25
The potential for further reductions of PM emissions in Europe M. Amann, J. Cofala, Z. Klimont International Institute for Applied Systems Analysis (IIASA)

The potential for further reductions of PM emissions in Europe M. Amann, J. Cofala, Z. Klimont International Institute for Applied Systems Analysis (IIASA)

  • View
    219

  • Download
    2

Embed Size (px)

Citation preview

The potential for further reductions

of PM emissions

in Europe

M. Amann, J. Cofala, Z. Klimont

International Institute for Applied Systems Analysis (IIASA)

Contents

• CAFE baseline emission projections

• Scope for further technical and non-technical reductions of primary PM emissions

• How do measures directed at PM10 affect PM2.5?

• Cost-optimized reductions to reduce ambient PM2.5 concentrations in Europe

CAFE baseline emission projections

PM10

RAINS PM emission estimates vs. national inventories, 2000

0%

25%

50%

75%

100%

125%

150%

175%

Aus

tria

Bel

gium

Den

mar

k

Fin

land

Fra

nce

Ger

man

y

Gre

ece

Irel

and

Italy

Luxe

mbo

urg

Net

herla

nds

Por

tuga

l

Spa

in

Sw

eden UK

Tot

al E

U-1

5

Cyp

rus

Cze

ch R

ep.

Est

onia

Hun

gary

Latv

ia

Lith

uani

a

Mal

ta

Pol

and

Slo

vaki

a

Slo

veni

a

Tot

al N

MS

0%

25%

50%

75%

100%

125%

150%

175%

Aus

tria

Bel

gium

Den

mar

k

Fin

land

Fra

nce

Ger

man

y

Gre

ece

Irel

and

Italy

Luxe

mbo

urg

Net

herla

nds

Por

tuga

l

Spa

in

Sw

eden UK

Tot

al E

U-1

5

Cyp

rus

Cze

ch R

ep.

Est

onia

Hun

gary

Latv

ia

Lith

uani

a

Mal

ta

Pol

and

Slo

vaki

a

Slo

veni

a

Tot

al N

MS PM2.5

National inventory RAINS estimate

0%

25%

50%

75%

100%

125%

150%

175%

2000 2005 2010 2015 2020

GDP Primary energy use

CAFE emission baseline With climate measures” baseline projection, EU-25

0%

25%

50%

75%

100%

125%

150%

175%

2000 2005 2010 2015 2020

GDP Primary energy use CO2

0%

25%

50%

75%

100%

125%

150%

175%

2000 2005 2010 2015 2020

GDP Primary energy use CO2 SO2

0%

25%

50%

75%

100%

125%

150%

175%

2000 2005 2010 2015 2020

GDP Primary energy use CO2 SO2 NOx

0%

25%

50%

75%

100%

125%

150%

175%

2000 2005 2010 2015 2020

GDP Primary energy use CO2 SO2 NOx VOC

0%

25%

50%

75%

100%

125%

150%

175%

2000 2005 2010 2015 2020

GDP Primary energy use CO2 SO2 NOx VOC PM2.5

0%

25%

50%

75%

100%

125%

150%

175%

2000 2005 2010 2015 2020

GDP Primary energy use CO2SO2 NOx VOCNH3 PM2.5

Scope for further technical emission reductions

Main emission control options for PM850 options considered in RAINS

Removal efficiency

Large stationary boilersElectrostatic precipitators (3 stages) 96 - 99.9 %Fabric filters 99.9 %

Industrial boilers and furnacesCyclones 74 %Electrostatic precipitators 96 - 99.9 %Fabric filters 99.9 %Good housekeeping (oil boilers) 30 %

Residential and commercial sourcesNew boilers and stoves (coal and biomass) 30 -80 %Fabric filters for larger boilers 99.2 %Filters in households (kitchen) 10 %Fireplaces - inserts (catalytic, non-catalytic) 44 – 70 %Good housekeeping (oil boilers) 30 %Ban on open burning of waste 100 %

Main emission control options for PM continued

Removal efficiency

Industrial processes

Cyclones 39 – 85 %

Electrostatic precipitators 93 - 99.9 %

Fabric filters 99.2 - 99.9 %

Wet scrubbers 97.3 - 99.5 %

Fugitive emissions - good practices 40 – 80 %

Flaring - good practices 5 %

Storage and handling - good practices 36 – 40 %

Mining - good practices 50 %

Spraying water at construction sites 35 %

Main emission control options for PM continued

Removal efficiency

Transport

Cars and light duty trucks:

EURO 1 - EURO 5 standards 35 – 99 %

Heavy duty trucks:

EURO 1 - EURO 5 standards 36 – 98 %

Street washing ??

Non-road sector:

Euro equivalents 36 – 98 %

Agriculture

Free range poultry 28 %

Low till farming, alternative cereal harvesting 39 %

Feed modification 38 %

Hay silage 54 %

Ban on open burning of waste 100 %

Projected PM emissions in Europe2000-2020

0

500

1000

1500

2000

2500

3000

2000 CLE2020

MTFR2020

2000 CLE2020

MTFR2020

2000 CLE2020

MTFR2020

kilotons/year

PM2.5 PM coarse

EU-15 EU-10 Non-EU

Sectoral emissions of PM2.5CAFE calculations, EU-15

0 50 100 150 200 250 300 350 400 450

SNAP 1: Combustion in energy industries

SNAP 2: Non-industrial combustion plants

SNAP 3: Combustion in manufacturing industry

SNAP 4: Production processes

SNAP 5: Extraction and distribution

SNAP 7: Road transport

SNAP 8: Other mobile sources and machinery

SNAP 9: Waste treatment and disposal

SNAP 10: Agriculture

kilotons PM2.5

MTFR Room for further improvement beyond CLE Current legislation 2000-2020

Sectoral emissions of PM2.5CAFE calculations, EU-10

0 50 100 150 200 250

SNAP 1: Combustion in energy industries

SNAP 2: Non-industrial combustion plants

SNAP 3: Combustion in manufacturing industry

SNAP 4: Production processes

SNAP 5: Extraction and distribution

SNAP 7: Road transport

SNAP 8: Other mobile sources and machinery

SNAP 9: Waste treatment and disposal

SNAP 10: Agriculture

kilotons PM2.5

MTFR Room for further improvement beyond CLE Current legislation 2000-2020

Sectoral emissions of PM2.5RAINS estimates, Non-EU countries

0 100 200 300 400 500 600

SNAP 1: Combustion in energy industries

SNAP 2: Non-industrial combustion plants

SNAP 3: Combustion in manufacturing industry

SNAP 4: Production processes

SNAP 5: Extraction and distribution

SNAP 7: Road transport

SNAP 8: Other mobile sources and machinery

SNAP 9: Waste treatment and disposal

SNAP 10: Agriculture

kilotons PM2.5

MTFR Room for further improvement beyond CLE Current legislation 2000-2020

Contribution to primary PM2.5 emissions “With climate measures” scenario, EU-15 [kt]

Industrial combustionIndustrial combustion

Industrial processes

Industrial processes

Diesel exhaust, cars

Diesel exhaust, cars

Diesel exhaust, HDT

Non-exhaust

Non-exhaust

Off-road

Off-road

Agriculture

Agriculture

Domestic, wood stoves

Domestic, wood stoves

0

200

400

600

800

1000

1200

1400

2000 2020

Scope for non-technical measures

• Local traffic restrictions– Difficult to model (with RAINS)

• Accelerated phase-out of solid fuels in home heating– E.g., removal of subsidies for local coal heating, or EU

structural funds for replacement of heating systems

• General reduction of carbonaceous fuel consumption through a carbon tax– CAFE analysis: illustrative scenario with 90 €/t CO2

carbon price (compared to 20 €/t CO2 in baseline)

Scope for non-technical measuresEffect of a 90 €/to CO2 carbon tax, according to PRIMES

calculations

With current legislationWith maximum

technically reductions

0

500

1000

1500

2000

2000 Baseline (20€/t CO2)

90 €/t CO2 Baseline (20€/t CO2)

90 €/t CO2

kilotons PM2.5

1: Combustion in energy industries 2: Non-industrial combustion plants 3: Combustion in manufacturing industry

4: Production processes 5: Extraction and distribution 7: Road transport

8: Other mobile sources and machinery 9: Waste treatment and disposal 10: Agriculture

PM10 vs. PM2.5

How do measures directed at PM10 affect PM2.5?

Removal efficiencies of control measures[Efficiency for PM10 / efficiency for PM2.5]

Share of PM2.5 in PM10 emissionsfrom different sources

0%

20%

40%

60%

80%

100%

Ref

iner

ies

Cok

e pl

ants

Cok

e pl

ants

Dom

esti

c ga

s

Dom

esti

c so

lids

Dom

esti

c so

lids

Dom

esti

c bo

ilers

, sol

id

Sto

ves,

sol

ids

Indu

stri

al b

oile

rs

Indu

stri

al, s

olid

s

Indu

stri

al, s

olid

s

Indu

stry

, gas

+liq

uid

Indu

stri

al, s

olid

s

Indu

stri

al, s

olid

s

Pow

er p

lant

s, s

olid

Pow

er p

lant

s, s

olid

Pow

er p

lant

s, s

olid

Pow

er p

lant

s, s

olid

Pow

er p

lant

s, s

olid

Oth

er tr

ansp

ort

Agr

icul

ural

mac

hine

ry

Inla

nd s

hips

Oth

er tr

ansp

ort

Gas

olin

e ca

rs

Gas

olin

e ca

rs

Bra

ke w

ear

Bra

ke w

ear

Bra

ke w

ear

Abr

asio

n

Abr

asio

n

Tir

e w

ear

Tir

e w

ear

Agr

icul

ture

Met

allu

rgic

al in

dust

ry

Indu

stri

al p

roce

sses

Indu

stri

al p

roce

sses

Was

te d

ispo

sal

PM2.5 PM coarse

Cost-optimized emission reductions

to reduce

health-relevant PM2.5 concentrations

in Europe

Based on WHO advice

of assuming equal potency of

all anthropogenic PM components

Cost-optimal emission reductions for meeting the CAFE PM targets

0%

20%

40%

60%

80%

100%

SO2 NOx NH3 PM2.5

% of 2000 emissions

Grey range: CLE - MTFR Case "A" Case "B" Case "C"

Costs for meeting the CAFE PM targets

0

10

20

30

40

Case "A" Case "B" Case "C" MTFR

Billion Euros/year

Road sources SO2 NOx NH3 PM

Sectoral emission reductions of PM2.5for the CAFE Case B policy scenario, beyond CLE, EU-25

Domestic42%

Industrial combustion

3%

Industrial processes

20%

Power generation9%

Waste16%

Transport10%

Sectoral emission reductions of PM2.5for the CAFE Case “B” policy scenario

Country Conversion Domestic Industry Power plants Processes Waste Other Transport

Austria >30% 10-30 % 10-30 % 10-30 %

Belgium <10% 10-30 % <10% >30% <10% 10-30 %

Cyprus

Czech Rep. 10-30 % <10% >30% 10-30 % 10-30 % <10%

Denmark >30% <10% <10% <10% 10-30 %

Estonia >30% >30%

Finland >30% 10-30 % 10-30 %

France <10% >30% <10% <10% 10-30 % <10% <10% 10-30 %

Germany <10% >30% <10% >30% <10% <10% 10-30 %

Greece >30% <10% >30% <10%

Hungary 10-30 % 10-30 % <10% >30% <10%

Ireland 10-30 % 10-30 % 10-30 % >30%

Italy <10% 10-30 % <10% <10% >30% 10-30 % <10% 10-30 %

Latvia >30%

Lithuania 10-30 % 10-30 % >30% <10%

Luxembourg >30% 10-30 %

Malta

Netherlands 10-30 % 10-30 % 10-30 % <10% <10% >30%

Poland <10% >30% <10% <10% <10% <10% <10% <10%

Portugal >30% <10% <10% <10% <10%

Slovakia <10% >30% <10% >30% <10%

Slovenia >30% 10-30 % <10% 10-30 %

Spain <10% 10-30 % <10% <10% 10-30 % 10-30 % <10% 10-30 %

Sweden >30% 10-30 % 10-30 %

UK <10% 10-30 % <10% <10% >30% <10% <10% 10-30 %

Conclusions

• In EU-25, primary PM emissions will decline by approx. 40% between 2000 and 2020 because of CLE (as are NOx and VOC emissions). No significant changes in non-EU countries.

• In EU-25, equal amount could be reduced in addition with currently available technical measures.

• Largest potentials for further reductions in domestic sector and for industrial processes.

• Co-benefits of PM2.5 reduction on PM10 depend on sector and measure chosen (and vice versa).

• Cost-effective approaches to reduce health-relevant PM concentrations involve other precursor emissions. Majority of costs occur for controlling other pollutants than for PM.

• In a cost-effective approach, largest reduction of primary PM should come from small sources and from industrial processes.