23
Supporting information for Remarkably improved oxygen evolution reaction activity of cobalt oxides by Fe ion solution immersion process Shencheng Pan 1 , Xin Mao 2 , Juan Yu 1 , Lin Hao 5 , Aijun Du 2 , Bing Li 1,3,4,5, * 1. School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P. R. China 2. School of Chemistry and Physics and Center for Material Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia 3. Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, P. R. China 4. Information College, Huaibei Normal UniversityHuaibei 235000, P. R. China 5. Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA * Corresponding author. E-mail: [email protected] 200 400 600 800 1000 200 400 600 800 1000 (b) Intensity (a.u.) Raman shift (cm -1 ) Co 3 O 4 Fe-Co 3 O 4 (a) Intensity (a.u.) Raman shift (cm -1 ) CoO Fe-CoO Fig. S1. Raman spectra of Co3O4, CoO, Fe-Co3O4 and Fe-CoO. Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

)URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

Supporting information for

Remarkably improved oxygen evolution reaction activity of

cobalt oxides by Fe ion solution immersion process

Shencheng Pan1, Xin Mao2, Juan Yu1, Lin Hao5, Aijun Du2, Bing Li1,3,4,5,*

1. School of Physics and Electronic Information, Huaibei Normal University, Huaibei

235000, P. R. China

2. School of Chemistry and Physics and Center for Material Science, Queensland University

of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia

3. Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental

Remediation, Huaibei Normal University, Huaibei 235000, P. R. China

4. Information College, Huaibei Normal University,Huaibei 235000, P. R. China

5. Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee

37996, USA

* Corresponding author. E-mail: [email protected]

200 400 600 800 1000 200 400 600 800 1000

(b)

Inte

nsi

ty (

a.u

.)

Raman shift (cm-1)

Co3O4

Fe-Co3O

4

(a)

Inte

nsi

ty (

a.u

.)

Raman shift (cm-1)

CoO

Fe-CoO

Fig. S1. Raman spectra of Co3O4, CoO, Fe-Co3O4 and Fe-CoO.

Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers.This journal is © the Partner Organisations 2020

Page 2: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

Fig. S2. TEM images of -Co(OH)2 nanoflower.

Page 3: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

Fig. S3. TEM images of Co3O4 nanoparticles before Fe ion treatments.

Fig. S4. TEM images of CoO nanoparticles before Fe ion treatments.

Page 4: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

Fig. S5. (a) High resolution TEM images of Fe-Co3O4, (b) the SAED pattern of Fe-Co3O4.

Fig. S6. (a) High resolution TEM images of Fe-CoO, (b) the SAED pattern of Fe-CoO.

Page 5: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

Fig. S7. SEM image (a), elemental mapping of Co (b), O (c) and Fe (d) element in Fe-Co3O4.

Page 6: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

Fig. S8. SEM image (a), elemental mapping of Co (b), O (c) and Fe (d) element in Fe-CoO.

Page 7: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

810 800 790 780 810 800 790 780

810 800 790 780810 800 790 780

(d)(c)

Co3O

4

Fe-Co3O

4

Co 2p1/2

Co 2p3/2

Co 2p

Inte

nsi

ty (

a.u.)

Binding Energy (eV)

(b)

Co 2p1/2

Co 2p3/2

Co 2p

Inte

nsi

ty (

a.u.)

Binding Energy (eV)

CoO

Fe-CoO(a)

Inte

nsi

ty (

a.u.)

Binding Energy (eV)

CoO

Co2+

Co2+

Co 2p3/2

Co 2p1/2

sat.

sat.

Co3+

Inte

nsi

ty (

a.u.)

Binding Energy (eV)

Co3O

4

Co2+

Co3+

sat.sat.

Co2+

Co 2p3/2

Co 2p1/2

Co3+

Ratio: 56.5%

Fig. S9. (a) High resolution XPS spectrum of Co3O4 and Fe-Co3O4. (b) High resolution XPS

spectrum of CoO and Fe-CoO. (c) Fitting of Co 2p XPS spectrum for Co3O4, (d) fitting of Co 2p

XPS spectrum for CoO.

Page 8: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

1.2 1.4 1.6 1.8

0

100

200

300

1.45

1.50

1.55

1.60

1.65

1.70

0.5 1.0 1.5

Cu

rren

t D

ensi

ty (

mA

/cm

2)

Potential (V vs. RHE)

Fe-Co3O

4

Fe-CoO

RuO2

NF

Log[J/(mA/cm2)]

Pote

nti

al (

V v

s. R

HE

)

Fe-Co3O

4

Fe-CoO

RuO2

NF

152 mV/dec

142 mV/dec

55 mV/dec

55 mV/dec

1 2 3 4200

300

400

500

(c)

(b)J=10 mA/cm

2

Over

po

ten

tial

(m

V)

Samples

280 mV296 mV

306 mV

451 mV

(a)

Fig. S10. (a) LSV curves of Fe-Co3O4, Fe-CoO, RuO2 and no-load Ni foam. (b) Overpotential

comparison histogram of Fe-Co3O4, Fe-CoO, RuO2 and no-load Ni foam at a current density of

10 mA/cm2. (c) Corresponding Tafel plots of the four prepared catalysts.

Page 9: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

1.2 1.4 1.6 1.8

0

50

100

150

200

0 10 20 30 40 50 60 700

10

20

30

40

50 Initial

After 1000 cycles CV

Cu

rren

t D

ensi

ty (

mA

/cm

2)

Potential (V vs. RHE)

326 mV 343 mV

(b)

-Z"

(oh

m)

Z' (ohm)

Initial

After 1000 cycles CV

(a)

Fig. S11. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.01 M (a)

LSV curves, (b) Nyquist plots with an initial and after 1000 cycles CV test.

Page 10: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

1.2 1.4 1.6 1.8

0

50

100

150

200

0 10 20 30 40 500

5

10

15

20

25

30(b) Initial

After 1000 cycles CV

Cu

rren

t D

ensi

ty (

mA

/cm

2)

Potential (V vs. RHE)

314 mV325 mV

(a) Initial

After 1000 cycles CV

-Z"

(oh

m)

Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

LSV curves, (b) Nyquist plots with an initial and after 1000 cycles CV test.

Page 11: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

1.2 1.4 1.6 1.8

0

50

100

150

200

0 10 20 30 40 50 60 700

10

20

30

40

(b) Initial

After 1000 cycles CV

Cu

rren

t D

ensi

ty (

mA

/cm

2)

Potential (V vs. RHE)

323 mV331 mV

(a) Initial

After 1000 cycles CV

-Z"

(oh

m)

Z' (ohm) Fig. S13. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.04 M (a)

LSV curves, (b) Nyquist plots with an initial and after 1000 cycles CV test.

Page 12: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

1.2 1.4 1.6 1.8

0

50

100

150

200

0 10 20 30 40 50 60 70 800

10

20

30

40

50

60(b) Initial

After 1000 cycles CV

Cu

rren

t D

en

sity

(m

A/c

m2)

Potential (V vs. RHE)

381 mV 387 mV

(a)

Initial

After 1000 cycles CV

-Z"

(ohm

)

Z' (ohm)

Fig. S14. Electrochemical testing of Fe-CoO while the immersion concentration is 0.1 M (a) LSV

curves, (b) Nyquist plots with an initial and after 1000 cycles CV test.

Page 13: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

1.2 1.4 1.6 1.8

0

50

100

150

200

0 10 20 30 40 50 60 700

10

20

30

40

50(b)

340 mV

Initial

After 1000 cycles CV

Cu

rren

t D

ensi

ty (

mA

/cm

2)

Potential (V vs. RHE)

319 mV

(a) Initial

After 1000 cycles CV

-Z"

(oh

m)

Z' (ohm)

Fig. S15. Electrochemical testing of Fe-CoO while the immersion concentration is 0.03 M (a)

LSV curves, (b) Nyquist plots with an initial and after 1000 cycles CV test.

Page 14: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

-0.6 -0.4 -0.2 0.0 1.2 1.4 1.6 1.8-400

-200

0

200

400

0.4 0.6 0.8 1.0 1.2 1.4

-0.25

-0.20

-0.15

-0.10

HER

=168 mV

HER

=224 mV

OER

=296 mV

Fe-Co3O

4

Fe-CoOC

urr

ent

Den

sity

(m

A/c

m2)

Potential (V vs. RHE)

OER

=280 mV

Pote

nti

al (

V v

s. R

HE

)

Log[J/(mA/cm2)]

Fe-Co3O

4

Fe-CoO

114 mV/dec

160 mV/dec

Tafel slope of HER(a) (b)

Fig. S16. (a) OER and HER curve of Fe-Co3O4 and Fe-CoO, (b) Tafel plots of Fe-Co3O4 and

Fe-CoO.

Page 15: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

0.00 0.02 0.04 0.06 0.08 0.10-0.2

-0.1

0.0

0.1

0.2

0.00 0.02 0.04 0.06 0.08 0.10

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.00 0.02 0.04 0.06 0.08 0.10-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.00 0.02 0.04 0.06 0.08 0.10-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

Cu

rren

t D

ensi

ty (

mA

/cm

2)

Potential (V vs. AgCl)

Scan rate Scan rate

Cu

rren

t D

ensi

ty (

mA

/cm

2)

Potential (V vs. AgCl)

Scan rate

Cu

rren

t D

ensi

ty (

mA

/cm

2)

Potential (V vs. AgCl)

Scan rate(d)(c)

(b)

Cu

rren

t D

ensi

ty (

mA

/cm

2)

Potential (V vs. AgCl)

(a)

Fig. S17. CVs of Co3O4 (a), Fe-Co3O4 (b), CoO (c) and Fe-CoO (d) with increasing scan rates.

Page 16: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

Fig. S18. SEM image (a), elemental mapping of Co (b), O (c) and Fe (d) element in Fe-Co3O4

after i-t test.

Page 17: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

Fig. S19. SEM image (a), elemental mapping of Co (b), O (c) and Fe (d) element in Fe-CoO after

i-t test.

Page 18: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

735 730 725 720 715 710 705 810 800 790 780 534 532 530 528

735 730 725 720 715 710 705 810 800 790 780 534 532 530 528

Fe 2p

Inte

nsi

ty (

a.u.)

Binding Energy (eV)

After

Before

Co 2p

Inte

nsi

ty (

a.u.)

Binding Energy (eV)

After

Before

O 1s

(d)

(c)(b)

Inte

nsi

ty (

a.u.)

Binding Energy (eV)

After

Before

(a)

Fe 2p(f)(e)

Inte

nsi

ty (

a.u.)

Binding Energy (eV)

After

Before

Co 2p

Inte

nsi

ty (

a.u.)

Binding Energy (eV)

After

Before

O 1s

Inte

nsi

ty (

a.u.)

Binding Energy (eV)

Before

After

Fig. S20. High-resolution XPS spectrum of Fe 2p (a), Co 2p (b) and O 1s (c) for Fe-Co3O4 and Fe

2p (d), Co 2p (e) and O 1s (f) for Fe-CoO before (black line) and after (red line) i-t test.

Page 19: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

0 5 10 15 20 25 300

5

10

15

20

0 10 20 30 400

5

10

15

20

25

30 Initial

After 1000 cycles CV

-Z"

(oh

m)

Z' (ohm)

Fe-Co3O

4 Fe-CoO

(b) Initial

After 1000 cycles CV

-Z"

(oh

m)

Z' (ohm)

(a)

Fig. S21. Nyquist plots of Fe-Co3O4 (a) and Fe-CoO (b) for initial and after 1000 cycles CV test.

Page 20: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

0.00 0.02 0.04 0.06 0.08 0.10

-0.8

-0.4

0.0

0.4

0.8

20 40 60 80 100 120 140 160

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cu

rren

t D

ensi

ty (

mA

/cm

2)

Potential (V vs. AgCl)

Scan rate (b)

J

(mA

/cm

2)

Scan rate (mV/s)

3.92 mF/cm2

(a)

Fig. S22. (a) CV of Fe-Co3O4 with increasing scan rates after CV cycles (b) Cdl calculated value

of Fe-Co3O4 after CV cycles.

0.00 0.02 0.04 0.06 0.08 0.10

-0.8

-0.4

0.0

0.4

0.8

20 40 60 80 100 120 140 1600.2

0.4

0.6

0.8

1.0(b)

Scan rate

Cu

rren

t D

ensi

ty (

mA

/cm

2)

Potential (V vs. AgCl)

(a)

2.6 mF/cm2

J

(mA

/cm

2)

Scan rate (mV/s)

Fig. S23. (a) CV of Fe-CoO with increasing scan rates after 1000 CV cycles (b) Cdl calculated

value of Fe-CoO after CV cycles.

Page 21: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

Table S1 The electrocatalytic OER activity of Fe-Co3O4 by different Fe ion concentrations in

soak solution

Fe ion concentrations in

soak solution

Overpotential

(mV)

Current density

@1.8 V (mA/cm2)

Charge transfer

resistance (Ω)

0.01 M (Initial) 343 (10 mA/cm2) 294 45.7

0.01 M (After 1000 CV) 326 (10 mA/cm2) 296 62.5

0.02 M (Initial) 280 (10 mA/cm2) 542 22.6

0.02 M (After 1000 CV) 263 (10 mA/cm2) 597 26.6

0.03 M (Initial) 325 (10 mA/cm2) 303 27.8

0.03 M (After 1000 CV) 314 (10 mA/cm2) 349 43.8

0.04 M (Initial) 331 (10 mA/cm2) 285 35.2

0.04 M (After 1000 CV) 323 (10 mA/cm2) 303 60.4

Table S2 The electrocatalytic OER activity of Fe-CoO by different Fe ion concentrations in soak

solution

Fe ion concentrations in

soak solution

Overpotential

(mV)

Current density

@1.8 V (mA/cm2)

Charge transfer

resistance (Ω)

0.01 M (Initial) 387 (50 mA/cm2) 365 41.9

0.01 M (After 1000 CV) 381 (50 mA/cm2) 398 63.8

0.02 M (Initial) 296 (10 mA/cm2) 480 29.6

0.02 M (After 1000 CV) 272 (10 mA/cm2) 539 33.1

0.03 M (Initial) 340 (10 mA/cm2) 269 51.4

0.03 M (After 1000 CV) 319 (10 mA/cm2) 354 62.5

Page 22: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)

Table S3 Comparison of OER performance of some cobalt oxide based electrocatalysts in

recently work.

Sample Electrolyte Current density

(mA/cm2) (mV)

Tafel slope

(mV/dec)

Fe-Co3O4 (This work) 1 M KOH 10 mA/cm2 280 55

Fe-CoO (This work) 1 M KOH 10 mA/cm2 296 55

RuO2 (This work) 1 M KOH 10 mA/cm2 306 142

Co3O4-MWCNT1 1 M KOH 10 mA/cm2 320 69

Co3O4-B2 1 M KOH 10 mA/cm2 318 57.6

S-CoO/Co3O43 1 M KOH 10 mA/cm2 275 92

Hemoglobin modified

Co3O4-g-C3N44

0.5 M KOH 10 mA/cm2 370 66

Co3O4 nanoflowers5 1 M KOH 10 mA/cm2 297 79.1

Co3O4/CoO6 1 M KOH 10 mA/cm2 302 68.6

References

1. X, Zhang, Y. S. Chen, P. V. Kamat, S Ptasinska, Probing Interfacial Electrochemistry on a

Co3O4 Water Oxidation Catalyst Using Lab-Based Ambient Pressure X-Ray Photoelectron

Spectroscopy. J. Phys. Chem. C 2018, 122, 13894-13901.

2. R. Wei, M. Fang, G. Dong, C. Lan, L. Shu, H. Zhang, X. Bu, J. C. Ho, High-Index Faceted

Porous Co3O4 Nanosheets with Oxygen Vacancies for Highly Efficient Water Oxidation. ACS Appl.

Mater. Interfaces 2018, 10, 7079-7086.

3. T. Sun, P. Liu, Y. Zhang, Z. Chen, C. Zhang, X. Guo, C. Ma, Y. Gao, S. Zhang, Boosting the

Electrochemical Water Splitting on Co3O4 through Surface Decoration of Epitaxial S-Doped Coo

Layers. Chem. Eng. J. 2020, 390, 124591.

4. C. Leal-Rodriguez, D. Rodriguez-Padron, Z. A. Alothman, M. Cano, J. J. Giner-Casares, M. J.

Munoz-Batista, S. M. Osman, R. Luque, Thermal and Light Irradiation Effects on the

Electrocatalytic Performance of Hemoglobin Modified Co3O4-g-C3N4 Nanomaterials for the

Oxygen Evolution Reaction. Nanoscale 2020, 12, 8477-8484.

5. J. Du, C. Li, Q. Tang, Oxygen Vacancies Enriched Co3O4 Nanoflowers with Single Layer

Porous Structures for Water Splitting. Electrochim. Acta 2020, 331, 135456.

6. Z. Liu, Z. Xiao, G. Luo, R. Chen, C. L. Dong, X. Chen, J. Cen, H. Yang, Y. Wang, D. Su, Y.

Li, S. Wang, Defects-Induced in-Plane Heterophase in Cobalt Oxide Nanosheets for Oxygen

Evolution Reaction. Small 2019, 15, 1904903.

Page 23: )URQWLHUV MRXUQDOLV WKH 3DUWQHU 2UJDQLVDWLRQV · After 1000 cycles CV-Z" (ohm) Z' (ohm) Fig. S12. Electrochemical testing of Fe-Co3O4 while the immersion concentration is 0.03 M (a)