40
TRAINING PROGRAMME ON TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES GENERAL DESIGN PRINCIPLES Meters Meters BY BY ROUTHU SATYANARAYANA ROUTHU SATYANARAYANA CHIEF ENGINEER (Retired.) CHIEF ENGINEER (Retired.) FORMER ADVISOR, GOVERNMENT OF A.P FORMER ADVISOR, GOVERNMENT OF A.P

TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES Meters

  • Upload
    chinara

  • View
    43

  • Download
    1

Embed Size (px)

DESCRIPTION

TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES Meters. BY ROUTHU SATYANARAYANA CHIEF ENGINEER (Retired.) FORMER ADVISOR, GOVERNMENT OF A.P. Communications-Bridges. Definition: - PowerPoint PPT Presentation

Citation preview

Page 1: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

TRAINING PROGRAMME ONTRAINING PROGRAMME ON

ENGINEERING DESIGNS-CANAL STRUCTURESENGINEERING DESIGNS-CANAL STRUCTURES

GENERAL DESIGN PRINCIPLES GENERAL DESIGN PRINCIPLES

MetersMeters

BY BY

ROUTHU SATYANARAYANAROUTHU SATYANARAYANA

CHIEF ENGINEER (Retired.)CHIEF ENGINEER (Retired.)

FORMER ADVISOR, GOVERNMENT OF A.PFORMER ADVISOR, GOVERNMENT OF A.P

Page 2: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Communications-Bridges Definition:

Bridge: A Structure having a total length above 6m between the inner faces of the dirt walls for carrying traffic or other moving loads over a depression, a obstruction such as a channel, road or a railway.• Minor Bridges: A bridge having a total length of 60m.• Major bridges: A bridge having a total length more than 60m.

Culvert: A structure having a total length less than 6m between

the inner faces of the dirt walls. Foot bridge: A bridge exclusively used to carry pedestrians,

cycles and animals. width shall not be less than 1500mm. High Level Bridge: A bridge which carries the road way above

the HFL of a channel. Submersible bridge: A submersible bridge or vented causeway is

a bridge designed to be overtopping during floods.

Page 3: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Communications-Bridges Width of carriage way: The minimum clear width measured at right angles to the

longitudinal centre line of the bridge between the inside faces of roadway kerbs of wheel guards.

Width of footway: The minimum clear width any where within a height

of 225mm above the surface the footway or safety kerb. Normally 1.5 m from outer rounding of kerb to inner fce of the parapet/railing.

Safety Kerb: A road way for usage of pedestrians. High Level Bridge: A

bridge which carries the road way above the HFL of a channel. Super elevation: Transverse inclination given to the cross section of a

carriageway on a horizontal curve in order to reduce the effect of centrifugal force on a moving vehicle.

Crust level of the bridge: It shall be the highest of the following:

• Road crust level• TBL of the canal• Ground level

Page 4: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Communications-Bridges Submersible bridges and vented Causeways: Railing shall be either

collapsible or removable. Crash Barriers: Suitable designed crash barriers provided to safe

guard against errant vehicles. Metal or RCC.• Multilane bridges and bridges on a urban area• Flyover and interchanges• ROBs across railway line• Open sea, breakwaters, deep valleys

Types:• Vehicle cross barriers.• Combination Railway/Vehicle Pedestrian Crash Barriers• High Containment Barriers

Page 5: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Communications-Bridges Approaches to bridge

Minimum straight length of 15m on either side and width equal to

the carriage width.

Bearings:

Expansion Joints

Foundations:

Page 6: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Communications-Bridges Basic Data:

• Site plan with contours showing the flow direction of the canal, road way angle (direction of skew if any), and the approach of the road for 200m on either side.

• Names of the village/town connected on either side.

• Hydraulic particulars of the canal both upstream and downstream.

• LS of the canal and the road for at least 250 m on either side of crossing.

• Cross sections of the canal and the road duly marking, Levels, such as BL, FSL, TBL, GL, road crust level etc.,

• TPs Particulars, taken up to hard strata or to a minimum depth of 2m below CBL or ground level which ever deeper with soil classification.

• Bearing capacity of the foundation strata.

Page 7: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Communications-Bridges Design Criteria:

• Hydrology of the drain or stream.

• Hydraulic design of

i. The stream or drain

ii. The hydraulic deign of the canal

• Structural Design.i. Super structure

ii. Sub structure

References: IRC: 5-1998, 6-2000, 21-2000,78-2000, 83 (Part-1)-1987,

Page 8: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Communications-Bridges Design Criteria:

Hydraulic design of

• Design of vent way

• Bridge crust level

• Afflux by Molesworth’s formula (max.50mm).

• Check for Scour

Structural Design:

• Super structure

• Substructure.

References: IRC: 5-1998, 6-2000, 21-2000,78-2000, 83 (Part-1)-1987,

Page 9: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges-Hydrology Hydrology of the stream or drain:

Table-1

Category Canal Discharge Stream Discharge Flood Frequency in cumecs in cumecs

A 0.0 - 0.5 All discharges 1 in 25 yearsB 0.5 – 15 0 – 150 1 in 50 yearsAbove 150 1 in 100 yearsC 15 – 30 0 – 100 1 in 50 yearsAbove 150 1 in 100 yeasD Above 30 0 - 150 1 in 100 yearsAbove 150 Detailed study

• IS: 7784 (part-1)-1973.

Page 10: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Communications-BridgesHydrology of the Drain/Stream: Detailed study in the case of drain discharge > 150 cumecs and canal discharge > 30 cumecs.

S.No. Type of Canal Catchment Area (CA) in ‘M’ in Sq. Miles Up land Areas Deltaic Tracts

1. Main Canal Dickens’s formula, Rye's formula Q = CM 3/4 Q = CM 2/3

C=1400 for CA<1.00 C=1000C=1200 for CA=1 to 30 Velocity shall not exceed 10 ft/sec

C=1060 for CA=30 to 500Q=7000 M1/2 for CA>500Velocity in the barrel up to12 to13 ft/sec

2. Branch Canal Q=CM 2/3 Q > 500 c/s C=1000 and Velocity<10’/sec same as upland area

3. Distributaries Q = CM 2/3 same as upland area Q < 500 c/s C=750 and Velocity< 10”/sec

• Lr. No. CDO/EE-C1/1084/83-3 dated 23.08.1983.

Page 11: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges-Hydrology Hydrology of the stream or drain:

Table-1

Category Canal Discharge Stream Discharge Flood Frequency in cumecs in cumecs

A 0.0 - 0.5 All discharges 1 in 25 yearsB 0.5 – 15 0 – 150 1 in 50 yearsAbove 150 1 in 100 yearsC 15 – 30 0 – 100 1 in 50 yearsAbove 150 1 in 100 yeasD Above 30 0 - 150 1 in 100 yearsAbove 150 Detailed study

• IS: 7784 (part-1)-1973.

Page 12: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges-Hydraulic design Linear Waterway:

Width of the water way between the extreme edges of water surface at the highest flood level measured at right angle to the abutment faces.Layce’s wetted perimeter (Pw) in meters using the formula

Pw = C(Q)1/2 Where C = a coefficient, a value 4.8 (4.5-6.3)and

Q is the flood discharge in cumecs

Effective linear waterway: Total width of the waterway at HFL minus the

effective width of the obstruction.

Length of the bridge: Over all length measured along the centre lline of the

bridge between inner faces of dirt walls.

Page 13: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Vertical Clearance:

• It is the vertical distance measured from HFL or FSL including the afflux o the underside of deck of the structure..

S. No. Designed flood in Cumecs Minimum Vertical Clearance in mm

1. < 0.3 1502 Between 0. 3 and 3.0 4503. Between 3.0 and 30 6004. Between 30 and 300 9005. Between 300 and 3000 12006. > 3000 1500

Bridges-Hydraulic design

Page 14: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges-Hydraulic design Vertical Clearance:

• No part of the bearings shall be at a height less than 500mm• Vertical clearance above the roadway in any traffic lane up to

the lowest point 5.5

Free board: • It shall not be less than 750mm for approaches to high level

bridges.

Scour Depth:• Mean scour depth is the depth (dm) below HFL or FSL in m

d = 1.34[q2 /f]1/3 Where, q = Discharge per meter width with or without concentration of flow in cumecs, f = Layce’s silt factor expressed as f = 1.76 (d m )1/2dm = average grain size

Page 15: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bed material Weighted mean diameter Value of silt

of particle in mm-dm factor- f

Coarse silt 0.040 0.350Fine silt 0.081 0.500Fine silt 0.120 0.600Fine silt 0.158 0.700Medium silt 0.233 0.850Standard silt 0.323 1.000Medium sand 0.505 1.250Coarse sand 0.725 1.500Fine bajira & sand 0.988 1.750Heavy sand 1.290 -2.00 2.000

– 2.42

Bridges-Hydraulic design

Page 16: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges-Hydraulic design Maximum Scour depth or Designed Scour Depth 9dorR) in m:

• Straight reaches for individual foundations without floor protectionIn the vicinity of pier 2.00 dNear abutments 1.27 d approaches retained

2.00 d scour all roundFloods with seismic combinations the values may be reduced by 0.9For floor protection works, for raft foundations and shallow foundations

In straight reaches 1.27 dAt moderate bends 1.50 d At sever bends 1.75 d m At right angle bends 2.00 d

Depth of Foundation:• In Soils Up to safe bearing capacity or a minimum of 2.0m below

the scour level or the protected bed level.• Hard rock with crushing strength 10 MPA: 600mm

• All others : 1500mm

Page 17: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Well foundation:

• Maximum scour depth plus a 1/3 grip length

• In rock a minimum shear key: 300mm in hard rock

600mm in soft rock

• Sump (Shear Key) diameter 1.5m to 2.0m less than inner hole,

anchored 1.5m below with six dowel bars of diameter 25mm

places in 65mm grout hole and projected 1.5m above

Bridges-Hydraulic design

Page 18: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Structural design Loading Classification

• IRC Class AA Loading or Class 70-R Loading• IRC Class A Loading• IRC Class B Loading – adopted for temporary structures only

Loads, Forces and Stresses:

1. Dead Loads 2. Live Loads 3. Snow loads4. Impact and Dynamic Loads 5. Vehicle collusion load 6. wind load7.Impact due to floating bodies 8. Water currents 9. Breaking force10. Centrifugal forces 11. Buoyancy 12. Temperature effects13. Deformation effects 14. Secondary effects 15.Errection effects16. Seismic force 17. Wave pressure 19. Grade effects 19. Earth Pressure & LL surcharge

Page 19: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Loads, Forces,& Stresses Loads, Forces and Stresses:

For Class A or Class B Loading for spans (L) in m between 3m and 45m• For RCC bridges = 4.5/(6+L)• For Steel bridges + 9.00/(13.5+L)

For Class AA Loading and Class 70R Loading• Spans < 9m

Tracked Vehicle: 25% for spans up to 5m linearly reducing to 10% for spans 9mWheeled vehicles: 25%

• Spans of 9m and moreTracked vehicles: 10% up to spans 40m and in accordance with curves for span >

40mWheeled vehicles: 25% for spans up to 12m and in accordance with curves for span

>12m

• Steel bridges:• Tracked vehicles: 10% for all sans• Wheeled vehicles: 25% for spans up to 23m and in accordance with curves for

span > 23m

Page 20: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Structural design Loads, Forces and Stresses:

Impact:

No impact allowance is added for footway bridges

If the earth filling is > 600mm including the road crust the impact shall be reduced to 50%.

For Pressure on Bearings and top of Bed Blocks it shall be 100%

Pressure at Bottom surface of the Bed Block- 50%

Pressure on the top 3m of the structure below the bed block – 50% decrease to Zero at bottom

Pressure on the portion of the structure > 3m below bed block - Zero

Page 21: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Structural design Loads, Forces and Stresses:

i. Wind Load:

Horizontal force:

• For deck- area as seen in elevation including floor and railing, less area of perforation in the hand railing

• For through or half trough structures- The area of elevation of the wind ward truss as specified as above plus half the area of elevation above he deck level of all other trusses or girders.

The intensity of wind force based on wind pressure and wind velocity.

• It shall be doubled for Guntur, Krihna, Godavri, Visakha, Vijayanagaram and Srikakulam districts along the coast line

Page 22: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Wind Pressure and Wind Velocity

H V P H P V0 80 40 30 147 1412 91 52 40 155 1574 100 63 50 162 1716 107 73 60 168 1838 113 82 70 173 19310 118 91 80 177 20215 128 107 90 180 21020 136 119 100 183 21725 142 130 110 186 224

Where W=Average height in m of the exposed suface above ground, bed level or water levelV= Horizontal velocity f wind in Km per our at height HP= Horizontal wing pressure in Kg/Sq.m at height H(con….)

Bridges – Structural design

Page 23: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Structural Design Wind Load:

• The lateral wind force against any exposed moving live load as acting 1.5m above road way and shall be assumed to have the following value. a. Highway bridges , ordinary : 300 Kgs/linear meterb. Highway bridge carrying tramway: 450 Kgs/linear meter

• The bridge no carrying any live load when the wind velocity at deck level exceeds 130 Kms per hour.

• The total assumed wind forces as calculated in accordance above cl.1 to 4, shall however , not less than 450 Kg per linear meter in plane of the load chord and 225 Kg per liner meter in the plane of unloaded chord on through or half through truss, lattice or other similar spans, and not les than 450 Kg per linear meter on deck slab.

• A wind pressure f 240 Kg/Sqm on the unloaded structure, applied as specified in cl1, 2, shall be used if it produces greater stresses than those produced by the combined wind forces as peer cl. 1, 2,4 or by the wind force as per cl.5

Page 24: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Loads, Forces,& Stresses

Horizontal Forces Due to Water Currents:

• On piers parallel to the direction of the water current, the intensity of pressure shall be as follows: P = 52 KV2

Where P= Intensity of pressure due to water currents in kg/mV= Velocity of the current at the point in m/s (Maximum velocity)K= a constant depending on shapes of pier as under Square ended ;1.5circular pier or with semi circular ends: 0.66Triangular cut and ease waters: 0.50

The value of V2 assumed to vary linearly from zero at the point of deepest scour to the square of the maximum velocity at the free surface of water.Maximum velocity = 1.414 times he maximum mean velocity

Page 25: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

When the current strikes the pier at an angel it resolved in totwo components.

1.Presur parallel to pier- as above

2. Normal to the pier, acting on the area of the side elevation of the pier- as with K as 1.5, except for circular piers which shall be 0.66.

Possible variation of water current direction inclined at (20±Ə) to length of pier

Bridge having pucca floor static force due to difference in head of 250mm between the two faces of the pier.

Bridges – Loads, Forces,& Stresses

Page 26: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Loads, Forces,& Stresses

Longitudinal Forces:

Force arising from any one or more of the flowing: a. Tractate force due to accelerationb. Breaking effect (invariably greater than tractate force)c. Frictional resistance offered by the free bearings due to temperature change.

The Breaking effect: i. In the case of single lane or two lane bridges: a. 20% of first train load plus 10% of the succeeding train or part thereof on one lane only b. If the entire train is not on the full span, breaking force shall be 20% of the loads actually on

the span,

ii In the case of more than two lanes: • As in ‘A’ above for the first two lanes plus 5% of the loads on the lane in excess of two.

• The force due to breaking effect acting at 1.2 m above parallel to road way.

Page 27: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Loads, Forces,& Stresses

• The change in vertical reaction at the bearings to be accounted for.

Simply supported spans on unyielding supports: • For spans of fixed and fee bearing other than Elastomeric bearings, longitudinal forces

Fixed bearing Free bearing(i). Fh-µ(Rq+Rg) µ(Rq+Rg)

Or (ii). Fh/2 + µ(Rg+Rq) µ(Rg+Rq)Where Fh= Applied horizontal force

Rg= Reaction due to dead load at free endRq= Reaction due to live load at fee endµ = a coefficient For steel roller bearings 0.03concrete roller bearings 0.05sliding bearings 0.30 to 0.50

Teflon on stainless steel 0.03 to 0.05

Plate bearings up to 15m span for RCC or Pre stressed super structure. :

Page 28: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Loads, Forces,& Stresses

Simply supported spans on unyielding supports: • For spans up to 10 m where no bearings are provided , the

longiudilnal forces at bearing level shall beFh/2 or µ Rg

Elastomeric bearings:

Longitudinal force= Fh/2+Vr LuWhere Vr= shear rating of the Elastomeric bearing

Lu= movement of deck above bearing

• The sub structure and foundation shall also be designed for 10% variation in movement of the span on either side.

Page 29: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Loads, Forces,& Stresses

Centrifugal Forces:

Determined from the following formula:C = W V2/ 127 R Where C= Centrifugal force in tonnesW= live load in tonnes in case of wheel loads and tonnes per linear meter in case of UDLV= Designed seed in km per hourR= Radius of curvature in meters

Consider to act at a height of 1.2 m above the level of the carriageway :

No increase for impact effect.

Page 30: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Loads, Forces,& Stresses

Buoyancy:

For full Buoyancy a reduction is made in the gross weight of the member: • Member displaces water only in shallow foundations, the reduction in weight

equal to the volume of displaced water.• Member under consideration displaces water and also silt and sand (deep

piers and abutment), the upward pressure causing the reduction in weight shall bea. Full hydrostatic pressure due to a depth of water equal to the difference

in level between the free surface and the foundationb. Upward pressure due to the submerged weight of the silt or sand in

accordance with Rankin's theory.

• In design of submerged masonry or concrete , the buoyancy through pore pressure may be limited to 15% of full buoyancy.

• In case of submerged bridgeless, the full buoyancy of super structure be considered.

Page 31: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Structural Design Earth Pressure:

• In accordance with any rational theory. Coulomb’s theory is accepted.• All abutments and return walls shall be designed for a live load

surcharge equivalent to 1.2m earth fill. Approach slab:

• RCC approach slab with 12mm dia. 150mm c/c in each direction both at top and bottom as reinforcement in concrete grade in M30 for the entire width of road way for a length not less than 3.5m.

Temperature: Seismic Forces:

• Both the horizontal and vertical forces acting simultaneously.• Horizontal seismic force:• Feq = α β λ G• Where α= Horizontal seismic coefficient.• β= Coefficient depending on the soil foundation• λ= coefficient - important bridges… 1.5 and other bridges..1.0• Horizontal Seismic coefficient α;

Page 32: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Zone I II III IV V

α 0.01 0.02 0.04 0.05 0.08

• Seismic forces shall not be considered in the direction of live load but in the direction perpendicular to the traffic.

Bridges – Structural Design

Page 33: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Structural Design Super structure:

Design of Deck slab or girder• As per MOST drawings• IRC:6-2000, IRC: 21-2000

Sub structure: • Piers:• Minimum thickness 1000mm• All abutments and return walls shall be designed adopting

coulomb’s/Rankin’s theory, with top width 500mm. • All abutments and return walls shall be designed for a live load

surcharge equivalent to 1.2m earth fill. Approach slab:

• RCC approach slab with 12mm dia. 150mm c/c in each direction both at top and bottom as reinforcement in concrete grade in M30 for the entire width of road way for a length not less than 3.5m.

Page 34: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Structural Design Miscellaneous Items:

• RCC Kerbs• Railing:• Expansion, contraction, construction Joints• Drainage spouts• Wearing coat• Pedestals & Drainage arrangements• Bearings• Dirt Walls• Guide posts• Weep holes

Minimum Concrete grade: • RCC : M20• RCC for Deck slab and Girders: M25• CC: M15• Leveling course: M10

Page 35: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters
Page 36: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters
Page 37: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Foundations Factor of safety:

Factor of safety on Soils … 2.5. Factor of safety on Rock .… 6 to8

Allowable Settlement (differential settlement)• Not exceeding 1 in400 of the distance between two foundations.

Permissible Tension:• No tension on soils• In rock the base area to be reduced to a size where no tension will occur such reduced area not <

67% Factor of safety for stability:

• For open foundations: With out Seismic with Seismic

i. Against overturning 2 1.5ii. Against sliding 1.5 1.25iii. Against deep-seated failure 1.25 1.15

Frictional coefficient Tan Ø, Ø being angle friction:• Between soil and concrete … 0.5• Between rock and concrete…0.8 for good rock and 0.7 for fissured rock.

Page 38: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Foundations Well Foundations:

Minimum dimension : 2m Circular well exceeds 12m – Twin D- shaped may be adopted. Steining Thickness:

• Minimum thickness (h in m) not < 500mm and• h = K d l1/2 where d is external diameter of well in m, l is depth of well in m

k= a constant 0.03 for CC and 0.039 for twin D well.• If depth of well is >30m the thickness may be reduced above scour level in slope 1H: 3V.

Concrete Grade:• Plain cc wells M15 and in sever exposed conditions no < M20, cement not<310 Kg/cum and w/c not >0.45• Plain cc wells, vertical reinforcement not <0.12% of gross sectional area and tied up with hoop steel not < 0.04%• In case of RCC, Vertical steel not < 0.2%. On the inner face not < 0.06% and transverse reinforcement < 0.04% of the volume per unit

length of the seining. Tilt and Shifts:

• Well shall sunk plumb without any tilt or shift.• A tilt of 1 in 80 and a shift of 150mm due to translation (both additive) shall be considered in design.

Cutting edge: In mild steel not < 40 Kg. per cum. Well Curb:

• In variably in RCC grade not < M25 with minimum steel 72 Kg. per cum.• The internal angle 300 to 370

• In case of blasting anticipated steel plate of thickness not < 10mm up to top of well curb. Bottom Plug:

Page 39: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

Bridges – Foundations Well Foundations:

Cutting edge: In mild steel not < 40 Kg. per cum. Well Curb:

• In variably in RCC grade not < M25 with minimum steel 72 Kg. per cum.• The internal angle 300 to 370

• In case of blasting anticipated steel plate of thickness not < 10mm up to top of well curb. Bottom Plug:

• Top shall be 300mm above top of kerb with suitable sump (shear Key) below the level of cutting edge.

• CC with minimum cement 330 Kg. per cum. Increase cement for Tremie concrete.

Filling of well:• Refill with excavated earth or sand Plug over fill: 300mm thick in CC M15.

Well Cap:

• Bottom of well cap be below LWL• Reinforcement from steining shall be anchored in well cap• Design on any acceptable rational method. Sinking of well:• Sinking of well can not be started till the cured for at least 48 hours.

Page 40: TRAINING PROGRAMME ON ENGINEERING DESIGNS-CANAL STRUCTURES GENERAL DESIGN PRINCIPLES  Meters

THANK YOUTHANK YOU