28
Table of Contents Objectives: .................... ............................................................................. 2 Why use optical bers? ................... ...................... ..................... ............ 2 Fundamentals of digital ber-optic links ................... .....................2 Why encoding is desirable .. ................................................................ . 2 Why so many dierent ber-optic components? .................... .... 2 How to use disintegrated components .................. ...................... ... 3 Parallel-t o-serial and serial-to-parall el converters .................... ... 3 So what happens when data is encoded?......................................3 So what happens if data is not encoded? .......... ..................... ....... 4 Avago ber-optic solutions for unencoded data .................. ...... 4 Low-cost digital transmitters ................ ........................................... ... 4 Using Avago’ s recomme nded solutions .................... ......................4 Solution for dc to 40 KBd TTL data at distances between 0 and 53 meters..................... ...................... ....................... ... 5 Solution for dc to 40 KBd TTL data at distances between 0 and 1.5 kilometers. ................... ...................... ..................6 Solution for dc to 1 MBd TTL data at distances between 0 and 10 meters..................... ...................... ....................... ... 7 Solution for dc to 1 MBd TTL data at distances between 0 and 45 meters..................... ...................... ....................... ... 8 Solution for dc to 5 MBd TTL data at distances between 0 and 16 meters..................... ...................... ....................... ... 9 Solution for dc to 5 MBd TTL data at distances between 0 and 700 meters. ... ...................... ...................... ................10 Solution for dc to 5 MBd TTL data at distances between 0 and 1.7 kilometers. .........................................................11 Solution for dc to 10 MBd TTL data at distances between 0 and 40 meters...................................................................12 Solution for dc to 10 MBd TTL data at distances between 0 and 300 meters. ... ...................... ...................... ................13 Solution for dc to 32 MBd TTL data at distances between 0 and 1.3 kilometers. (Pages 14 & 15) ..........................14 Solution for dc to 32 MBd TTL data at distances between 0 and 3.3 kilometers.(Pages 16 & 17) ..................... ......16 Solution for 2 to 70 MBd TTL data at distances between 0 and 3.8 kilometers. (Pages 18 & 19) ......... .................18 Solution for 20 to 160 MBd +5V ECL (PECL) data at distances between 0 and 2 kilometers. (Pages 20-22) . ...................... ..........20 Distance vs. Data rate HFBR-14X4Z and HFBR-24X6Z, PECL Transceiver with 62.5 Pm Fiber .............................................22  Distance vs. Data rate HFBR-14X4Z and HFBR-24X6Z,  TTL Trans ceiver with 62.5 Pm Fiber ............................... .................22 Distance vs. Data rate HFBR-15X7Z and HFBR-25X6Z, PECL Transcei ver with 1 mm POF Fiber .. ...................... .................23 Distance vs. Data rate HFBR-15X7Z and HFBR-25X6Z,  TTL Trans ceiver with 1 mm POF Fiber................... ....................... ..23 Distance vs. Data rate HFBR-15X7Z and HFBR-25X6Z, PECL Transceiver with 200 Pm HCS Fiber ............ ....................... ..24 Distance vs. Data rate HFBR-15X7Z and HFBR-25X6Z,  TTL Trans ceiver with 200 Pm HCS Fiber ........................... .............24 Distance vs. Data rate HFBR-13X2TZ and HFBR-23X6TZ, PECL Transceiver with 62.5 Pm Fiber.......... ....................... .............25 Distance vs. Data rate HFBR-13X2TZ and HFBR-23X6TZ,  TTL Trans ceiver with 62.5 Pm Fiber ............................... .................25 Application Notes for Plastic and Glass Optical Fiber Components ........ .........................................................26 Best Practices for Using Fiber-Optic Components, Common Do’ s and Don’ts ..................... ......... ................................. .. 27 Fiber Optic Components CookBook

tx_rx optico

Embed Size (px)

Citation preview

Page 1: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 1/28

Table of ContentsObjectives: ................................................................................................. 2

Why use optical fibers? .......................................................................... 2

Fundamentals of digital fiber-optic links ........................................2

Why encoding is desirable ................................................................... 2

Why so many different fiber-optic components? ........................ 2

How to use disintegrated components ........................................... 3

Parallel-to-serial and serial-to-parallel converters ....................... 3

So what happens when data is encoded? ......................................3

So what happens if data is not encoded? ...................................... 4

Avago fiber-optic solutions for unencoded data ........................ 4

Low-cost digital transmitters .............................................................. 4

Using Avago’s recommended solutions ..........................................4

Solution for dc to 40 KBd TTL data at distancesbetween 0 and 53 meters..................................................................... 5

Solution for dc to 40 KBd TTL data at distances

between 0 and 1.5 kilometers. ...........................................................6

Solution for dc to 1 MBd TTL data at distances

between 0 and 10 meters..................................................................... 7

Solution for dc to 1 MBd TTL data at distances

between 0 and 45 meters..................................................................... 8

Solution for dc to 5 MBd TTL data at distancesbetween 0 and 16 meters..................................................................... 9

Solution for dc to 5 MBd TTL data at distancesbetween 0 and 700 meters. ...............................................................10

Solution for dc to 5 MBd TTL data at distances

between 0 and 1.7 kilometers. .........................................................11

Solution for dc to 10 MBd TTL data at distances

between 0 and 40 meters...................................................................12

Solution for dc to 10 MBd TTL data at distancesbetween 0 and 300 meters. ...............................................................13

Solution for dc to 32 MBd TTL data at distancesbetween 0 and 1.3 kilometers. (Pages 14 & 15) ..........................14

Solution for dc to 32 MBd TTL data at distances

between 0 and 3.3 kilometers.(Pages 16 & 17) ...........................16

Solution for 2 to 70 MBd TTL data at distances

between 0 and 3.8 kilometers. (Pages 18 & 19) ..........................18

Solution for 20 to 160 MBd +5V ECL (PECL) data at distances

between 0 and 2 kilometers. (Pages 20-22) .................................20

Distance vs. Data rate HFBR-14X4Z and HFBR-24X6Z,PECL Transceiver with 62.5 Pm Fiber .............................................22

 Distance vs. Data rate HFBR-14X4Z and HFBR-24X6Z,

 TTL Transceiver with 62.5Pm Fiber ................................................22

Distance vs. Data rate HFBR-15X7Z and HFBR-25X6Z,

PECL Transceiver with 1 mm POF Fiber .........................................23

Distance vs. Data rate HFBR-15X7Z and HFBR-25X6Z, TTL Transceiver with 1 mm POF Fiber ............................................23

Distance vs. Data rate HFBR-15X7Z and HFBR-25X6Z,PECL Transceiver with 200 Pm HCS Fiber .....................................24

Distance vs. Data rate HFBR-15X7Z and HFBR-25X6Z, TTL Transceiver with 200Pm HCS Fiber ........................................24

Distance vs. Data rate HFBR-13X2TZ and HFBR-23X6TZ,

PECL Transceiver with 62.5 Pm Fiber ..............................................25

Distance vs. Data rate HFBR-13X2TZ and HFBR-23X6TZ,

 TTL Transceiver with 62.5Pm Fiber ................................................25

Application Notes for Plastic and GlassOptical Fiber Components .................................................................26

Best Practices for Using Fiber-Optic Components,Common Do’s and Don’ts..................... ............................................ 27

Fiber Optic Components

CookBook

Page 2: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 2/28

2

Objectives:

1) Explain some fundamental characteristics of digitalfiber-optic communication links.

2) Provide proven digital fiber-optic transceiver solutions.

3) Provide Data Rate vs. Distance Graphs for Avago’sFiber-Optic Components

4) Supply references to Avago Application Notes and

Data Sheets for additional details.

Why Use Optical Fibers?

When using fiber-optic data communication links, de-signers can develop new products which provide noise

immunity that is superior to copper wire.

Optical fibers do not require rigorous grounding rules to

avoid ground loop interference, and fiber-optic cablesdo not need termination resistors to avoid reflections.

Fiber-optic links also have an intrinsically higher prob-

ability of surviving lightning strikes than copper wirealternatives.

Optical connectors suited for field termination with mini-

mal training and simple tools are now available. For ad-ditional details refer to the HFBR-4531Z/4532Z crimplessconnector data sheet, Avago publication number AV02-

0460EN.

When using plastic optical fiber (POF) or hard clad silica(HCS®) the total cost of the data communication link isroughly the same as when using copper wire.

Fundamentals of Digital Fiber-optic Links

Digital fiber-optic links are normally used to transport

serial data. When the length of the data communica-tion channel increases parallel data transfer is generallyavoided due to cost and time skew issues.

Parallel-to-serial and serial-to-parallel converters are nor-mally used to interface computers and microprocessors

to fiber-optic links.

When parallel data is serialized it is usually encoded, butnot all serial communication protocols make use of en-coding.

Some existing copper wire serial data communicationprotocols use no encoding or make use of protocols thatsend data in bursts or packets.

Encoding merges the clock and data into one serial datacommunication link. Encoding eliminates time skew,which can occur when separate communication links are

used for the clock and serial data.

Why Encoding Is Desirable

Unencoded data has dc voltage offsets because unen-coded data can remain in the “logic 0” or “logic 1” state

for indefinite intervals of time.

Encoding algorithms ensure that data is continuously

transmitted. Encoding also restricts duty cycle varia-

tions so that the average value of the encoded signal ap-proaches half of the data’s peak-to-peak amplitude.

Some encoding algorithms allow duty cycle variations

between 40% and 60%, while other encoding algorithmsprovide data with an average duty cycle of 50%.

If no encoding is used the digital fiber-optic receiverneeds to be dc coupled or must make use of edge detec-tion techniques to accommodate the dc components of 

the serial data.

Burst mode or packetized data also requires use of dccoupled or unique ac coupled edge detecting receiver

circuits.

Digital fiber-optic receivers can be dc coupled or ac cou-pled, but ac coupled receivers generally provide better

sensitivity than dc coupled receivers.

A conventional ac coupled receiver will not provide satis-factory performance if the transmitted data contains dccomponents. Serial data that remains in the logic “1” or

logic “0” state for indefinite time intervals is not compat-ible with the majority of ac coupled receiver circuits.

Why So Many Different Fiber-optic Components?

 To meet all of the diverse requirements of the serial datacommunication market, Avago manufactures both fully

integrated dc coupled TTL-compatible receivers and dis-integrated components that can be used to construct

high performance ac coupled receivers.

Integrated dc-coupled TTL-compatible receivers are very

convenient, but an integrated receiver cannot providethe sensitivity achievable with disintegrated receiver

components.

Page 3: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 3/28

3

How to Use Disintegrated Components

Disintegrated receivers are constructed using hybrid re-ceiver components that contain a PIN diode optical de-

tector and a transimpedance amplifier. The transimped-ance amplifier converts PIN diode detector current to a

voltage which is proportional to received optical power.

 The PIN diode plus transimpedance amplifier hybridcomponent is commonly called a PIN pre-amp.

 The PIN pre-amp can be connected directly to a compa-

rator to implement a simple, medium performance logic-compatible digital receiver.

 To construct a high performance digital fiber-optic re-ceiver, the PIN pre-amp is connected to a post amplifiercomparator circuit commonly known as a quantizer.

Ideal quantizers provide excellent receiver sensitivity

limited by the shot and thermal noise of the first stage of the PIN pre-amp’s transimpedance amplifier.

High performance ac coupled receivers require that theserial data is encoded so that data will not remain in thelogic “1” or logic “0” states for indefinite time intervals.

Parallel-to-Serial and Serial-to-Parallel Converters

Many readily available off-the-shelf parallel-to-serial and

serial-to-parallel converters have integrated encodersand decoders.

Parallel-to-serial and serial-to-parallel converters arecommonly called physical layer or PHY chips.

So What Happens When Data is Encoded?

 The encoder in a PHY chip replaces individual bits withsymbols, or groups of bits with groups of symbols.

Encoders commonly increase the fundamental frequen-cy that the serial communication channel must trans-

port, but duty factor variations are constrained whendata is encoded.

Figure 1 shows the relationship between bits/second,symbols/second (Baud), and the fundamental frequency

of serial data when using encoders commonly found inoff-the-shelf PHY chips.

Note that Fo is the maximum fundamental frequency of the encoded data. The minimum fundamental frequency

of the encoded data is determined by the encoder’s runlimit.

Encoding merges the clock and data into a single serialbit stream. Encoded data contains time reference infor-

mation needed by the timing recovery circuit (aka PLL)located at the receiving end of the fiber-optic link.

Figure 1. Attributes of Encoding

MANCHESTER

ENCODER

(50% EFFICIENT)

SERIAL DATA

SOURCE

32 M BITS/SEC

4B5B

ENCODER

(80% EFFICIENT)

8B10BENCODER

(80% EFFICIENT)

(27)-1

SCRAMBLER

(100% EFFICIENT)

APPROXIMATELY 50% D.F

50% D.F

40% TO 60% D.F

50% D.F 64 MBd

ENCODED DATA

f o = 32 MHz

0% TO 100% DUTY FACTOR (D.F) 32 MBd

NRZ DATA

f o = 16 MHz

40 MBd

ENCODED DATA

f o = 20 MHz

40 MBdENCODED DATA

f o = 20 MHz

32 MBd

ENCODED DATA

f o = 16 MHz

NOTE THAT f o IS THE MAXIMUM FUNDAMENTAL FREQUENCY OF THE ENCODED DATA.

 THE MINIMUM FUNDAMENTAL FREQUENCY OF THE ENCODED DATA IS DETERMINED BY

 THE ENCODER'S RUN LIMIT.

Page 4: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 4/28

4

So What Happens If Data Is Not Encoded?

If encoding is not used the time reference (clock) mustbe transmitted through a separate fiber-optic link, or the

data must be oversampled by a local oscillator located atthe receiving end of the fiber-optic link.

 This local oscillator must operate at a significantly higherfrequency than the fundamental frequency of the serial

data to avoid excessive pulse width distortion. For moredetails see Application Note 1121.

Avago Fiber-optic Solutions for Unencoded Data

Since many existing copper wire communication pro-tocols transmit unencoded data, Avago has developed

a wide range of dc-coupled TTL-compatible integratedfiber-optic receivers.

Avago manufactures a wide range of fully integrated TTL-compatible receivers starting at dc to 40 KBd through dc

to 10 MBd. For best results use the recommended circuitsshown on pages 5 through 13 of this Fiber-Optic Cook-book.

For unencoded data transmission at rates between dc

and 32 MBd see the disintegrated edge detector solu-tions shown on pages 14 to 17.

Low-cost Digital Transmitters

When using Avago’s LED optical sources, inexpensivelogic-compatible fiber-optic transmitters can be imple-

mented using off-the-shelf peripheral line drivers or ad-vanced CMOS nand gates.

 The logic-compatible circuits shown in this guide look deceptively simple, but have been carefully developed

to deliver the best performance possible with Avago’sLED optical transmitter components.

Using Avago’s Recommended Solutions

 To avoid problems, minimize development costs andminimize time-to-market, designers are encouraged to

imbed the circuits shown in this cookbook. The completesolutions shown in this cookbook are based upon prov-

en circuits and techniques that have been demonstratedto work in numerous applications.

Page 5: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 5/28

5

Solution for dc to 40 KBd TTL Data at Distances

Between 0 and 53 meters.

Attributes:1) No adjustments needed.2) No receiver overdrive with short fiber-optic cables.

3) DS3631 costs roughly $0.25 and is available from National Semiconductor.4) Uses lowest cost 1 mm dia. plastic optical fiber.

5) Uses Avago’s HFBR-4531Z or HFBR-4532Z crimpless connector which can be field terminated in less than 1 minute.

References:1) HFBR-0501Z Series data sheet, Avago pub. # AV02-1501EN2) HFBR-4531Z/4532Z Crimpless Connector data sheet, Avago pub # AV02-0460EN3) Application Note 1035, Avago pub. # AV02-0730EN

Figure 2.

1

3

4

2

4

3

2

1

5

ZERO TO 53 METER LENGTH OF 1 mm DIA.

PLASTIC OPTICAL FIBER WHEN LED TRANSMITTER

ON STATE FORWARD CURRENT = 10 mA.

8

8 5

0 V

5 V

V CC

U2

HFBR-15X3Z

U3

HFBR-25X3Z

 TTL

OUTPUT

TTL COMPATIBLE RECEIVER

TTL COMPATIBLE TRANSMITTER

C 3

0.1 μF

C 1

10 μF

C 2

0.1 μF

R 2

3.3 K 

 TTL

INPUT

0 V

5 V

VCC

1

2

6

7

4

5

3

8

+

U1

DS3631

R1

340 1%

10 mA

Page 6: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 6/28

6

Solution for dc to 40 KBd TTL Data at Distances

Between 0 and 1.5 kilometers.

Attributes:1) No adjustments needed.2) No receiver overdrive with short fiber-optic cables.

3) DS3631 costs roughly $0.25 and is available from National Semiconductor.4) Uses low-cost 200 Pm hard clad silica (HCS) optical fiber.5) Uses Avago’s HFBR-4521Z connector which can be field terminated in less than 1 minute.

References:1) HFBR-0501Z Series data sheet, Avago pub. # AV02-1501EN2) HFBR-0508Z Series data sheet, Avago pub. # AV02-1504EN3) Plastic Optical Fiber and HCS® Fiber Cables and Connectors, Avago pub # AV02-1508EN

Figure 3.

1

3

4

2

4

3

2

1

5

ZERO TO 1.5 K METER LENGTH OF 200 μm DIA.

HARD CLAD SILICA (HCS) OPTICAL WHEN LED TRANSMITTER

ON STATE FORWARD CURRENT = 20 mA.

8

8 5

0 V

5 V

V CC

U2

HFBR-15X8ZU3

HFBR-25X3Z

 TTL

OUTPUT

TTL COMPATIBLE RECEIVER

TTL COMPATIBLE TRANSMITTER

C 3

0.1 μF

C 1

10 μF

C 2

0.1 μF

R 2

3.3 K 

 TTL

INPUT

0 V

5 V

VCC

1

2

6

8

7

4

5

3

+

U1

DS3631

R1

150 1%

20 mA

Page 7: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 7/28

7

Solution for dc to 1 MBd TTL Data at Distances

Between 0 and 10 meters.

Attributes:1) No adjustments needed.2) No receiver overdrive with short fiber-optic cables.

3) DS75451 costs roughly $0.25 and is available from National Semiconductor.4) Uses lowest cost 1 mm dia. plastic optical fiber.5) Uses Avago’s HFBR-4531Z or HFBR-4532Z crimpless connector which can be field terminated in less than 1 minute.

References:1) HFBR-0501Z Series data sheet, Avago pub. # AV02-1501EN

2) HFBR-4531Z/4532Z Crimpless Connector data sheet, Avago pub # AV02-0460EN3) Application Note 1035, Avago pub. # AV02-0730EN

Figure 4.

1

3

4

2

4

3

2

1

5

ZERO TO 10 METER LENGTH OF 1 mm DIA.

PLASTIC OPTICAL FIBER WHEN LED

ON STATE FORWARD CURRENT = 60 mA.

8

8 5

0 V

5 V

V CC

U2

HFBR-15X4ZU3

HFBR-25X4Z

 TTL

OUTPUT

TTL COMPATIBLE RECEIVER

TTL COMPATIBLE TRANSMITTER

C 4

0.1 μF

C 1

10 μFC 3

1500 pF

C 2

0.1 μF

 TTL

INPUT

0 V

5 V

VCC

1

2

6

7

4

5

3

+

U1

DS75451

R1

51

60 mA

8

Page 8: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 8/28

8

Solution for dc to 1 MBd TTL Data at Distances

Between 0 and 45 meters.

Attributes:1) No adjustments needed.2) No receiver overdrive with short fiber-optic cables.

3) DS75451 costs roughly $0.25 and is available from National Semiconductor.4) Uses lowest cost 1 mm dia. plastic optical fiber.

5) Uses Avago’s HFBR-4531Z or HFBR-4532Z crimpless connector which can be field terminated in less than 1 minute.

References:1) HFBR-0501Z Series data sheet, Avago pub. # AV02-1501EN2) HFBR-4531Z/4532Z Crimpless Connector data sheet, Avago pub # AV02-0460EN

3) Application Note 1035, Avago pub. # AV02-0730EN

Figure 5.

1

3

4

2

4

3

2

1

5

ZERO TO 45 METER LENGTH OF 1 mm DIA.

PLASTIC OPTICAL FIBER WHEN LED

ON STATE FORWARD CURRENT = 60 mA.

8

8 5

0 V

5 V

V CC

U2

HFBR-15X2Z

U3

HFBR-25X2Z

 TTL

OUTPUT

TTL COMPATIBLE RECEIVER

TTL COMPATIBLE TRANSMITTER

C 4

0.1 μF

C 1

10 μFC 3

1500 pF

C 2

0.1 μF

 TTL

INPUT

0 V

5 V

VCC

1

2

6

7

4

5

3

+

U1

DS75451

R1

51

60 mA

8

Page 9: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 9/28

9

Solution for dc to 5 MBd TTL Data at Distances

Between 0 and 16 meters.

Figure 6.

Attributes:1) No adjustments needed.

2) No receiver overdrive with short fiber-optic cables.3) DS75451 costs roughly $0.25 and is available from National Semiconductor.4) Uses lowest cost 1mm dia. plastic optical fiber.

5) Uses Avago’s HFBR-4531Z or HFBR-4532Z crimpless connector which can be field terminated in less than 1 minute.

References:1) HFBR-0501Z Series data sheet, Avago pub. # AV02-1501EN2) HFBR-4531Z/4532Z Crimpless Connector data sheet, Avago pub # AV02-0460EN

3) Application Note 1035, Avago pub. # AV02-0730EN

1

3

4

2

+

4

3

2

1

5

ZERO TO 16 METER LENGTH OF 1 mm DIA.

PLASTIC OPTICAL FIBER WHEN LED

ON STATE FORWARD CURRENT = 43 mA.

8

8 5

0 V

5 V

VCC

U2

HFBR-15X1Z

U3

HFBR-25X1Z

 TTL

OUTPUT

TTL COMPATIBLE RECEIVER

TTL COMPATIBLE TRANSMITTER

C 3

0.1 μF

C 1

10 μ F

C 2

0.1 μF

 TTL

INPUT

0 V

5 V

VCC

1

2

6

7

4

5

3

U1

DS75451

R1

78.7 1%

43 mA

8

Page 10: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 10/28

10

Solution for dc to 5 MBd TTL Data at Distances

Between 0 and 700 meters.

Attributes:1) No adjustments needed.

2) No receiver overdrive with short fiber-optic cables.3) DS75451 costs roughly $0.25 and is available from National Semiconductor.

4) Uses rugged 200 Pm dia. hard clad silica (HCS) optical fiber.5) Uses no-epoxy no-polish crimp and cleave ST or SMA optical connectors which can be field terminated.

Reference:1) HFBR-0400Z Series data sheet, Avago pub. # AV02-0176EN

Figure 7.

2

1

7

3

6

6

2

3

7

54

ZERO TO 700 METER LENGTH OF 200 μm DIA.

HARD CLAD SILICA (HCS) OPTICAL FIBER WHEN LED

ON STATE FORWARD CURRENT = 20 mA.

5 4

8 8 1

0 V

5 V

VCC

U2

HFBR-14X2Z U3

HFBR-24X2Z

 TTL

OUTPUT

TTL COMPATIBLE RECEIVER

TTL COMPATIBLE TRANSMITTER

C 3

0.1 μF

C 1

10 μ F

C 2

0.1 μF

 TTL

INPUT

0 V

5 V

VCC

1

2

6

7

4

5

3

U1

DS75451

R1

174 1%

20 mA

8

R2 560

+

Page 11: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 11/28

11

Solution for dc to 5 MBd TTL Data at Distances

Between 0 and 1.7 kilometers.

Attributes:1) No adjustments needed.2) No receiver overdrive with short fiber-optic cables.

3) DS75451 costs roughly $0.25 and is available from National Semiconductor.

4) Uses commonly available 62.5/125 Pm dia. glass optical fiber.5) Uses ST or SMA optical connectors.

Reference:1) HFBR-0400Z Series data sheet, Avago pub. # AV02-0176EN

Figure 8.

2

1

7

3

6

6

2

3

7

54

ZERO TO 1.7 KILOMETER LENGTH OF 62.5/125 μm MULTIMODE

GLASS OPTICAL FIBER WHEN LED

ON STATE FORWARD CURRENT = 48 mA.

5 4

8 8 1

0 V

5 V

V CC

U2

HFBR-14X4Z

U3

HFBR-24X2Z

 TTL

OUTPUT

TTL COMPATIBLE RECEIVER

TTL COMPATIBLE TRANSMITTER

C 3

0.1 μ F

C 1

10 μF

C 2

0 .1 μ F

 TTL

INPUT

0 V

5 V

V CC

1

2

6

7

4

5

3

U1

DS75451

R1

69.8 1%

48 mA

8

R2 560

+

Page 12: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 12/28

12

Solution for dc to 10 MBd TTL Data at Distances

Between 0 and 40 meters.

Attributes:1) No adjustments needed.

2) No receiver overdrive with short fiber-optic cables.3) DS75451 costs roughly $0.25 and is available from National Semiconductor.

4) Uses lowest cost 1 mm dia. plastic optical fiber.

5) Uses Avago’s HFBR-4531Z or HFBR-4532Z crimpless connector which can be field terminated in less than 1 minute.

References:1) HFBR-0508Z Series data sheet, Avago pub. # AV02-1504EN2) HFBR-4531Z/4532Z Crimpless Connector data sheet, Avago pub # AV02-0460EN

3) Application Note 1080, Avago pub. # AV02-0784EN

Figure 9.

1

3

4

2

4

3

2

1

5

ZERO TO 40 METER LENGTH OF 1 mm DIA.

PLASTIC OPTICAL FIBER AT 0 TO 70 CELSIUS WHEN

LED TRANSMITTER ON STATE FORWARD CURRENT = 60 mA.

8

8 5

0 V

5 V

V CC

U2

HFBR-15X8ZU3

HFBR-25X8Z

 TTL

OUTPUT

TTL COMPATIBLE RECEIVER

TTL COMPATIBLE TRANSMITTER

C 3

0.1 μF

C 1

10 μF

C 2

0.1 μF

 TTL

INPUT

0 V

5 VVCC

1

2

6

7

4

5

3

U1

DS75451

R2

47 1%

R1

2K 5%

60 mA

8

R3

2.7 5%

+

Page 13: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 13/28

13

Solution for dc to 10 MBd TTL Data at Distances

Between 0 and 300 meters.

Figure 10.

Attributes:1) No adjustments needed.2) No receiver overdrive with short fiber-optic cables.3) DS75451 costs roughly $0.25 and is available from National Semiconductor.

4) Uses low-cost 200 Pm hard clad silica (HCS) optical fiber.5) Uses Avago’s HFBR-4521Z connector which can be field terminated in less than 1 minute.

References:1) HFBR-0508Z Series data sheet, Avago pub. # AV02-1504EN

2) Application Note 1080, Avago pub. # AV02-0784EN3) Plastic Optical Fiber and HCS® Fiber Cables and Connectors, Avago pub. # AV02-1508EN

1

3

4

2

4

3

2

1

5

ZERO TO 300 METER LENGTH OF 200 μm DIA.

HARD CLAD SILICA (HCS) OPTICAL FIBER AT 0 TO 70 CELSIUS WHEN

LED TRANSMITTER ON STATE FORWARD CURRENT = 60 mA.

8

8 5

0 V

5 V

V CC

U2

HFBR-15X8ZU3

HFBR-25X8Z

 TTL

OUTPUT

TTL COMPATIBLE RECEIVER

TTL COMPATIBLE TRANSMITTER

C 3

0.1 μF

C 1

10 μF

C 2

0.1 μF

 TTL

INPUT

0 V

5 V

V CC

1

2

6

7

4

5

3

U1

DS75451

R2

47 1%

R1

2K 5%

60 mA

8

R3

2.7 5%

+

Page 14: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 14/28

14

Solution for dc to 32 MBd TTL Data at Distances

Between 0 and 1.3 kilometers. (Pages 14 & 15)

Figure 11. Transceiver Circuit

Table 1. Transceiver Component Values

DISTANCE @ 32 MBd 0 to 27 meters 0 to 690 meters 0 to 800 meters 0 to 1.3 K meters

 TRANSMITTER HFBR-15X7Z

650 nm LED

HFBR-15X7Z

650 nm LED

HFBR-14X4Z

820 nm LED

HFBR-13X2TZ

1300 nm LED

RECEIVER HFBR-25X6Z HFBR-25X6Z HFBR-24X6Z HFBR-23X6TZ

FIBER TYPE 1 mm Plastic 200 Pm HCS 62.5/125 Pm 62.5/125 PmR1 120: 33: 33: 22:

R2 120: 33: 33: 27:

R3 390: 270: 270: f

C3 82 pF 470 pF 75 pF 150 pF

C5

0.1 μF

C8

0.1 μF

C13

0.1 μF

C9

0.1 μF

C10

10 μ F

R5 4.7

R8 120 K 

R9 120 K 

R12 2.2 K 

R4 4.7

C11

0.1 μFC12

10 μF

9

1012

13

11

8

U1C

74ACTQ00

U1D

74ACTQ00

L1

 TDK#HF30ACB453215

J1

 TRANSCEIVER I/O

4

5

6

U1B

74ACTQ00

1

2

3

U1A

74ACTQ00

C1

0.1 μF

C2

10 μ F

L2

COILCRAFT 1008LS-122XKBC

L3

COILCRAFT 1008LS-122XKBC

GND

RD-

RD+

NC

VccVcc TD

NC

GND

1

2

3

45

6

7

8

9

R6

270

R7

270

R10

240

R11

240

C6

C7

U4

LT1016CS8

76

4

2

385

1

6

1 8

4 5

2

3

7U3B

HFBR-24X6Z

2

1 8

4 5

6

7

3U2B

HFBR-14X4Z

1

2

3

4

8

5

U2A

HFBR-15X7Z

1

2

3

4

8

5

U3A

HFBR-25X6Z

R3

R1 R2

C3

+

+

+

C6 = C7 =2

(3) (R6 + R7) [DATA RATE (Bd)]

Page 15: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 15/28

15

Attributes:1) Can be used with unencoded data.2) No analog circuit design needed.3) No printed circuit design needed.

4) Printed circuit design can be electronically imported from web address:http://www.avagotech.com/docs/MPUB-1075

Electronic files contain:a) Transceiver schematic

b) Printed circuit artwork c) Material list

5) No adjustments needed.6) No receiver overdrive with short fiber-optic cables.7) Uses low-cost off-the-shelf integrated circuits from Fairchild and Linear Technology.

8) One transceiver design can be used to address a wide range of applications.9) Can be used with 1 mm dia. POF for lowest cost, 200Pm HCS, or 62.5/125 Pm multimode glass optical fibers for

greater distances.10) POF or HCS fiber connectors can be field terminated in less than 1 minute.

For POF use the HFBR-4531Z connector, for HCS fiber use HFBR-4521Z connector.

References:1) HFBR-0507Z Series data sheet, Avago pub. # AV02-1502EN2) HFBR-0400Z Series data sheet, Avago pub. # AV02-0176EN3) HFBR-0300Z Series data sheet, Avago pub. # AV02-1500EN

4) HFBR-4531Z/4532Z Crimpless Connector data sheet, Avago pub # AV02-0460EN5) Plastic Optical Fiber and HCS® Fiber Cables and Connectors, Avago pub # A02-1508EN

6) Application Note 1121, Avago pub. # AV02-0723EN

Page 16: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 16/28

16

Solution for dc to 32 MBd TTL Data at Distances

Between 0 and 3.3 kilometers. (Pages 16 & 17)

Figure 12. Transceiver Circuit

Table 2. Transceiver Component Values

DISTANCE

@ 32 MBd 0 to 42 meters 0 to 1K meters 0 to 1.6K meters 0 to 3.3K meters

 TRANSMITTER HFBR-15X7Z650 nm LED

HFBR-15X7Z650 nm LED

HFBR-14X4Z820 nm LED

HFBR-13X2TZ1300 nm LED

RECEIVER HFBR-25X6Z HFBR-25X6Z HFBR-24X6Z HFBR-23X6TZ

FIBER TYPE 1 mm Plastic 200 Pm HCS 62.5/125 Pm 62.5/125 Pm

R1 120: 33: 33: 22:

R2 120: 33: 33: 27:

R3 390: 270: 270: f

C3 82 pF 470 pF 75 pF 150 pF

C50.1 μF

C8

0.1 μF

C11

0.1 μF

C12

0.1 μF

C13

10 μ F

R5 4.7

R9

51

R17 68 K 

R18 68 K 

R21

2.2 K 

R4

4.7C140.1 μFC15

10 μF

9

1012

13

11

8

U1C

74ACTQ00

U1D

74ACTQ00

L1

 TDK#HF30ACB453215

J1

 TRANSCEIVER

I/O

4

5

6

U1B

74ACTQ00

1

2

3

U1A

74ACTQ00

C1

0.1 μF

C2

10 μ F

L2

COILCRAFT 1008LS-122XKBC

L3

COILCRAFT 1008LS-122XKBC

GND

RD-

RD+

NC

Vcc

Vcc TD

NC

GND

1

2

3

4

5

6

7

8

9

R15

270

R16

270

R19

240

R20

240

C9

C10

U4

LT1016CS8

7

64

2

38

51

R3

R1 R2

C3

+

C6

0.1 μF

R8

51R6

2.4 K 

R11

2.4 K 

+

MMPQ3904

MMPQ3904

1 2 3 4

15 13

1416

R14

470

R13

470

R12

1.5 K 

R7

1.5 K R10

110

5 6 7 8

11 9

1012

C7

0.1 μF

+

8

5

U2A

HFBR-15X7Z

1 8

4 5

U2B

HFBR-14X4Z

1 8

4 5U3B

HFBR-24X6Z

C13

0.1 μF

1234

8

5

U3AHFBR-25X6Z

6237

2673

1234

C9 = C10 =2

(3) (R6 + R7) [DATA RATE (Bd) ]

Page 17: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 17/28

17

Attributes:1) Can be used with unencoded data.2) No analog circuit design needed.3) No printed circuit design needed.

4) Printed circuit design can be electronically imported from web address:http://www.avagotech.com/docs/MPUB-1076

Electronic files contain:a) Transceiver schematic

b) Printed circuit artwork c) Material list

5) No adjustments needed.6) No receiver overdrive with short fiber-optic cables.7) Uses low-cost off-the-shelf integrated circuits from Fairchild, Motorola, and Linear Technology.

8) One transceiver design can be used to address a wide range of applications.9) Can be used with 1 mm dia. POF for lowest cost, 200Pm HCS, or 62.5/125 Pm multimode glass optical fibers for

greater distances.10) POF or HCS fiber connectors can be field terminated in less than 1 minute.

For POF use the HFBR-4531Z connector, for HCS fiber use HFBR-4521Z connector.

References:1) HFBR-0507Z Series data sheet, Avago pub. # AV02-1502EN2) HFBR-0400Z Series data sheet, Avago pub. # AV02-0176EN3) HFBR-0300Z Series data sheet, Avago pub. # AV02-1500EN

4) HFBR-4531Z/4532Z Crimpless Connector data sheet, Avago pub # AV02-0460EN5) Plastic Optical Fiber and HCS® Fiber Cables and Connectors, Avago pub # AV02-1508EN

6) Application Note 1121, Avago pub. # AV02-0723EN

Page 18: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 18/28

18

Solution for 2 to 70 MBd TTL Data at Distances

Between 0 and 3.8 kilometers. (Pages 18 & 19)

Figure 13. Transceiver Circuit

Table 3. Transceiver Component Values

DISTANCE

@ 50 MBd 0 to 80 meters 0 to 300 meters 0 to 1.5K meters 0 to 3.8K meters

 TRANSMITTER HFBR-15X7Z650 nm LED

HFBR-15X7Z650 nm LED

HFBR-14X4Z820 nm LED

HFBR-13X2TZ1300 nm LED

RECEIVER HFBR-25X6Z HFBR-25X6Z HFBR-24X6Z HFBR-23X6TZ

FIBER TYPE 1 mm Plastic 200 Pm HCS 62.5/125 Pm 62.5/125 Pm

R1 120: 33: 33: 22:

R2 120: 33: 33: 27:

R3 390: 270: 270: f

C3 82 pF 470 pF 75 pF 150 pF

R5 4.7 R4 4.7

C6

0.1 μF

C17

0.1 μF

C13 0.1 μF

C14

0.1 μF

9

1012

13

11

8

U1C

74ACTQ00

U1D

74ACTQ00

J1

 TRANSCEIVER

I/O

4

5

6

U1B

74ACTQ00

1

2

3

U1A

74ACTQ00

C1

0.1 μF

C2

10 μF

L3

L2

COILCRAFT 1008LS-122XKBC

COILCRAFT

1008LS-122XKBC

GND

RD-

RD+

SD

VccVcc

 TDNC

GND

1

2

3

4

5

6

78

9

R9

1 K 

R8

510R7

510

R6 1.2 K 

R3

R1 R2

C3

C16

10 μ F

C15

10 μ F

R190 OHM JUMPER

R12

(NOT LOADED)

R13(NOT LOADED)

C11

0.1 μF

C5

0.1 μF

8

76

5

1

2

3

4

D1

HLMP-4700

++

+

U5

HCPL-0701

C12

0.1 μF

C8

0.1 μF

U4

ML4624

NC

CTIMER

VREF

VthADJ

GND

 TTL OUT

VCC TTL

25

24

23

22

21

20

19

V IN-

V IN+

NC

VDC

CF2

CF1

NC    G    N    D    T    T    L

    E    C    L   +

    E    C    L  -

    N    C

    N    C

    N    C

    N    C

    N    C

    N    C

    V    C    C

    N    C

    T    T    L    L    I    N    K    M    O    N

    C    M    P    E    N    A    B    L    E     N

    C5

6

7

8

9

10

11

2726 28 1 2 3 4

1718 16 15 14 13 12

C9

U3AHFBR-25X6Z

C7

0.1 μF

C10

0.047

1 8

4 5 U3B

HFBR-24X6Z

6237

8

5

U2A

HFBR-15X7Z

1 8

4 5U2B

HFBR-14X4Z

2673

1234

1234

8

5

L1

 TDK#HF30ACB453215

When data rate is ≤ 20 MBd then

When data rate ≥ 20 MBd delete C9.

C9 =1

2π800 (Bd)- [4 (pF) ]

Page 19: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 19/28

19

Attributes:1) Intended for applications that use encoded data.2) No analog circuit design needed.3) No printed circuit design needed.

4) No adjustments needed.5) No receiver overdrive with short fiber-optic cables.

6) Uses low-cost off-the-shelf integrated circuits from Fairchild and Micro Linear.7) One transceiver design can be used to address a wide range of applications.

8) Can be used with 1 mm dia. POF for lowest cost, 200Pm HCS, or 62.5/125 Pm multimode glass optical fibers forgreater distances.

9) POF or HCS fiber connectors can be field terminated in less than 1 minute.For POF use the HFBR-4531Z connector, for HCS fiber use HFBR-4521Z connector.

References:1) HFBR-0507Z Series data sheet, Avago pub. # AV02-1502EN.2) HFBR-0400Z Series data sheet, Avago pub. # AV02-0176EN.

3) HFBR-0300Z Series data sheet, Avago pub. # AV02-1500EN.4) HFBR-4531Z/4532Z Crimpless Connector data sheet, Avago pub # AV02-0460EN.

5) Plastic Optical Fiber and HCS® Fiber Cables and Connectors, Avago pub # AV02-1508EN.

6) Application Note 1122, Avago pub. # AV02-0721EN.

Page 20: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 20/28

20

Solution for 20 to 160 MBd +5V ECL (PECL) Data at Distances between 0 and 2

kilometers. (Pages 20-22)

Figure 14. Transceiver Circuit

Table 4. Transceiver Component Values

DISTANCE

@ 160 MBd 0 to 50 meters 0 to 50 meters 0 to 500 meters 0 to 2K meters

 TRANSMITTER HFBR-15X7Z650 nm LED

HFBR-15X7Z650 nm LED

HFBR-14X4Z820 nm LED

HFBR-13X2TZ1300 nm LED

RECEIVER HFBR-25X6Z HFBR-25X6Z HFBR-24X6Z HFBR-23X6TZ

FIBER TYPE 1 mm Plastic 200 μm HCS 62.5/125 μm 62.5/125 μm

R8 301 Ω 82.5 Ω 84.5 Ω 78.7 Ω

R9 301 Ω 82.5 Ω 84.5 Ω 78.7 Ω

R10 15 Ω 15 Ω 56 Ω 47 Ω

R11 1K Ω 475 Ω 2.2K Ω ∞

C8 43 pF 120 pF 33 pF 56 pF

Note the transceiver only requires a +5V power supply. The receiver circuit’s +3 V bus is created using the TL431CD shunt regula-

tor, and Vbb, which equals +3.7 V, is a bias source located within the MC10H116FN.

C16

0. 1 μ F

9

10

12

13

11

8

U1C

74ACTQ00

U1D

74ACTQ00

Q2

BFT92Q1

BFT92

L1

 TDK#HF30ACB453215

J1

 TRANSCEIVER I/O

4

5

6

U1B

74ACTQ00

1

27

3

U1A

74ACTQ00

C7

0.001 μF

C6

0 .1 μ F

C3

0 .1 μ F

C5

10 μ F

C4

0.001 μF

 TX GND

 TD+

 TD-

 TX V ccRX V cc

NC

RD-

RD+RX GND

9

8

7

6

5

4

3

2

1

2

1 8

4 5

6

7

3

U2B

HFBR-14X4Z

1

2

3

4

8

5

U2A

HFBR-15X7Z

R11

R10C8

C20 .1 μ FC10.001 μFR522

R6

91

R7

91

R8

R9

Q3

MMBT3904LT1

6

1 8

4 5

2

3

7

U3B

HFBR-24X6Z

1

2

3

4

5

U3A

HFBR-25X6Z

C20

1 0 μ F

R24

1 K 

R22

1 K 

R25

1 K  R23

1 K 

U4C

MC10H116FN

18

+3 VVbb

Vbb

19 17

15

U4A

MC10H116FN

4

3 7

10

5

C15

0. 1 μ F

R19

51

R16

51

U4B

MC10H116FN

8

9

202

12

14

13

R18

51R17

51

+3 V

C17

0. 1 μ F Vbb

C10

0 .1 μ F

R12 4.7

C9

0 .1 μ F

C12 0.1 μF

R134.7

R14

1 K 

C11 0.1 μF

Vbb

R15

1 K 

C13

0. 1 μ F

C14

10 μ F

R20

12

R21

62

1

82, 3, 6, 7

U5

 TL431CD

+

+

+

C190 .1 μ FC18

0. 1 μ F8

Page 21: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 21/28

21

Attributes:1) Intended for applications that use encoded data.2) Can be used with off-the-shelf physical layer chips such as the Cypress HOTLink™ to build low-cost byte-to-light

protocol-independent data communication links.3) No analog circuit design needed.

4) No printed circuit design needed.5) Printed circuit design can be electronically imported from web address:-

http://www.avagotech.com/docs/MPUB-1073Electronic files contain:a) Transceiver schematic

b) Printed circuit artwork c) Material list

6) No adjustments needed.7) No receiver overdrive with short fiber-optic cables.8) Uses low-cost off-the-shelf integrated circuits from Fairchild, Motorola, and Texas Instruments.

9) One transceiver design can be used to address a wide range of applications.10) Can be used with 1 mm dia. POF for lowest cost, 200 Pm HCS, or 62.5/125 Pm multimode glass optical fibers for

greater distances.11) POF or HCS fiber connectors can be field terminated in less than 1 minute.

For POF use the HFBR-4531Z connector, for HCS fiber use HFBR-4521Z connector.

References:1) HFBR-0507Z Series data sheet, Avago pub. # AV02-1502EN.2) HFBR-0400Z Series data sheet, Avago pub. # AV02-0176EN.

3) HFBR-0300Z Series data sheet, Avago pub. # AV02-1500EN.4) HFBR-4531Z/4532Z Crimpless Connector data sheet, Avago pub # AV02-0460EN.5) Plastic Optical Fiber and HCS® Fiber Cables and Connectors, Avago pub # AV02-1508EN.

6) Application Note 1123, Avago pub. # AV02-0728EN

Figure 15. Byte-to-light interface between PECL-compatible fiber-optic transceivers

and off-the-shelf PHY chips, such as Cypress Semiconductor’s HOTLink™.

82

82

0.1 μF

0.1 μF

0.1 μF10 μ F

10 μ F

1.2 μH

+5 V

NOISY HOST

SYSTEM POWER

1.2 μH

+

+8282

120120

CONVENTIONAL

 TTL DATA BUS

120

Zo = 50 OHMS

Zo = 50 OHMS

SERIAL +5V ECL DATA

120

1.2 μH

9 TX V EE

8 TD+

7 TD-

6 TX V cc

5 RX V cc

4 SD+

3 RD-

2RD+

1 RX V EE

FIBER-OPTIC

 TRANSCEIVER

SHOWN IN

FIGURE 14

SIGNAL DETECT

DESERIALIZER

SERIALIZER

Zo = 50 OHMS

Zo = 50 OHMSSERIAL +5V ECL DATA

0.1 μF

RECOMMENDED POWER SUPPLY FILTER AND +5 V ECL

(PECL) SIGNAL TERMINATIONS FOR THE CYPRESS HOTLink 

Page 22: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 22/28

22

Distance vs. Data rate HFBR-14X4Z and HFBR-24X6Z,

PECL Transceiver with 62.5 Pm Fiber

Figure 16 shows the distances and data rates achievablewhen Avago’s HFBR-14X4Z and HFBR-24X6Z 820 nm

components are used with 62.5/125 Pm graded indexmultimode glass fibers.

 To obtain this performance the recommended circuitsshown in Application Bulletin 78, or Application Note

1123, MUST be used.

Figure 16.

Distance vs. Data rate HFBR-14X4Z and HFBR-24X6Z,

TTL Transceiver with 62.5 Pm Fiber

Figure 17 shows the distances and data rates achievablewhen Avago’s HFBR-14X4Z and HFBR-24X6Z 820 nm

components are used with 62.5/125 Pm graded indexmultimode glass fibers.

 To obtain this performance the recommended circuitsshown in Application Note 1038, Application Note 1065,

or Application Note 1122 MUST be used.

Figure 17.

160

140

120

100

80

60

40

20

10100 200 400 600 800 1K 2K   3K 

L - LENGTH - METERS

    D    A    T    A    R    A    T    E  -    M    I    L    L    I    O    N    S    O    F    S    Y    M    B    O

    L    S    /    S    E    C  -    M    B    d

RECOMMENDED OPERATING REGION WHEN

USING HFBR-14x4Z AND HFBR-24x6Z 820 nm

COMPONENTS IN THE CIRCUITS RECOMMENDED

IN APPLICATION BULLETIN 78 OR APPLICATION

NOTE 1123 WITH 62.5/125 μm GRADED INDEX

GLASS MULTIMODE OPTICAL FIBERS

160

140

120

100

80

60

40

20

10100 200 400 600 800 1K  2K  3K 

L - LENGTH - METERS

    D    A    T    A    R    A    T    E  -    M    I    L    L    I    O    N    S    O    F    S    Y    M    B    O

    L    S    /    S    E    C  -    M    B    d

RECOMMENDED OPERATING REGION WHEN

USING HFBR-14x4Z AND HFBR-24x6Z 820 nm

COMPONENTS IN THE CIRCUITS RECOMMENDED

IN APPLICATION NOTE 1038, APPLICATION NOTE

1065 OR APPLICATION NOTE 1122, WITH 62.5/125 μm

GRADED INDEX GLASS MULTIMODE OPTICAL FIBERS

Page 23: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 23/28

23

Distance vs. Data rate HFBR-15X7Z and HFBR-25X6Z,

PECL Transceiver with 1 mm POF Fiber

Figure 18 shows the distances and data rates achievablewhen using Avago’s HFBR-15X7Z and HFBR-25X6Z 650

nm components with low numerical aperture 1 mm di-ameter POF.

 To obtain this performance the recommended circuitsshown in Application Note 1066, or Application Note

1123, MUST be used.

Figure 18.

Distance vs. Data rate HFBR-15X7Z and HFBR-25X6Z,

TTL Transceiver with 1 mm POF Fiber

Figure 19 shows the distances and data rates achievablewhen using Avago’s HFBR-15X7Z and HFBR-25X6Z 650

nm components with low numerical aperture 1 mm di-ameter POF.

 To obtain this performance the recommended circuitsshown in Application Note 1122 MUST be used.

Figure 19.

160

140

120

100

80

60

40

20

1010 20 40 60 80 100 200 300

L - LENGTH - METERS

    D    A    T    A    R    A    T    E  -    M    I    L    L    I    O    N    S    O    F    S    Y    M

    B    O    L    S    /    S    E    C  -    M    B    d

RECOMMENDED OPERATING

REGION WHEN USING HFBR-15x7Z

AND HFBR-25x6Z 650 nm FIBER OPTIC

COMPONENTS IN THE CIRCUITS

RECOMMENDED IN APPLICATION

NOTE 1066 OR APPLICATION

NOTE 1123 WITH LOW NA (NA = 0.35)

STEP INDEX 1 mm DIAMETER PLASTIC

OPTICAL FIBERS

160

140

120

100

80

60

40

20

1010 20 40 60 80 100 200 300

L - LENGTH - METERS

    D    A    T    A    R    A    T    E  -    M    I    L    L    I    O    N    S    O    F    S    Y    M

    B    O    L    S    /    S    E    C  -    M    B    d

RECOMMENDED OPERATING REGION

WHEN USING HFBR-15x7Z AND HFBR-25x6Z

650 nm FIBER-OPTIC COMPONENTS IN

 THE CIRCUITS RECOMMENDED

IN APPLICATION NOTE 1122 WITH LOW

NA (NA = 0.35) STEP INDEX 1 mm

DIAMETER PLASTIC OPTICAL FIBERS

Page 24: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 24/28

24

Distance vs. Data rate HFBR-15X7Z and HFBR-25X6Z,

PECL Transceiver with 200 Pm HCS Fiber

Figure 20 shows the distances and data rates achievablewhen using Avago’s HFBR-15X7Z and HFBR-25X6Z 650

nm components with 200 Pm diameter HCS.

 To obtain this performance the recommended circuitsshown in Application Note 1066, or Application Note1123, MUST be used.

Figure 20.

Distance vs. Data rate HFBR-15X7Z and HFBR-25X6Z,

TTL Transceiver with 200 Pm HCS Fiber

Figure 21 shows the distances and data rates achievablewhen using Avago’s HFBR-15X7Z and HFBR-25X6Z 650

nm components with 200 Pm diameter HCS.

 To obtain this performance the recommended circuitsshown in Application Note 1122 MUST be used.

Figure 21.

160

140

120

100

80

60

40

20

1010 20 40 60 100 200 400 600 1K 

L - LENGTH - METERS

    D    A    T    A    R    A    T    E  -    M    I    L    L    I    O    N    S    O    F    S

    Y    M    B    O    L    S    /    S    E    C  -    M    B    d

RECOMMENDED OPERATING REGION WHEN

USING HFBR-15x7Z AND HFBR-25x6Z 650 nm

COMPONENTS IN THE CIRCUITS RECOMMENDED

IN APPLICATION NOTE 1066 OR APPLICATION

NOTE 1123 WITH 200 μm HCS STEP INDEX

MULTIMODE OPTICAL FIBERS

160

140

120

100

80

60

40

20

10

10 20 40 60 100 200 400 600 1K 

L - LENGTH - METERS

    D    A    T    A    R    A    T    E  -    M    I    L    L    I    O    N    S    O    F    S    Y    M    B    O    L    S    /    S    E    C  -    M    B    d

RECOMMENDED OPERATING REGION WHEN

USING HFBR-15x7Z AND HFBR-25x6Z 650 nm

COMPONENTS IN THE CIRCUITS RECOMMENDED

IN APPLICATION NOTE 1122 WITH 200 μm HCS

STEP INDEX MULTIMODE OPTICAL FIBERS

Page 25: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 25/28

25

Distance vs. Data rate HFBR-13X2TZ and HFBR-23X6TZ,

PECL Transceiver with 62.5 Pm Fiber

Figure 22 shows the distances and data rates achievablewhen Avago’s HFBR-13X2TZ and HFBR-23X6TZ 1300 nm

components are used with 62.5/125 Pm graded indexmultimode glass fibers.

 To obtain this performance the recommended circuitsshown in Application Note 1123 MUST be used.

Figure 22.

Distance vs. Data rate HFBR-13X2TZ and HFBR-23X6TZ,

TTL Transceiver with 62.5 Pm Fiber

Figure 23 shows the distances and data rates achievablewhen Avago’s HFBR-13X2TZ and HFBR-23X6TZ 1300 nm

components are used with 62.5/125 Pm graded indexmultimode glass fibers.

 To obtain this performance the recommended circuitsshown in Application Note 1122 MUST be used.

Figure 23.

160

140

120

100

80

60

40

20

10100 200 400 600 1K 2K   4K  6K 

L - LENGTH - METERS

    D    A    T    A    R    A    T    E  -    M    I    L    L    I    O    N    S    O    F    S

    Y    M    B    O    L    S    /    S    E    C  -    M    B    d

RECOMMENDED OPERATING REGION WHEN

USING HFBR-13x2TZ AND HFBR-23x6TZ 1300 nm

COMPONENTS IN THE CIRCUITS RECOMMENDED

IN APPLICATION NOTE 1123 WITH 62.5/125 μm

GRADED INDEX MULTIMODE OPTICAL FIBERS

160

140

120

100

80

60

40

20

10100 200 400 600 1K 2K   4K  6K 

L - LENGTH - METERS

    D    A    T    A    R    A    T    E  -    M    I    L    L    I    O    N    S    O    F    S    Y    M    B    O    L    S    /    S    E    C  -    M    B    d

RECOMMENDED OPERATING REGION WHEN

USING HFBR-13x2TZ AND HFBR-23x6TZ 1300 nm

COMPONENTS IN THE CIRCUITS RECOMMENDED

IN APPLICATION NOTE 1122 WITH 62.5/125 μm

GRADED INDEX MULTIMODE OPTICAL FIBERS

Page 26: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 26/28

26

Application Notes for Plastic and Glass Optical Fiber Components

Title

Low-Cost Fiber-Optic Links for Digital Applications up to 155 MBd  (AB78)

Data Rate & Logic Interfaces 1 to 155 MBd ECL, +5V ECL (PECL), TTL

Versatile Link  (AN 1035)

Data Rate & Logic Interfaces dc to 5 Mbd TTL, CMOS

Fiber-Optic Solutions for 125 MBD Data Communication Applications at Copper Wire Prices (AN 1066)

Data Rate & Logic Interfaces 1 to 155 MBd +5V ECL (PECL)

DC to 10 MBd Versatile Link (AN 1080)

Data Rate & Logic Interfaces dc to 10 MBd TTL, CMOS

DC to 32 MBd Fiber-Optic Solutions for Industrial, Medical, Telecom, and Proprietary Data Communication Applications(AN 1121)

Data Rate & Logic Interfaces dc to 32 MBd TTL

2 to 70 MBd Fiber-Optic Solutions for Industrial, Medical, Telecom, and Proprietary Data Communication Applications(AN 1122)

Data Rate & Logic Interfaces 2 to 70 MBd TTL

20 to 160 MBd Fiber-Optic Solutions for Industrial, Medical, Telecom, and Proprietary Data Communication Applications (AN 1123)

Data Rate & Logic Interfaces 20 to 160 MBd +5V ECL (PECL)

Generic Printed Circuit Layout Rules for Avago’s Low-Cost Fiber-Optic Components (AN 1137)

Page 27: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 27/28

27

Best Practices for Using Fiber-Optic Components

(Common Do’s and Don’ts)

# Do’s Don’ts

1 Whenever possible use the circuits Avoid changing the recommended

recommended in Avago’s published circuits. Small changes in circuit topologyapplication notes. can dramatically impact the performance

of the fiber-optic data link.

2 When possible use the components Do not change the recommended

recommended in the material lists components. Component changes

provided in Avago’s application notes can dramatically impact the performance

of the data communication link.

3 Use Avago’s printed circuit layout Don’t assume circuit layout

when it is compatible with internal is trivial. If you must change the

construction/assembly techniques. layout follow the design rules in AN-1137.

4 If you need to make circuit or Don’t assume that the changes

component changes contact the you desire are harmless. The

Customer Response Center at simple robust circuits shown in

1-800-235-0312 to access the impact. Avago’s published application notes

took many man-years to develop.

5 Use the LED driver circuits Do not assume that LED driver

recommended in Avago’s application design is trivial. The LED drivers

notes. in Avago’s application notes have been

optimized to minimize cost and maximize

performance.

6 Data communication LEDs should Data communication LEDs are not

only be operated in forward biased intended to be operated in

or zero biased modes. the reversed biased mode.

 

7 Forward bias current must be Do not connect LEDs directly to

limited to a value less than the voltage sources. LEDs are current

absolute maximum value specified operated devices, so excessive

on Avago’s published data sheets. current can flow when directly

When connected to a voltage source connected to a low impedance

a series current limiting resistor is voltage source.

required.

8 Be careful when using in circuit Do not assume that the ac stimulus sources

(bed of nails) testers. In circuit embedded inside your in circuit testertesters with adjustable current are safe to use with data communication

limits must be set to values less than LED transmitters. LEDs are current operated

the absolute maximum current allowed devices that can be electrically

by the LED’s data sheet. Use external overstressed when directly connected to

resistors to limit the current applied if voltage sources.

the in circuit tester does not have

programmable current limits.

 

Page 28: tx_rx optico

8/2/2019 tx_rx optico

http://slidepdf.com/reader/full/txrx-optico 28/28

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.

Data subject to change. Copyright © 2005-2010 Avago Technologies. All rights reserved. Obsoletes 5968-5630E

# Do’s Don’ts

9 Semi-discrete fiber-optic receivers Do not assume that the ac stimulus

can be damaged by in circuit testers. applied by your in circuit tester can

Limit the amplitude to 100 mV peak- safely be connected to quantizer’s

to-peak if you want to apply ac input. In circuit testers can apply

stimulus at the input stage of the 5-volt logic compatible signals

receiver’s post-amplifier that will damage the output stage

comparator (quantizer). of the PIN pre-amp hybrid circuit

used as the first stage of the semi-

discrete receiver.

10 The PECL logic outputs of Do not assume that the ac stimulus

high-speed fiber-optic receivers applied by your in circuit tester can

could potentially be damaged by safely be connected to the physical

in circuit testers. When testing the layer chip’s serial input. In circuit

PECL compatible inputs of physical testers can apply 5-volt logic

layer integrated circuits restrict ac compatible signals that could

stimulus to less than 100 mV potentially damage the output

peak-to-peak. stage of PECL compatible

receiver circuits.

11 Use the recommended power Do not disregard Avago’s power

supply filter circuits shown in supply filter recommendations.

Avago’s published application notes.

 

12 If you use a switching power Do not assume that Avago’s

supply know the frequency it recommended filter circuit

operates at and check to see if will protect the fiber-optic

additional power supply filtering transceiver from a noisy

is needed at that frequency. switching power supply.

13 If your system contains other Do not assume that Avago’slow-frequency noise sources be recommended filter circuit

sure that your system contains will protect the fiber-optic

enough power supply filtering to transceiver from low

control power supply ripple. frequency noise sources.

Avago’s recommended power supply

filters are very effective against

noise at frequencies

greater than 1 MHz.