9
LAPORAN PENELITIAN HIBAH BERSAING TAHUN ANGGARAN 2011 PEMBUATAN DAN KARAKTERISASI GEL EKSTRAKTOR UNTUK PENYISIHAN LOGAM BERAT DAN NUTRIEN SECARA SIMULTAN DENGAN SISTEM EKSTRAKSI FASE PADAT Dr. Barlah Rumhayati, M.Si Dr. Ir. Chasan Bisri Qonita Fardiyah, S.Si., M.Si Dibiayai oleh Direktorat Jenderal Pendidian Tinggi, Kementerian Pendidikan Nasional, melalui DIPA Universitas Brawijaya REV.1 Nomor: 0636/023-04.2.16/15/2011 R, tanggal 30 Maret 2011 dan berdasarkan surat dari DP2M Dikti Nomor: 121/D3/PL/2011 tanggal 7 Februari 2011 UNIVERSITAS BRAWIJAYA NOPEMBER 2011 BIDANG ILMU: KIMIA (MIPA)

UNIVERSITAS BRAWIJAYA NOPEMBER 2011 · ferrihidrit berwarna coklat berasal dari warna pasta ferrihidrit. Gel ini memiliki faktor ekspansi 2,08. Penyisihan logam Pb dan Cu didasarkan

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

LAPORAN PENELITIAN HIBAH BERSAING

TAHUN ANGGARAN 2011

PEMBUATAN DAN KARAKTERISASI GEL EKSTRAKTOR UNTUK

PENYISIHAN LOGAM BERAT DAN NUTRIEN SECARA SIMULTAN

DENGAN SISTEM EKSTRAKSI FASE PADAT

Dr. Barlah Rumhayati, M.Si

Dr. Ir. Chasan Bisri

Qonita Fardiyah, S.Si., M.Si

Dibiayai oleh Direktorat Jenderal Pendidian Tinggi, Kementerian Pendidikan Nasional, melalui

DIPA Universitas Brawijaya REV.1 Nomor: 0636/023-04.2.16/15/2011 R,

tanggal 30 Maret 2011 dan berdasarkan surat dari DP2M Dikti Nomor: 121/D3/PL/2011 tanggal 7

Februari 2011

UNIVERSITAS BRAWIJAYA

NOPEMBER 2011

BIDANG ILMU:

KIMIA (MIPA)

RINGKASAN

Meningkatnya jumlah penduduk dan aktifitas manusia menyebabkan berkurangnya ketersediaan

air baku air minum yang layak untuk dikonsumsi. Untuk mengatasi hal ini pemerintah Indonesia

mempunyai lembaga pengolah air baku air minum seperti PDAM yang mengolah air tanah.

Disamping itu secara swadaya di masyarakat terdapat depo-depo air isi ulang yang memproses air

pegunungan untuk menjadi layak dikonsumsi. Proses yang dikerjakan oleh PDAM dan depo air isi

ulang dalam penyisihan logam berat dan nutrien biasanya hanya dengan menggunakan sistem filtrasi.

Persen penyisihan logam berat dan nutrien melalui proses filtrasi sangat kecil karena ion logam dan

ion nitrat mampu lolos dari filter yang ukuran porinya dalam skala mikro. Oleh karena itu perlu

dikaji metode lain untuk penyisihan logam berat dan nutrien yang lebih efisien.

Salah satu metode penyisihan yang akhir-akhir ini berkembang pesat adalah ekstraksi fase padat.

Metode ini memiliki beberapa keuntungan dibandingkan dengan ekstraksi cair-cair karena tidak

digunakannya pelarut organik yang biasanya karsinogenik. Dalam metode ini terdapat adsorben.

Berbagai adsorben yang telah digunakan dalam metode ekstraksi fase padat perlu dikondisikan

terlebih dulu sebelum digunakan untuk proses penyisihan. Oleh karena itu perlu dilakukan penelitian

ttg jenis adsorben yang mudah dibuat, tidak perlu pengkondisian awal, memiliki selektifitas tinggi

terhadap logam berat dan nutrient.

Pada penelitian ini dibuat adsorben berupa gel hasil reaksi polimerisasi monomer akrilamid

dengan crosslinker berbasis turunn agarosa. Gel akrilamid sebagai matrik bagi adsorben resin

Chelex-100 dan ferrihidrit. Gel chelex digunakan untuk penyisihan logam berat, dalam hal ini adalah

Pb dan Cu sementara gel ferrihidrit digunakan untuk penyisihan nutrient yaitu fosfat dan nitrat. Tipe

ekstraktor yang digunakan dalam penelitian ini adalah tipe disk catridge dimana gel disk dimasukkan

dalam syringe dengan volume 5 ml. Kelebihan tipe ekstraktor disk catridge dibandingkan dengan

tipe catridge adalah luas permukaan kontak yang besar karena digunakannya adsorben dengan

ukuran kecil, tidak terjadi channeling yang dapat mengurangi persen penyisihan, serta

dimungkinkannya digunakan laju alir sampel yang cepat karena tebal disk yang digunakan kurang

dari 1 mm.

Hal-hal yang diamati dalam penelitian ini adalah karakter fisik gel yang meliputi warna dan

faktor ekspansi, pengaruh pH dan konsentrasi analit terhadap persen penyisihan analit, persen

penyisihan logam berat dan nutrient dari sampel air PDAM dan air isi ulang pada pH (untuk

nutrient). optimum, dan penentuan persen elusi logam berat dan nutrient dari gel disk catridge pada berbagai variasi konsentrasi asam HNO

3 (untuk logam) dan H

2SO

4

Untuk membuat gel akrilamid dibutuhkan monomer akrilamid, crosslinker, akuades. Reaksi

polimerisasi pembentukan gel diinisiasi oleh ammonium persulfat dan dikatalisis oleh TEMED. Gel

dicetak pada suhu 42-440

C selama kurang lebih 1 jam. Setelah terbentuk dimensi gel diukur. Gel

dihidrasi dalam akudes minimal selama 3 jam sampai dimensinya stabil. Chelex-100 dan ferrihidrit

merupakan adsorben yang digunakan untuk berinteraksi dengan logam Pb dan Cu serta nutrient fosfat dan nitrat. Pasta ferrrihidrit yang digunakan dibuat dari reaksi presipitasi antara FeCl

3 0,2 M

dengan NaOH 1 M. Pengaruh pH dan konsentrasi analit yang dipelajari adalah Pb (1 ;5 ;10 mg Pb/l

pada pH 4, 5, 6, 7, 8), Cu (0,5; 1,0; 5,0; 10,0 mg Cu/l pada pH 3, 4, 5, 6), fosfat (0,1; 0,3; 0,6; 0,9 mg

PO4

3-

/L pada pH 3, 4, 5, 6, 7), dan nitrat (5,0; 10,0; 15,0; 20,0; 25,0 dan 30,0 mg NO3

-

/L pada pH 3,

4, 5, 6, 7, dan 8). Untuk penyisihan Pb, Cu, fosfat, dan nitrat dari sampel air PDAM dan air isi ulang, pH sampel dikondisikan pada pH optimum. Variasi konsentrasi HNO

3 untuk elusi Pb dan Cu dari gel

chelex adalah 1, 2, 3 M. Variasi konsentrasi H2SO

4 untuk elusi fosfat dan nitrat dari gel ferrihidrit

adalah 0,20; 0,25; dan 0,30 M.

Dari hasil penelitian diperoleh bahwa gel chelex berwarna putih berasal dari warna resin chelex.

Gel chelex memiliki faktor ekspansi 3,05 setelah direndam dalam akuades selama 3 jam. Gel

ferrihidrit berwarna coklat berasal dari warna pasta ferrihidrit. Gel ini memiliki faktor ekspansi 2,08.

Penyisihan logam Pb dan Cu didasarkan pada kemampuan gugus iminodiasetat pada chelex

membentuk senyawa komplek khelat dengan ion logam. pH analit menentukan muatan gugus asetat

sebagai ligan dan spesies logam. Ion Pb2+

tertahan sampai 82,31% pada pH 6 dan konsentrasi sampai

10 mg/l. Ion Cu2+

tertahan pada gel chelex pada pH 5 dan konsentrasi 1 mg/l. Ion fosfat dan nitrat

tertahan di gel ferrihidrit dengan persen retensi sebesar masing-masing 85,32% pada konsentrasi 0,3

mg/l (pH 5) dan 88% pada konsentrasi 10 mg/l (pH 5).

Dari sampel air PDAM kurang lebih 72,9% Pb, 76,5% Cu, 78,8% fosfat, dan 63,4% nitrat

mampu disisihkan sementara gel chelex dan gel ferrihidrit mampu menyisihkan 77,8% Pb, 73,3%Cu,

72,99% fosfat, dan 76,5% nitrat dari air isi ulang (air depo).

Ion logam teretensi dalam gel chelex dapat dielusi dengan asam nitrat. Dengan menggunakan HNO

3 2 M, ion Pb dapat terelusi hingga 75,1% dan 81,5% ion Cu dapat dielusi. Fosfat dan nitrat

dapat dielusi dari gel ferrihidrit dengan asam sulfat. Pada konsentrasi H2SO

4 0,3 M, 81,5% fosfat

terelusi dan 77,5% nitrat terelusi.

Dari hasil penelitian ini dapat disimpulkan bahwa gel disk catridge secara tunggal mampu

menyisihkan logam berat Pb dan Cu serta nutrien fosfat dan nitrat. Namur gel disk catridge tunggal

kurang efisien dan praktis. Oleh karena itu diusulkan untuk diteliti pembuatan gel disk catridge

dengan susunan berseling gel chelex dan gel ferrihidrit untuk menyisihkan Pb, Cu, fosfat, dan nitrat

secara simultan.

SUMMARY

The increasing of population number and also human activities has caused the decreasing of

drinking water sources which is safe consumed. To solve this problem, Indonesian has an

organization, called PDAM, which has responsible for processing drinking water source. Besides

that, there are many refilling units in public which has proceeded mountain water to be safe for

consuming. PDAM and refilling units usually use filtration process for removal heavy metals and

nutrient. However, the percentage of removal of these analytes is low because of its small particle

size so easily passing through the membrane filter. Hence, it is needed to investigate another method

for removing heavy metals dan nutrient.

Recently, solid phase extraction becomes famous method for removal contaminants. The

advantages of this method compared to liquid-liquid extraction is using no carcinogenic organic

solvents. Adsorbent is used in the solid phase extraction method to interact with analytes. Many

adsorbents have been used in the solid phase extraction and they need to be preconditioned before

using. Therefore, the investigation of new sorbents which is easy to be prepared, no needed

precondition, has high affinities to heavy metals and nutrient is important.

In this research, adsorbent used was in the gel form that is produced by polymerization reaction

between acrylamide monomer with agarose derivates crosslinker. Acrylamide gel is acted as a matrix

for Chelex-100 resin and ferrihydrite. Chelex gel was used for heavy metals, Pb and Cu, removal

whilst ferrihydrite gel was used for removal of nutrient such as phosphates and nitrate. Extractor type

used in this research was disk catridge model where the gel disk is filled in the syringe 5 ml. The

advantages of using disk catridge compared to conventional catridge are high surface area due to

small particle size of adsorbent, reduced channeling, possible to have high flow rate of sample.

Factors investigated in this research were physical properties of the gel including color and

expansion factor, the effect of analyte’s pH and concentration to the removal percentage, removal of

Pb, Cu, phosphate, and nitrates from PDAM water and refilling unit water at optimum pH, and the

effect of acid eluent concentration to the elution percentage.

Acrylamide monomer, agarose derivative crosslinker, akuades were needed to prepare

acrylamide gel. Polymerization reaction was initiated by ammonium persulfate and was catalyzed by

TEMED. Gels were cast at 42-44 C for at least 1 hour. After casting, the dimension of the gels was

determined. Gels were hydrated for 3 hours in aquadest up to stable dimensionally. Chelex-100 resin

and ferrihydrite paste were used as adsorbent for interacting with Pb and Cu metals, and for

phosphate and nitrate nutrients. Ferrihydrite paste was produced by precipitation reaction between FeCl

30.2 M and NaOH 1 M. The pH and concentration of analytes were studied with variation as

follows: Pb (1 ;5 ;10 mg Pb/l at pH 4, 5, 6, 7, 8), Cu (0,5; 1,0; 5,0; 10,0 mg Cu/l at pH 3, 4, 5, 6),

phosphate (0,1; 0,3; 0,6; 0,9 mg PO4

3-

/L at pH 3, 4, 5, 6, 7), and nitrate (5,0; 10,0; 15,0; 20,0; 25,0;

30,0 mg NO3

-

/L at pH 3, 4, 5, 6, 7, dan 8). For studying of Pb, Cu, phosphate, and nitrate removal

from PDAM water and refilling water samples, the pH of samples were conditioned at optimum pH. For elution, it used various concentration of HNO

3 (for eluting Pb and Cu from chelex gel) of 1, 2, 3

M. Concentration of H2SO

4 was varied of 0,20; 0,25; dan 0,30 M for elution of phosphate an nitrate

from ferrihydrite gel.

As a result, chelex gel has white color due to white color of chelex resin. Its expansion factor was

3.05 after 3 hours hydration. The color of ferrihydrite gel was brown from the color of ferrihydrites

precipitate. The gel has 2.08 expansion factor.

Removal of Pb and Cu metals are based on the formation of chelate complex compounds

between iminodiacetic functional groups and metal ions. Analyte pH determines the charged of

acetic functional groups and metal specieses. Pb2+

ion was retented up to 82,31% at pH 6 and its

initial concentration was up to 10 mg Pb/l. Cu2+

ion was retented on the chelex gel at pH 5 with

maximum of initial concentration was 1 mg Cu/l. Phosphate and nitrate ions were retented in the

ferrihydrite gel up to 85,32 % (at initial concentration of 0,3 mg fosfat /l and pH 5), dan 88% (at

initial concentration of 10 mg nitrate/l and pH 5), respectively.

From water samples, 72,9% Pb, 76,5% Cu, 78,8% phosphate, and 63,4% nitrate were removed

from PDAM water 77,8% Pb, 73,3%Cu, 72,99% phosphate, and 76,5% nitrate were removed from

refilling water.

Metals ion could be eluted from the chelex gel by using nitric acid eluent. Ion logam teretensi

dalam gel chelex dapat dielusi dengan asam nitrat. 75,1% Pb and 81,5% Cu could be removed by HNO

3 2 M. Phosphate and nitrate could be eluted from the ferrihydrite gel by using H

2SO

4 0,3 M at

the elution percentage were 81,5% phosphate and 77,5% nitrate.

Based on the results, it can be concluded that the individual gel disk catridge could be used for

removal of heavy metals such as Pb and Cu, and also for phosphate and nitrate nutrients. However,

the use of individual catridge is not practice and efficient. Hence, it can be proposed to produce gel

disk catridge with filled by gel chelex and gel ferrihydrite sequentially for removal of Pb, Cu,

phosphate, and nitrates simultaneously.

DAFTAR PUSTAKA

Ahmedna., M., W. E. Marshall., A. A. Husseiny., R. M. Rao. and I. Goktepe, (2004). "The use of

nutshell carbons in drinking water filters for removal of trace metals." Wat. Res., 38, 1062-

1068.

Anonymous (1998). Guide to solid phase extraction, Supelco, Sigma-Aldrich Co.

Bitton, G., (2005). Wastewater Microbiology. Jhon Willey and Sons, Inc, New Jersey.

Blaney, L. M., S. Cinar and A. K. SenGupta, (2007). "Hybrid anion exchanger for trace phosphate

removal from water and wastewater." Wat. Res., 41, (1603-1613).

Charlet, L. and A. A. Manceau, (1992). "X-Ray Absorption Spectroscopic Study of the Sorption of

Cr(III) ant the Oxide/Water Interface. II. Adsorption, Coprecipitation, and Surface

Precipitation on Hydrous Ferrix Oxide." J. Colloid Interface Sci., 148, 443-458.

Cornell, R. M. and U. Schwertmann, (1996). The Iron Oxides. VCH, Weinheim.

Cornell, R. M. and U. Schwertmann, (1996). The Iron Oxides: Structure, Properties, Reactions,

Occurrence and Uses. VCH, New York.

Crouch, R. R. and H. V. Malmstadt, (1967). Anal. Chem., 39, 1084-1089.

Davison, W. and H. Zhang, (1994). "In Situ Speciation Measurements of TraceComponents in

Natural Waters Using Thin Film Gels." Nature, 367, 545-548.

Foglar, L., F. Briski, L. Sipos and M. Vukovic, (2005). "High nitrate removal from synthetic

wastewater with the mixed bacterial culture." Biore. Technol., 96, 879-888.

Galvez, J. M., M. A. Gomez, E. Hontoraia and J. Gonzalez-Lopez, (2003). "Influence of hydraulic

loading and air flowrate on urban wastewater nitrogen removal with a submerged fixed-film

reactor." J. Hazard. Mater, 101, 219-229.

Gimpel, J., H. Zhang, W. Hutchinson and W. Davison, (2001). "Effect of solution composition, flow

and deployment time on the measurement of trace metals by the diffusive gradient in thin

films technique." Anal. Chim. Acta, 448, (1-2), 93-103.

Glass, C. and J. Silverstein, (1999). "Denitrification of high-nitrate, high-salinity wastewater." Wat.

Res., 33, (1), 223-229.

Inczedy, J., (1976). Analytical applications of complex equilibria. John Wiley & Sons Inc, New York.

Khare, A. R. and N. A. Peppas, (1993). Polymer, 34, 4736.

Kyue-Hyung, L., M.Oshimam and S. Motomizu, (2002). "Multielement analysis for trace metals in

natural waters by on-line filtration-concentration flow injection method coupled with

iductiveli coupled plasma-mass spectrometric detection." J. Flow injection anal., 19, (1).

Lahann, R. W., (1976). "Surface charge variation in aging ferric hydroxide." Clays and Clay Minerals,

24, 320-326.

Mousavi, H. Z., B. Aibaghi-Esfahani and A. Arjmandi, (2009). "Solid Phase Extraction of Lead(II) by

Sorption on Grinded Eucalyptus Stem and Determination with Flame Atomic Absorption

Spectrometry." Journal of the Chinese Chemical Society, 56, 974-980.

Naylor, C., W. Davison, M. Motelica-Heino, G. A. Van Den Berg and L. M. Van Der Heijdt, (2004).

"Simultaneous Release of Sulfide with Fe, Mn, Ni and Zn in Marine Harbour Sediment

Measured Using a Combined Metal/Ssulfide DGT Probe." Science of The Total Environment,

328, 275-286.

Nobel, A. (2000). Chelex 100 and Chelex 20 Chelating Ion Resin, LIT200 Rev B.Bio-Rad laboratories.

Nolan, B. T., B. C. Ruddy, K. J. Hitt and D. R. Helsel, (1998). "A national look at nitrate contamination

of ground water." Water Con. Purification, 39, (12), 76.

Ozkutuk, E. B., E. Ozalp, G. Isler, S. D. Emir and A. Ersoz, (2010). "Selective solid phase extraction of

Cd(II) using double imprinting strategy." GU. J. Sci., 23, (1), 19-26.

Poole, F. C., (2003). "New trends in solid phase extraction." Trends Anal. Chem., 22, 362.

Shrimali, M. and K. P. Singh, (2001). "New methods of nitrate removal from water." Environ. Pollut.,

112, 351-359.

Steenkamp, G. C., K. Keizer, H. W. J. P. Neomagus and H. M. Krieg, (2002). "Copper(II) Removal from

Polluted Water with Alumina/Chitosan Composite Membranes." Journal of Membrane

Science, 197, 147–156.

Warnken, K. W., H. Zhang and W. Davison, (2005). Anal. Chem., 77, 5440-5446.

Wells, M. J. M., (2000). Essential guides to method development in solid- -phase extraction. in I. D.

Wilson, E. R. A. Adlard, M. Cooke and C. F. Poole. Encyclopedia of separation science,

Academic Press, London, Vol. 10, 4636-4643.

Willet, I. R., C. J. Chartres and T. T. Nguyen, (1988). "Migration of Phosphate into Aggregated

particles of Ferrihydrite." J. Soil. Sci., 39, 275-282.

Yusof, N. A., A. Beyan, J. haron and N. A. ibrahim, (2009). "Synthesis and evaluation of a molecularly

imprinted polymer for Pb(II) ion uptake." Pertanika J. Sci. & Technol., 17, (1), 155-161.

Zhang, H. and W. Davison, (1999). "Diffusional characteristics of hydrogels used in DGT and DET

techniques." Anal. Chim. Acta, 398, (2-3), 329-340.

Zhang, H., W. Davison, R. Gadi and T. Kobayashi, (1998). "In situ measurement of dissolved

phosphorus in natural waters using DGT." Anal. Chim. Acta, 370, (1), 29-38.

Zhang, H., Davison, W., Gadi, R., Kobayashi, T., (1995). "Performance characteristics of diffusion

gradients in thin films for the in situ measurement of trace metals in aqueous solution."

Anal.Chem, 67, 3391-3400.

Zhao, D. and A. K. SenGupta, (1998). "Ultimate removal of phosphate using a new class of anion

exchanger." Wat. Res., 32, (5), 1613-1625.

Zwir-Ferenc, A. and M. Biziuk, (2006). "Solid phase extraction technique-trend, opportunity and

applications." Polish J. Of Environ. Stud, 15, (5), 677-690.

Zwir-Ferenc, A. and M. Biziuk, (2006). "Solid phase extraction technique-trends, opportunity and

applications." Polish J. of Environ. Stud., 15, (5), 677-690.