ence of multi-temperature gas, nonequilibrium ionization

[email protected]

states and nonthermal emission processes such as chargeexchange (Paerels & Kahn 2003).As for dark matter, 80 years from its discovery by

(Zwicky 1933, 1937), its nature is still unknown (thoughnow we do know for sure it exists — from X-ray andgravitational-lensing observations of the Bullet Cluster,Clowe et al. (2006), and we know accurately its cosmo-logical abundance, e.g., Hinshaw et al. (2013)). Amongthe various plausible dark matter candidates, one thathas motivated our present work is the hypothetical ster-ile neutrino that is included in some extensions to thestandard model of particle physics (Dodelson & Widrow(1994) and later works; for recent reviews see, e.g.,Abazajian et al. (2007); Boyarsky et al. (2009)). Ster-ile neutrinos should decay spontaneously with the rate

��(ms, ✓) = 1.38⇥ 10�29 s�1

✓sin2 2✓

10�7

◆⇣ ms

1 keV

⌘5

,

(1)where the particle mass ms and the “mixing angle” ✓are unknown but tied to each other in any particularneutrino production model (Pal & Wolfenstein 1982).The decay of sterile neutrino should produce a photon ofE = ms/2 and an active neutrino. The mass of the ster-ile neutrino may lie in the keV range, which would place

arX

iv:1

402.

2301

v1 [

astro

-ph.

CO]

10 F

eb 2

014

Page 34: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Un altra breaking news!

• Osservazione consistente di una linea at 3.5KeV with 3-4 σ significance!

• Analisi diversa dalla precedente e su dati diversi, con controlli anche sulla dipendenza radiale e sul contenuto relativo di DM!

• Molte analisi in corso che potranno chiarire la situazione!

• Missione Astro-H sara’ lanciata nel 2015 e aiutera’ a chiarire la situazione

34

arX

iv:1

402.

4119

v1 [

astro

-ph.

CO]

17 F

eb 2

014

An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster

A. Boyarsky1, O. Ruchayskiy2, D. Iakubovskyi3,4 and J. Franse1,51Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden, The Netherlands

2Ecole Polytechnique Federale de Lausanne, FSB/ITP/LPPC, BSP, CH-1015, Lausanne, Switzerland3Bogolyubov Institute of Theoretical Physics, Metrologichna Str. 14-b, 03680, Kyiv, Ukraine

4National University “Kyiv-Mohyla Academy”, Skovorody Str. 2, 04070, Kyiv, Ukraine5Leiden Observatory, Leiden University, Niels Bohrweg 2, Leiden, The Netherlands

We identify a weak line at E ∼ 3.5 keV in X-ray spectra of the Andromeda galaxy and the Perseus galaxycluster – two dark matter-dominated objects, for which there exist deep exposures with the XMM-Newton X-rayobservatory. Such a line was not previously known to be present in the spectra of galaxies or galaxy clusters.Although the line is weak, it has a clear tendency to become stronger towards the centers of the objects; it isstronger for the Perseus cluster than for the Andromeda galaxy and is absent in the spectrum of a very deep“blank sky” dataset. Although for individual objects it is hard to exclude the possibility that the feature is dueto an instrumental effect or an atomic line of anomalous brightness, it is consistent with the behavior of a lineoriginating from the decay of dark matter particles. Future detections or non-detections of this line in multipleastrophysical targets may help to reveal its nature.

The nature of dark matter (DM) is a question of crucial im-portance for both cosmology and for fundamental physics. Asneutrinos – the only known particles that could be dark mat-ter candidates – are known to be too light to be consistent withvarious observations (see e.g. [1] for a review), it is widely an-ticipated that a new particle should exist to extend the hot BigBang cosmology paradigm to dark matter. Although manycandidates have been put forward by particle physicists (seee.g. [2]), little is known experimentally about the propertiesof DM particles: their masses, lifetimes, and interaction typesremain largely unconstrained. A priori, a given DM candidatecan possess a decay channel if its lifetime exceeds the ageof the Universe. Therefore, the search for a DM decay signalprovides an important test to constrain the properties of DM ina model-independent way. For fermionic particles, one shouldsearch above the Tremaine-Gunn limit [3] (! 300 eV). If themass is below 2mec2, such a fermion can decay to neutrinosand photons, and we can expect two-body radiative decay withphoton energy Eγ = 1

2mDM. Such particles can be searched

for in X-rays (see [4] for review of previous searches). Foreach particular DM model, the particle’s mass, lifetime andother parameters are related by the requirement to provide thecorrect DM abundance. For example, for one very interestingDM candidate – the right-handed neutrino – this requirementrestricts the mass range to 0.5 − 100 keV [4, 5]. A large partof the available parameter space for sterile neutrinos is fullyconsistent with all astrophysical and cosmological bounds [6],and it is important to probe it still further.

The DM decay line is much narrower than the spectral res-olution of the present day X-ray telescopes and, as previoussearches have shown, should be rather weak. The X-ray spec-tra of astrophysical objects are crowded with weak atomic andinstrumental lines, not all of which may be known. Therefore,even if the exposure of available observations continues to in-crease, it is hard to exclude an astrophysical or instrumentalorigin of any weak line found in the spectrum of individual

object. However, if the same feature is present in the spectraof a number of different objects, and its surface brightness andrelative normalization between objects is consistent with theexpected behavior of the DM signal, this can provide muchmore convincing evidence about its nature.

The present paper takes a step in this direction. We presentthe results of the combined analysis of many XMM-Newtonobservations of two objects at different redshifts – the Perseuscluster and the Andromeda galaxy (M31) – together with along exposure “blank sky” dataset. We study the 2.8–8 keVenergy band and show that the only significant un-modeledexcess that is present in the spectra of both M31 and Perseusis located at ∼ 3.5 keV energy and the line in Perseus is cor-rectly redshifted as compared to Andromeda (at 95% CL). Therelative fluxes for the two objects are in agreement with whatis known about their DM distributions. We also study sur-face brightness profiles of this line and find them consistentwith expectations for a DM decay line. We do not detect sucha line in the very deep “blank sky” dataset, which disfavorssome of the scenarios for its instrumental origin (e.g. featuresin the effective area). The upper bound from this dataset isconsistent with expectations for a DM signal that would comein this case primarily from the Milky Way halo. However, asthe line is weak (∼ 4σ in the combined dataset) and the uncer-tainties in DM distribution are significant, positive detectionsor strong constraints from more objects are clearly needed inorder to determine the nature of this signal.1

Below we summarize the details of our data analysis and then

1 During our work we became aware that a similar analysis has been carriedout by different group for a collection of galaxy clusters. When this paperwas in preparation, the arXiv preprint [7] by this group appeared, claim-ing a detection of a spectral feature at the same energy from a number ofclusters.

arXiv:1402.4119v1 [astro-ph.CO] 17 Feb 2014

Anunidentified

lineinX-ray

spectraofthe

Androm

edagalaxy

andPerseusgalaxy

cluster

A.Boyarsky

1,O.Ruchayskiy

2,D.Iakubovskyi 3

,4and

J.Franse1,5

1Instituut-LorentzforTheoreticalPhysics,U

niversiteitLeiden,Niels

Bohrweg

2,Leiden,TheN

etherlands2Ecole

PolytechniqueFederale

deLausanne,FSB/ITP/LPPC,BSP,CH

-1015,Lausanne,Switzerland

3BogolyubovInstitute

ofTheoreticalPhysics,Metrologichna

Str.14-b,03680,K

yiv,Ukraine

4NationalU

niversity“K

yiv-Mohyla

Academ

y”,SkovorodyStr.

2,04070,Kyiv,U

kraine5Leiden

Observatory,Leiden

University,N

ielsBohrw

eg2,Leiden,The

Netherlands

We

identifya

weak

lineat

E∼

3.5keV

inX

-rayspectra

oftheA

ndromeda

galaxyand

thePerseus

galaxycluster–

two

darkm

atter-dominated

objects,forwhich

thereexistdeepexposuresw

iththeX

MM

-New

tonX

-rayobservatory.

Sucha

linew

asnotpreviously

known

tobe

presentinthe

spectraofgalaxies

orgalaxyclusters.

Although

theline

isw

eak,ithasa

cleartendencyto

become

strongertowards

thecenters

oftheobjects;itis

strongerforthePerseus

clusterthanforthe

Androm

edagalaxy

andis

absentinthe

spectrumofa

verydeep

“blanksky”

dataset.Although

forindividualobjectsitishard

toexclude

thepossibility

thatthefeature

isdue

toan

instrumentaleffectoran

atomic

lineofanom

alousbrightness,itisconsistentw

iththe

behaviorofaline

originatingfrom

thedecay

ofdarkm

atterparticles.Futuredetectionsornon-detections

ofthislinein

multiple

astrophysicaltargetsmay

helpto

revealitsnature.

Thenature

ofdarkm

atter(DM

)isa

questionofcrucialim

-portanceforboth

cosmology

andforfundam

entalphysics.As

neutrinos–the

onlyknow

nparticlesthatcould

bedark

mat-

tercandidates–areknow

nto

betoolightto

beconsistentwith

variousobservations(seee.g.[1]forareview),itisw

idelyan-

ticipatedthatanew

particleshouldexistto

extendthehotBig

Bangcosm

ologyparadigm

todark

matter.

Although

many

candidateshave

beenputforw

ardby

particlephysicists

(seee.g.[2]),little

isknow

nexperim

entallyaboutthe

propertiesofD

Mparticles:theirm

asses,lifetimes,and

interactiontypes

remain

largelyunconstrained.A

priori,agiven

DM

candidatecan

possessa

decaychannelif

itslifetim

eexceeds

theage

oftheU

niverse.Therefore,thesearch

foraD

Mdecay

signalprovidesan

importanttestto

constrainthepropertiesofD

Min

amodel-independentw

ay.Forfermionicparticles,oneshould

searchabove

theTrem

aine-Gunn

limit[3](!

300eV

).Ifthem

assisbelow

2me c

2,sucha

fermion

candecay

toneutrinos

andphotons,and

wecan

expecttwo-bodyradiativedecay

with

photonenergy

Eγ=

12 mD

M .Such

particlescanbe

searchedforin

X-rays

(see[4]

forreviewofprevious

searches).For

eachparticularD

Mm

odel,theparticle’s

mass,lifetim

eand

otherparametersarerelated

bytherequirem

enttoprovidethe

correctDM

abundance.Forexample,forone

veryinteresting

DM

candidate–

theright-handed

neutrino–

thisrequirement

restrictsthem

assrangeto

0.5−

100keV

[4,5].Alarge

partofthe

availableparam

eterspaceforsterile

neutrinosis

fullyconsistentw

ithallastrophysicaland

cosmologicalbounds[6],

anditisim

portanttoprobeitstillfurther.

TheD

Mdecay

lineis

much

narrowerthan

thespectralres-

olutionofthe

presentdayX

-raytelescopes

and,asprevious

searcheshaveshown,should

beratherweak.TheX

-rayspec-

traofastrophysicalobjectsarecrowded

with

weak

atomicand

instrumentallines,notallofw

hichm

aybeknow

n.Therefore,even

iftheexposureofavailableobservationscontinuesto

in-crease,itis

hardto

excludean

astrophysicalorinstrumental

originofany

weak

linefound

inthe

spectrumofindividual

object.How

ever,ifthesam

efeature

ispresentinthe

spectraofanum

berofdifferentobjects,anditssurfacebrightnessand

relativenorm

alizationbetw

eenobjects

isconsistentw

iththe

expectedbehaviorofthe

DM

signal,thiscan

providem

uchm

oreconvincingevidenceaboutitsnature.

Thepresentpapertakes

astep

inthis

direction.W

epresent

theresults

ofthe

combined

analysisof

many

XMM-Newton

observationsoftwo

objectsatdifferentredshifts–thePerseus

clusterand

theA

ndromeda

galaxy(M

31)–

togetherw

itha

longexposure

“blanksky”

dataset.W

estudy

the2.8–8

keVenergy

bandand

showthatthe

onlysignificantun-m

odeledexcessthatispresentin

thespectra

ofbothM

31and

Perseusislocated

at∼

3.5keV

energyand

theline

inPerseusiscor-

rectlyredshiftedascom

paredtoA

ndromeda(at95%

CL).Therelative

fluxesforthetw

oobjectsare

inagreem

entwith

what

isknow

nabouttheir

DM

distributions.W

ealso

studysur-

facebrightness

profilesofthis

lineand

findthem

consistentw

ithexpectationsfora

DM

decayline.W

edo

notdetectsucha

linein

thevery

deep“blank

sky”dataset,w

hichdisfavors

some

ofthescenariosforitsinstrum

entalorigin(e.g.features

inthe

effectivearea).

Theupperbound

fromthis

datasetisconsistentw

ithexpectationsforaD

Msignalthatw

ouldcom

ein

thiscaseprim

arilyfrom

theM

ilkyW

ayhalo.H

owever,as

thelineisweak

(∼4σ

inthecom

bineddataset)and

theuncer-taintiesin

DM

distributionare

significant,positivedetections

orstrongconstraintsfrom

more

objectsareclearly

neededin

ordertodeterm

inethenatureofthissignal. 1

Beloww

esum

marizethedetailsofourdataanalysisand

then

1D

uringourw

orkw

ebecam

eaw

arethata

similaranalysishasbeen

carriedoutby

differentgroupfora

collectionofgalaxy

clusters.When

thispaper

was

inpreparation,the

arXiv

preprint[7]bythis

groupappeared,claim

-ing

adetection

ofaspectralfeature

atthesam

eenergy

froma

numberof

clusters.

Page 35: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Un esempio di plot!

!

!

• incompatibile, dicono gli autori, con linee atomiche note e con possibili effetti strumentali (non sono un esperto per giudicare se hanno ragione)

• la significanza dichiarata e’ 3-4σ in vari sub-campioni —>pertanto e’ il caso di aspettare ed essere cauti.

35

Blank skyM31

Page 36: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

For fun: nel grafico bi-dimensionale

36

22

Figure 12. Recent constraints on sterile neutrino productionmodels, assuming sterile neutrinos constitute dark matter (Abaza-jian et al. 2007). Straight lines in black show theoretical predictionsassuming sterile neutrinos constitute the dark matter with leptonnumber L = 0, L = 0.003, L = 0.01, L = 0.1. Constraints from thecosmic X-ray background are shown in the solid (blue and hatchedregions). The region is solid green is excluded based upon obser-vations of the di↵use X-ray background (Abazajian et al. 2007).Individual galaxy cluster constraints from XMM-Newton observa-tions of the Coma and Virgo clusters are shown in light blue (Bo-yarsky et al. 2006). The horizontal pink band shows the mass scaleconsistent with producing a 100�300 pc core in the Fornax dwarfgalaxy (Strigari et al. 2006), and limits from the Milky Way byBoyarsky et al. (2006) is indicated with BMW. The orange regionat m

s

< 0.4 keV is ruled out by an application of the Tremaine-Gunn bound (Bode et al. 2001). Our measurement obtained fromthe full sample which is marked with the star in red, is consistentwith previous upper limits.

are unable to collisionally excite any Ar XVII lines, butdielectronic recombination is still possible. Examiningthe satellite line data in the AtomDB, taken from Vain-shtein & Safronova (1980), shows that even in this casethe maximum ratio is only 7%, as there are DR satellitelines at the energies of the Ar XVII triplet as well andthese lines would also be excited in such a case. Whilenot physically impossible if there was a significant andunexpected error in the atomic physics calculations, wehave no reason to believe this has occurred.We also note that our assumptions regarding rela-

tive line strengths have assumed the ICM is in thermalequilibrium or close to it. Charge exchange (CX) be-tween highly-ionized ions and neutral hydrogen or he-lium could also create X-ray emission lines with di↵erentratios (Smith et al. 2012). This could a↵ect our assump-tion of equilibrium line ratios, although we have includeda substantial range around the equilibrium values. It isimportant to note that these CX lines are not ‘new, butrather the same lines occurring in di↵erent ratios. Dueto its large cross section relative to electron excitationrates, astrophysical CX can occur only in a thin sheetwhere ions and neutrals interact directly, limiting its to-tal emission relative to the large ICM volume. In certain

cases, such as the core of the Perseus cluster where manyneutral filaments are known, it is possible that CX couldbe large enough to create a small fraction of the totalX-ray emission, although it would not create or enhancea line at 3.57 keV or the DR line at 3.62 keV. CX couldnot dominate the overall emission, however, as it wouldalso create Fe XVII and other lines that are not detected.

5.2. Sterile neutrino decay line?

An interesting interpretation of the line is the decaysignature of the sterile neutrino, a long-sought dark mat-ter particle candidate (Boyarsky et al. (e.g., 2009), seeour §1). The mass of the sterile neutrino would be dou-ble the decay photon energy, ms =7.1 keV. The line fluxdetected in our full sample corresponds to a mixing anglefor the decay sin2(2✓) ⇠ 7 ⇥ 10�11. This value is belowthe upper limits placed by the previous searches, shownin Fig. 12. Our detection from the stacked XMM-NewtonMOS observations galaxy clusters are shown with a starin red in that figure. Figure 13 shows the detections andupper limits we obtained from our various subsamples weused in this work (based on the included cluster massesand distances), as well as a comparison with previous up-per limit placed using the Bullet cluster by Boyarsky etal. (2008) at 3.57 keV, which is the most relevant earlierconstraint for us. Since the mixing angle is a universalquantity, all the subsample measurements must agree.The line in the subsample of fainter 69 clusters (full

sample sans Perseus, Coma, Ophiuchus and Centaurus)corresponds to a mixing angle that is consistent withthe full sample; the same is seen (though with a mild1.5� tension) for the subsample of bright nearby clustersComa+Centaurus+Ophiuchus. However, the brightnessof the new line in the XMM-Newton spectrum of Perseuscorresponds to a significantly higher mixing angle thanthat for the full sample (by factor 8 for the MOS spec-trum), which poses a problem in need of further investi-gation.We tried to excise the central 10 region of the Perseus

cluster, to see if the flux originates in the cool core of thecluster. Indeed, this decreased the flux in the line in halfand removed most of the tension with the other measure-ments. However, this suggests that either some of the lineflux is astrophysical in origin (at least in Perseus), or thecool gas in the core of the cluster a↵ects our ability tomeasure the continuum and the fluxes of the nearby Kxviii and Ar xvii lines, in the end resulting in an over-estimate of the flux of our detected line. It appears thatin Preseus, there is an anomalously strong line at the po-sition of the Ar xvii dielectronic recombination line at3.62 keV.With this knowledge, we have tried to add this anoma-

lous 3.62 keV line in the model for the full sample, wherewe have the most statistically significant line detection.The additional line is still required, albeit at a lower sig-nificance and a slightly lower energy of 3.55± 0.03 keV.Note that the sample of bright clusters is dominated bythe emission from the cool cores of Ophiuchus and Cen-taurus cluster, if this Ar 3.62 keV line anomaly is typicalof cool cores, they may also be a↵ected. However, free-ing the flux of the 3.62 keV line in the MOS full-samplefit did not require additional contribution from clustersother than Perseus, though the constraints are obviouslyweak.

Harvard, NASA ecc.

5

Interaction strength Sin2(2θ)

Dark matter mass MDM [keV]

10-13

10-12

10-11

10-10

10-9

10-8

10-7

2 5 50 1 10

DM overproduction

Not enough DM

Tremaine-Gunn / Lyman-α Excluded by X-ray observations

Interaction strength Sin2(2θ)

Dark matter mass MDM [keV]

10-13

10-12

10-11

10-10

10-9

10-8

10-7

2 5 50 1 10

DM overproduction

Not enough DM

Tremaine-Gunn / Lyman-α Excluded by X-ray observations

Interaction strength Sin2(2θ)

Dark matter mass MDM [keV]

10-13

10-12

10-11

10-10

10-9

10-8

10-7

2 5 50 1 10

DM overproduction

Not enough DM

Tremaine-Gunn / Lyman-α Excluded by X-ray observations

Interaction strength Sin2(2θ)

Dark matter mass MDM [keV]

10-13

10-12

10-11

10-10

10-9

10-8

10-7

2 5 50 1 10

DM overproduction

Not enough DM

Tremaine-Gunn / Lyman-α Excluded by X-ray observations

Interaction strength Sin2(2θ)

Dark matter mass MDM [keV]

10-13

10-12

10-11

10-10

10-9

10-8

10-7

2 5 50 1 10

DM overproduction

Not enough DM

Tremaine-Gunn / Lyman-α Excluded by X-ray observations

FIG. 4: Constraints on sterile neutrino DM within νMSM [4]. Theblue point would corresponds to the best-fit value from M31 if theline comes from DM decay. Thick errorbars are ±1σ limits on theflux. Thin errorbars correspond to the uncertainty in the DM distri-bution in the center of M31.

to detect the candidate line in the “strong line” regime [35]. Inparticular, Astro-H should be able to resolve the Milky Wayhalo’s DM decay signal and therefore all its observations canbe used. Failure to detect such a line will rule out the DMorigin of the Andromeda/Perseus signal presented here.

Acknowledgments. We thank D. Malyshev for collaboration;A. Neronov for useful critical comments; M. Shaposhnikovand M. Lovell for reading the manuscript and providing com-ment. The work of D. I. was supported by part by the theProgram of Cosmic Research of the National Academy of Sci-ences of Ukraine and the State Programme of Implementationof Grid Technology in Ukraine.

[1] A. Boyarsky, O. Ruchayskiy, and D. Iakubovskyi, JCAP 0903,005 (2009).

[2] J. L. Feng, ARA&A 48, 495 (2010).[3] S. Tremaine and J. E. Gunn, Phys. Rev. Lett. 42, 407 (1979).[4] A. Boyarsky, D. Iakubovskyi, and O. Ruchayskiy, Phys. Dark

Univ. 1, 136 (2012).[5] A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Ann. Rev.

Nucl. Part. Sci. 59, 191 (2009).[6] A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, and M. Viel,

Phys. Rev. Lett. 102, 201304 (2009).[7] E. Bulbul, M. Markevitch, A. Foster, R. K. Smith, M. Loewen-

stein, et al., 1402.2301 (2014).[8] M. J. L. Turner, A. Abbey, M. Arnaud, M. Balasini, M. Barbera,

E. Belsole, P. J. Bennie, J. P. Bernard, G. F. Bignami, M. Boer,et al., A&A 365, L27 (2001).

[9] L. Struder, U. Briel, K. Dennerl, R. Hartmann, E. Kendziorra,N. Meidinger, E. Pfeffermann, C. Reppin, B. Aschenbach,W. Bornemann, et al., A&A 365, L18 (2001).

[10] Xmm-newton science analysis system,http://xmm.esa.int/sas/.

[11] A. M. Read and T. J. Ponman, A&A 409, 395 (2003).[12] K. D. Kuntz and S. L. Snowden, A&A 478, 575 (2008).[13] A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, M. G. Walker,

S. Riemer-Sørensen, and S. H. Hansen, MNRAS 407, 1188(2010).

[14] A. De Luca and S. Molendi, Astron. Astrophys. 419, 837(2004).

[15] Fin over fout public script, v. 1.1,http://xmm.vilspa.esa.es/external/xmm_sw_cal/background/Fin_over_Fout.

[16] D. Iakubovskyi, Ph.D. thesis, Leiden University (2013).[17] T. Abbey, J. Carpenter, A. Read, A. Wells, Xmm Science Cen-

tre, and Swift Mission Operations Center, in The X-ray Uni-verse 2005, edited by A.Wilson (2006), vol. 604 of ESA SpecialPublication, p. 943.

[18] Xmm-newton epic mos1 ccd6 update,http://xmm.esac.esa.int/external/xmm_news/items/MOS1-CCD6/.

[19] Irby, B., The ftools webpage, HeaSoft,http://heasarc.gsfc.nasa.gov/docs/software/ftools/ftools menu.html (2008).

[20] J. A. Carter and A. M. Read, A&A 464, 1155 (2007).[21] D. B. Henley and R. L. Shelton, Astrophys.J.Suppl. 202, 14

(2012).[22] E. Corbelli, S. Lorenzoni, R. A. M. Walterbos, R. Braun, and

D. A. Thilker, A&A 511, A89 (2010).[23] A. Simionescu, S. W. Allen, A. Mantz, N. Werner, Y. Takei,

R. G. Morris, A. C. Fabian, J. S. Sanders, P. E. J. Nulsen, M. R.George, et al., Science 331, 1576 (2011).

[24] L. Chemin, C. Carignan, and T. Foster, Astrophys. J. 705, 1395(2009).

[25] M. A. Sanchez-Conde, M. Cannoni, F. Zandanel, M. E. Gomez,and F. Prada, JCAP 1112, 011 (2011).

[26] O. Urban, A. Simionescu, N. Werner, S. Allen, S. Ehlert, et al.,MNRAS 437, 3939 (2014).

[27] A. Boyarsky, A. Neronov, O. Ruchayskiy, and I. Tkachev, Phys.Rev. Lett. 104, 191301 (2010).

[28] L. J. King and J. M. G. Mead, MNRAS 416, 2539 (2011).[29] R. Mandelbaum, U. Seljak, and C. M. Hirata, JCAP 0808, 006

(2008).[30] S. Dodelson and L. M. Widrow, Phys. Rev. Lett. 72, 17 (1994).[31] X.-d. Shi and G. M. Fuller, Phys. Rev. Lett. 82, 2832 (1999).[32] M. Shaposhnikov, JHEP 08, 008 (2008).[33] M. Laine and M. Shaposhnikov, JCAP 6, 31 (2008).[34] T. Takahashi, K. Mitsuda, R. Kelley, H. Aharonian, F. Aarts,

et al., 1210.4378 (2012).[35] A. Boyarsky, J. W. den Herder, A. Neronov, and O. Ruchayskiy,

Astropart. Phys. 28, 303 (2007).

Boyarski et al.

Page 37: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Conclusioni• Test di una spiegazione alternativa rispetto ai soliti

modelli (SUSY, ED) di importanti fenomeni osservati non compatibili con il Modello Standard !

• L’osservazione di decadimenti nell’esperimento e’ manifestazione diretta di Nuova Fisica!

• Tecniche complementari rispetto a esperimenti esistenti —>lunghe vite medie, alta intensità’!

• Anche fisica dei neutrini attivi, per gli appassionati

37

Page 38: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Backup

Walter M. Bonivento - CERN/INFN Cagliari 38 CNS1 Elba 20/05/2104

Page 39: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Il fascio• Fascio SPS estratto

400GeV; intensità’ come CNGS 4.5x1019 pot/anno.

• Se upgrade PS si puo’ arrivare a 7x1019

• caratteristiche dei fasci discusse in grande dettaglio con esperti del CERN —>design realistico —>5 anni di run SENZA UPGRADE: 2x1020pot

39

Page 40: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Possibile zona sperimentale

40

Estrazione in SPS-LSS2, beam switch lungo la transfer line (TT20) alla posizione dei magneti di splitting MSSB2117. Studio di fattibilita’ in corso al CERN. gli studi effettuati per il proposal della facility del neutrino molto utili per noi

Rivelatore posto IN SUPERFICIE

Page 41: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Stato della proposta (i)• SPC EOI-2013-010 + addendum sottomessa Ottobre 2013 e discussa alla

riunione. EOI trasmessa e discussa al Research Board ma non ancora valutata da quest’ultimo.!

• interazione con referee di SPSc e discussione alla riunione di Gennaio 2014. !

• Raccomandazione SPSc: The Committee received with interest the response of the proponents to the questions raised in its review of EOI010. The SPSC recognises the interesting physics potential of searching for heavy neutral leptons and investigating the properties of neutrinos. Considering the large cost and complexity of the required beam infrastructure as well as the significant associated beam intensity, such a project should be designed as a general purpose beam dump facility with the broadest possible physics programme, including maximum reach in the investigation of the hidden sector. To further review the project the Committee would need an extended proposal with further developed physics goals, a more detailed technical design and a stronger collaboration.

41

Page 42: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

• L’esperimento richiede un magnete dipolare simile a quello di LHCb, ma con 40% meno ferro e tre volte meno potenza dissipata.

!• LHCb: 4Tm e Apertura di ~ 16 m2 !

• Questo design: ! - Apertura 20 m2 - Due bobine di Al-99.7 - Campo di picco ~ 0.2 T - Integrale di campo ~ 0.5 Tm su 5 m !!!

Il magnete (x2)

42

Page 43: Verso l’apertura di una sigla SHIP per 2015 - agenda.infn.it filedebolmente interagenti o sterili: sensibilità’ statistica rispetto a esperimenti precedenti dello stesso tipo

Walter M. Bonivento - CERN/INFN Cagliari CNS1 Elba 20/05/2104

Altri canaliUn calorimetro e.m. permette la ricostruzione di modi addizionali di decadimento:!

N—>e+π- che permette di accedere al limite su Ue (essendo la struttura di flavor non nota questi canali potrebbero anche essere favoriti!)!

N—>μ+ρ- con ρ- —>π-π0 che permette di migliorare il limite su Uμ (tipicamente lo stesso BR di μ+π-, per m>700Mev)

43

Assumendo celle calorimetriche di 10cm