21
Variables Aleatorias Discretas Victor Hugo Gil A. Unicatólica 15 de agosto de 2016 Victor Hugo Gil A. Variables Aleatorias Discretas

Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

  • Upload
    others

  • View
    134

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Variables Aleatorias Discretas

Victor Hugo Gil A.

Unicatólica

15 de agosto de 2016

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 2: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Variables aleatorias

Se dice que hemos definido una variable aleatoria para un ex-perimento aleatorio cuando hemos asociado un valor numéricoa cada resultado del experimento.Para designar a las variables aleatorias, se utilizan letras ma-yúsculas X,Y, ..., y las respectivas minúsculas x, y, ... para de-signar valores concretos de las mismas.

Variable Aleatoria Discreta (V.A.D)Una variable aleatoria se llama discreta si se puede contar suconjunto de resultados posibles.Las variables aleatorias discretas son variables aleatorias cuyointervalo de valores es finito o contablemente infinito.

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 3: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Variable Aleatoria Discreta (V.A.D)

Función de distribución de probabilidadSea una X una V.A.D , que toma los valores x1, x2, ..., xn y seconocen las probabilidades de que la variable X tome dichosvalores.Una función de probabilidad no es más que la asignación acada valor de la variable de la probabilidad que le corresponde.Es decir:

f(xi) = P (X = xi)

Una función se considera como la distribución de probabilidadde una variable aleatoria discreta X si y sólo si sus valores,f(xi), cumple las condiciones siguientes:

f(xi) ≥ 0 para cada valor de la V.A.D∑f(xi) = f(x1) + f(x2) + f(x3) + ...+ f(xn) = 1

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 4: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Variable Aleatoria Discreta (V.A.D)

En muchas ocasiones no nos interesa conocer la probabilidadde que la variables aleatoria X tome exactamente un determi-nado valor xi , sino que puede interesarnos determinar la pro-babilidad de que tome valores menores o iguales que un ciertovalor xi . En tales casos es necesario acumular los distintos va-lores de la función de probabilidad hasta el valor deseado.

Función de distribución de probabilidad acumulada

La distribución acumulada F (x) de una variable aleatoriadiscreta X, cuya distribución de probabilidad es f(x), es:

F (xi) = P (X ≤ xi)

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 5: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Variable Aleatoria Discreta (V.A.D)

Esperanza Matemática

Sea X una V.A.D con distribución de probabilidad f(x). Lamedia o Valor esperado de X es:

µ = E(X) =∑

xiP (xi)

Significado de la esperanzaEs el valor medio teórico de todos los valores que puede tomarla variable. Representa una medida de centralización.

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 6: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Variable Aleatoria Discreta (V.A.D)

VarianzaSea X una V.A.D con distribución de probabilidad f(x) yesperanza (media) µ. La varianza de X es:

σ2 = E[(X − µ)2] =∑

(xi − µ)2f(xi)

Significado de la varianzala varianza va a medir la dispersión o distanciamiento de cadaxi, respecto de la media µ.La desviación estándar es la raíz cuadrada de la varianza σ =√σ2 y mide la dispersión de los datos.

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 7: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Ejercicio Resuelto 1

En la empresa Aseamos S.A.S se le realiza una prueba escritaa 125 empleados sobre el conocimiento de normas se seguridaden el trabajo, y se obtuvieron los siguientes resultados:

preguntas acertadas 102 105 108 111 114 117Frecuencia 10 20 45 15 20 15

Construya una distribución de probabilidad con base en ladistribución de frecuencias anterior.R// Realicemos la tabla de la función de distribución deprobabilidad

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 8: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Ejercicio Resuelto 1

X = xi P (X = xi)

102 10/125

105 20/125

108 45/125

111 15/125

114 20/125

117 15/125

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 9: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Ejercicio Resuelto 1

Construya una distribución de probabilidad acumulada conbase en la distribución de probabilidad anterior.R//

X = xi P (X = xi) F (xi) = P (X ≤ xi)102 10/125 10/125

105 20/125 30/125

108 45/125 75/125

111 15/125 90/125

114 20/125 110/125

117 15/125 125/125

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 10: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Ejercicio resuelto 1

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 11: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Ejercicio resuelto 1

Calcule la esperanza, la varianza y la desviación estándar.R// Para resolver este punto debemos construir lasiguiente tabla:X = xi f(xi) = P (X = xi) xif(xi)

102 10/125 102× 10/125 = 8,16

105 20/125 105× 20/125 = 16,8

108 45/125 108× 45/125 = 38,88

111 15/125 111× 15/125 = 13,32

114 20/125 114× 20/125 = 18,24

117 15/125 117× 15/125 = 14,04

Total = 109,44La media o el valor esperado de respuestas acertadas esde

E(X) = µ =∑

xif(xi) = 109,44

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 12: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Ejercicio Resuelto 1

Ya sabiendo que la Media es µ = 109,44, construimos la siguien-te tabla para hallar la varianzaxi xi − µ (xi − µ)2 f(xi) (xi − µ)2f(xi)102 102− 109,44 = −7,44 55,3536 10/125 4,4283

105 105− 109,44 = −4,44 19,7136 20/125 3,1542

108 108− 109,44 = −1,44 2,0736 45/125 0,7465

111 111− 109,44 = 1,56 2,4336 15/125 0,2920

114 114− 109,44 = 4,56 20,7936 20/125 3,3270

117 117− 109,44 = 7,56 57,1536 15/125 6,8584

Total=18,8064La Varianza de respuestas acertadas es de: σ2 = 18,8064.La desviación estándar de respuestas acertadas es de:

σ =√18,8064 = 4,3366.

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 13: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Distribución de probabilidad uniforme

Distribución de probabilidad uniformeSi la variable aleatoria X asume los valores x1, x2, ..., xk, coniguales probabilidades, entonces la distribución discretauniforme es:

f(xi; k) =1

k

La media se calcula con la formula:

µ =

∑ki=1 f(xi)

k

Y su varianza con:

σ2 =

∑ki=1(f(xi)− µ)2

k

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 14: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Distribucion de probabilidad Bernoulli

El Ensayo de Bernoulli consiste en realizar un sólo experimento(ensayo) en el cual existen únicamente dos posibles resultados:

S = éxito, fracaso

Definimos a la variable aleatoria de Bernoulli de la siguiente for-ma:

X =

{0 Si el resultado del ensayo es fracaso;1 Si el resultado del ensayo es exito.

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 15: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Distribucion de probabilidad Bernoulli

Supongamos que en un ensayo de Bernoulli la probabilidad deobtener éxito es p. Como el ensayo tiene únicamente dos resul-tados posibles, entonces la probabilidad de obtener un fracasoes 1− p. llamaremos q a la probabilidad de fracaso.

p = Probabilidad de éxitoq = (1− p) = Probabilidad de fracaso

Con esto la distribución de probabilidad de la variable aleatoriade Bernoulli es:

f(xi) = P (X = xi) =

{q Si xi = 0;p Si xi = 1.

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 16: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Distribucion de probabilidad Bernoulli

El proceso de Bernoulli debe cumplir con las siguientes propie-dades:

El experimento consiste en n intentos repetidos.Los resultados de cada uno de los intentos puedenclasificarse como un éxito o como un fracaso.La probabilidad de éxito, representada por p,permanececonstante para todos los intentos.Los intentos repetidos son independientes.

La media o valor esperado de la variable aleatoria de Bernoullies:

µ = E(X) = 0× q + 1× p = p

Y la varianza es:σ2 = pq

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 17: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Ejemplo Resuelto 2

En la fabricación de neumáticos se seleccionan, de manera alea-toria, tres de ellos. Se hace una inspección de los neumáticosy se clasifican en defectuosos y no defectuosos. El proceso defabricación produce en total el 20% de neumáticos defectuosos.Se considera un éxito la obtención de un artículo defectuoso.R// Observemos el espacio muestral: (D:Defectuoso; ND:No De-fectuoso)

Resultado xi(ND)(ND)(ND) 0

(D)(ND)(ND) 1

(ND)(D)(ND) 1

(ND)(ND)(D) 1

(ND)(D)(D) 2

(D)(ND)(D) 2

(D)(D)(ND) 2

(D)(D)(D) 3

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 18: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Ejemplo Resuelto 2

el número de éxitos es una variable aleatoria que asumevalores enteros de cero a tres.Se obtienen las probabilidades para los posiblesresultados con: p = 20% = 0,20 y q = 1− p = 0,80

Se calculan las probabilidades respectivas:P ((ND)(ND)(ND)) = P (ND)P (ND)P (ND) = (0,80)(0,80)(0,80) = 0,512P ((D)(ND)(ND)) = P (D)P (ND)P (ND) = (0,20)(0,80)(0,80) = 0,128P ((ND)(D)(ND)) = P (ND)P (D)P (ND) = (0,80)(0,20)(0,80) = 0,128P ((ND)(ND)(D)) = P (ND)P (ND)P (D) = (0,80)(0,80)(0,20) = 0,128P ((ND)(D)(D)) = P (ND)P (D)P (D) = (0,80)(0,20)(0,20) = 0,032P ((D)(ND)(D)) = P (D)P (D)P (D) = (0,20)(0,80)(0,20) = 0,032P ((D)(D)(ND)) = P (D)P (D)P (ND) = (0,20)(0,20)(0,80) = 0,032

P ((D)(D)(D)) = P (D)P (D)P (D) = (0,20)(0,20)(0,20) = 0,008

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 19: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Ejemplo Resuelto 2

Construimos la siguiente tabla:X = xi 0 1 2 3

f(xi) = P (X = xi) 0,512 0,384 0,096 0,008

F (xi) = P (X ≤ xi) 0,512 0,896 0,992 1

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 20: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Ejemplo Resuelto 2

Victor Hugo Gil A. Variables Aleatorias Discretas

Page 21: Variables Aleatorias Discretas · Las variables aleatorias discretas son variables aleatorias cuyo intervalo de valores es finito o contablemente infinito. Victor Hugo Gil A. Variables

Ejemplo Resuelto 2

El valor esperado es p = 0,20 y la varianza es

pq = 0,20× 0,80 = 0,16

Victor Hugo Gil A. Variables Aleatorias Discretas