41
JN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory Governing Equations Finite element model Numerical examples Timoshenko beam theory Governing Equations Finite element model Shear locking Numerical example Euler-Bernoulli and Timoshenko Beams CONTENTS

The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

  • Upload
    others

  • View
    17

  • Download
    4

Embed Size (px)

Citation preview

Page 1: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

JN Reddy

The Finite Element Method

Read: Chapter 5

Euler-Bernoulli beam theory Governing Equations Finite element model Numerical examples

Timoshenko beam theory Governing Equations Finite element model Shear locking Numerical example

Euler-Bernoulli and Timoshenko Beams

CONTENTS

Page 2: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

2

KINEMATICS OF THE LINEARIZED EULER-BERNOULLI BEAM THEORY

Undeformed Beam

Euler-Bernoulli Beam Theory (EBT)is based on the assumptions of(1)straightness, (2)inextensibility, and(3)normality

JN Reddy

z,

x

x

z

dwdx−

dwdx−

w

u

Deformed Beam

( )q x

( )f x

Strains, displacements, and rotations are small

90

Page 3: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

3

z

xw

dwdx−z

dwdx−

z

u

Kinematics of Deformation in the Euler-Bernoulli Beam Theory (EBT)

1 2 30= − = =( , ) , , ( )dwu x z u z u u w xdx

Displacement field (constructed using the hypothesis)

21

11 21

31

3 1

0

∂= = = −∂∂∂= + = − + =

∂ ∂

ε ε

γ

,

.

xx

xz

u du d wzx dx dxuu dw dw

x x dx dx

Linear strains

2

2

0

= = −

= =

σ ε

σ γ

,xx xx

xz xz

du d wE E Ezdx dx

G

Constitutive relationsx

z yxzσ

zzσyzσ

yyσ zyσ

xyσxxσ

zxσyxσ

Notation for stress components

JN Reddy

Page 4: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

4

Euler-Bernoulli Beam Theory

, , .σ σ σ= = ⋅ = xx xx xzA A A

N dA M z dA V dA

Definition of stress resultants

x

q(x) F0

L

z, w

M0

• •

z

y

Beamcross section

cf

+ MV

q(x)

VM •

fc w

( )q x

( )f xfc w

xxσ xx xxσ σΔ+xzσ

xz xzσ σΔ+

( )q x

( )f xfc w

N N NΔ+

V V VΔ+

M MΔ+M

JN Reddy

Page 5: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

5

Equilibrium equations

0, 0, 0fdN dM dVf V q c wdx dx dx

+ = − = + − =

Euler-Bernoulli Beam Theory (Continued)

Stress resultants in terms of deflection2

2

2 2

2 2

2

2

xxA A

xxA A

du d w duN dA E Ez dA EAdx dxdx

du d w d wM z dA E Ez z dA EIdx dx dx

dM d d wV EIdx dx dx

= = − =

= × = − = −

= = −

σ

σ

JN Reddy

20,1 ,A AA

z ddA A zA dA I⋅ = ⋅= =⋅

Page 6: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

x

q(x) F0

L

z, w

M0

Bending of a beam

Beams

cf

w

Axial deformation of a bar

Barsu

6

Governing equations in terms of the displacements

2 2

2 2

0 0

0 0

,

,f

d duEA f x Ldx dx

d d wEI c w q x Ldx dx

− − = < <

+ − = < <

Euler-Bernoulli Beam Theory (Continued)

JN Reddy

Axial displacement is uncoupled from transverse displacement

Page 7: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

7

Weak Form of the EB Beam Theory2 2

2 2 0 0,fd d wEI c w q x Ldx dx

+ − = < <

Weak form

22

2 2

2 2

2 2

0 b

a

bb

aa

xh

i f hx

xx

i h hf i h i ix

x

d wdv EI c w q dxdx dx

dv d w d wd dEI c v w v q dx v EIdx dx dxdx dx

é ùæ ö÷çê ú÷ç= + -÷ê úç ÷÷çè øê úë ûé ù é ùæ ö æ ö÷ ÷ç çê ú ê ú÷ ÷ç ç= - + - + ⋅÷ ÷ê ú ê úç ç÷ ÷÷ ÷ç çè ø è øê ú ê úë û ë û

ò

ò

Secondary variable (shear force)

Implies that the primary variable is w(displacement)

2

1 320 ( ) ( )b

a

x

f a bx

dv d d wEI c vw vq dx v x Q v x Qdx dx dx

é ùæ ö÷çê ú÷= - + - - -ç ÷ê úç ÷çè øê úë ûò

{ } set of weight functionsiv −

JN Reddy

Governing equation

Page 8: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

8

2 2

1 32 2

2

2

0 ( ) ( )b

a

b

a

xi h

f i h i i a i bx

x

i h

x

d v d wEI c v w v q dx v x Q v x Q

dx dx

dv d wEI

dx dx

é ùê ú= + - - -ê úê úë û

é ùæ ö÷çê ú÷+ - ⋅ç ÷ê úç ÷çè øê úë û

ò

Primary Variable, θSlope/rotation

Secondary variable(Bending Moment)

2 2

1 32 2

2 4

0 ( ) ( )b

a

a b

xi h

f i h i i a i bx

i i

x x

d v d wEI c v w v q dx v x Q v x Q

dx dxdv dv

Q Qdx dx

é ùê ú= + - - -ê úê úë û

æ ö æ ö÷ ÷ç ç÷ ÷- - ⋅ - - ⋅ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

ò

2 2

1 32 2

2 2

2 42 2

( ), ( )

( ) , ( )

a b

a b

h hh a h b

x x

h hh a h b

x x

d w d wd dQ EI V x Q EI V xdx dxdx dx

d w d wQ EI M x Q EI M x

dx dx

é ù é ùæ ö æ ö÷ ÷ç çê ú ê ú÷ ÷ç ç= =- = - =÷ ÷ê ú ê úç ç÷ ÷÷ ÷ç çè ø è øê ú ê úë û ë ûæ ö æ ö÷ ÷ç ç÷ ÷ç ç= =- = - =÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø

Weak Form (Continued)

JN Reddy

Page 9: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

9

1 ( )=− aQ V x

1 2eh

3 ( )= bQ V x

4 ( )= bQ M x2 ( )=− aQ M x

1 ( )aw xΔ =

1 2eh

3 ( )bw xΔ =

4 ( )bxθΔ =2 ( )axθΔ =

Generalized displacements

Generalized forces

Beam Element Degrees of Freedom

JN Reddy

Page 10: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

JN Reddy Beams 10

FINITE ELEMENT APPROXIMATION:Some Remarks

Continuity requirement based on the weak form, which requires that the second derivative of w exists and square-integrable.

Continuity based on the primary variables, which requires carrying w and its first derivative as the nodal variables, requires cubic approximation w.

Post-computation of secondary variables (bending moment and shear force) requiresthe third derivative of w to exist.

Page 11: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

11

FINITE ELEMENT APPROXIMATION

2 30 1 2 3( )w x c c x c x c x» + + +

2 30 1 2 3 1

2 30 1 2 3 3

21 2 3 2

21 2 3 4

2 3

2 3

( )( )( )( )

a a a a

b b b b

a a a

b b b

w x c c x c x c xw x c c x c x c x

x c c x c xx c c x c x

q

q

Δ

Δ

Δ

Δ

» + + + º

» + + + º

»- - - º

»- - - º

42 3

0 1 2 31

( ) ( )j jj

w x c c x c x c x x=

» + + + = Då f

Primary variables (serve as the nodal variables that must becontinuous across elements) , dww

dxθ = −

φe1 = 1− 3x− xahe

2

+ 2x− xahe

3

φe2 = −(x− xa) 1− x− xahe

2

φe3 = 3x− xahe

2

− 2 x− xahe

3

φe4 = −(x− xa)x− xahe

2

− x− xahe

Hermite cubic polynomials

JN Reddy

● ● ● ●● ●,w q w ×

Page 12: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

HERMITE CUBIC INTERPOLATION FUNCTIONS

he

he

he

1

1

xhe

x

xx

x x

x x

slope = 1

slope = 0

slope = 0

slope = 0

slope = 1

slope = 0

JN Reddy 12

( )i xf1( )xf

2( )xf

3( )xf

4( )xf

Page 13: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

13

1 2ee21 Δ≡θ ee

42 Δ≡θ

eew 11 Δ≡ eew 32 Δ≡

eh

ee q,Q 22 ee q,Q 44

ee q,Q 11ee q,Q 33

1 2ee21 Δ≡θ

eh

4

1

( ) ( )j jj

w x xfΔ=

Ȍ

FINITE ELEMENT MODEL

JN Reddy

4

j=1

Keij∆

ej − F ei = 0 or [Ke]{∆e} = {F e}

⎡⎢⎣Ke11 Ke

12 Ke13 Ke

14

Ke21 Ke

22 Ke23 Ke

24

Ke31 Ke

32 Ke33 Ke

34

Ke41 Ke

42 Ke43 Ke

44

⎤⎥⎦⎧⎪⎨⎪⎩∆e1∆e2∆e3∆e4

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩qe1qe2qe3qe4

⎫⎪⎬⎪⎭+⎧⎪⎨⎪⎩Qe1Qe2Qe3Qe4

⎫⎪⎬⎪⎭Keij =

xb

xa

EId2φeidx2

d2φejdx2

+ cf φeiφej dx F ei =

xb

xa

φei q dx+Qei

Page 14: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

14

For element-wise constant values of EeIe and qe:

[Ke] =2EeIeh3e

⎡⎢⎣6 −3he −6 −3he−3he 2h2e 3he h2e−6 3he 6 3he−3he h2e 3he 2h2e

⎤⎥⎦ {F e} = qehe12

⎧⎪⎨⎪⎩6−he6he

⎫⎪⎬⎪⎭+⎧⎪⎨⎪⎩Q1Q2Q3Q4

⎫⎪⎬⎪⎭

Finite Element Model (Continued)

JN Reddy

M(x) = −EI d2w

dx2= −EI

4

j=1

∆ejd2φejdx2

V (x) =dM

dx= − d

dxEId2w

dx2= −EI

4

j=1

∆ejd3φejdx3

σx(x, z) = −M(x)zI

= Ezd2w

dx2= Ez

4

j=1

∆ejd2φej(x)

dx2

Postprocessing

(and cf = 0):

Page 15: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

15

2EI

h3

⎡⎢⎢⎢⎢⎢⎣6 −3h −6 −3h 0 0−3h 2h2 3h h2 0 0−6 3h 6 + 6 3h− 3h −6 −3h−3h h2 3h− 3h 2h2 + 2h2 3h h2

0 0 −6 3h 6 3h0 0 −3h h2 3h 2h2

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

U1U2U3U4U5U6

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Q11Q12

Q13 +Q21

Q14 +Q22

Q23Q24

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭=q0L

48

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

12−L24012L

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭+

•1 21 2

11

11, qQ

12

12, qQ

14

14, qQ

13

13, qQ

2 3

21

21 , qQ

22

22 , qQ

23

23 , qQ

24

24 , qQ

21• • •

Q13 +Q21 = 0, Q14 +Q

22 = 0

1

ASSEMBLY OF TWO BEAM ELEMENTSconnected end-to-end

2JN Reddy

2/h L=

Page 16: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

Given problem

,EA EI

L

P

3

3( ) PLw L

EI=

Exact solution (according to the Euler-Bernoullibeam theory)

,EA EI

L

P

• •

1 2,U U 3 4,U U

{F e} = qehe12

⎧⎪⎨⎪⎩6−he6he

⎫⎪⎬⎪⎭+⎧⎪⎨⎪⎩Q1Q2Q3Q4

⎫⎪⎬⎪⎭

[Ke] =2EeIeh3e

⎡⎢⎣6 −3he −6 −3he−3he 2h2e 3he h2e−6 3he 6 3he−3he h2e 3he 2h2e

⎤⎥⎦

eh L=

0

Boundary conditions:

1 2 3 40 0, ,U U Q P Q= = = =

A SIMPLE EXAMPLE - 1

JN Reddy 16

[ ]{ } { } { }e e e eK q QD = +One element discretization

Page 17: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

A SIMPLE EXAMPLE – 1 (continued)

2

3 33 2

3 2 4

3 22 4

2

6

12 6 40 412 6 36 4 12

0

6 4

( / )( ) /

EIPL

EI EI EIU PPEI L PLL L LU

EI EI EIEI EI EI LU L LL LEI EIL L

é ù ì ü ì üï ï ï ïê ú ï ï ï ïï ïê ú ï ïï ï ï ï= = = =í ý í ýê ú é ùï ï ï ïê ú ï ï ï ï ê úë ûï ï ï ïê ú ï ïî þï ïî þë û

3

2 22

4 2 4

3 2

2

12

6 0 612 6 212

6 4

( / )( ) /

EI PLEI

PEI L PLLUEI EI EIEI L

L LEI EIL L

-= = =-

é ùê úë û

,EA EI

L 4 x LdwUdx ==-

3U

2

2PLEI

3

3( ) PLw L

EI=

JN Reddy 17

Solution using Cramer’s rule

Page 18: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

EXAMPLE – 2: A determinate frame structure

Given structure

a

b

F

A B

C P

ab

F

A B

C

2

1

12

3

1 2

2

1

P

Finite element discretization

• •

PP bx

1A B

F

••

F

PP b

x

P

2

C

B•

F

JN Reddy 18

Page 19: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

EXAMPLE – 2 (continued)

Bar element, AB1 1

1 1

1 11 1

0

A A

B B

A B B,

u QE Au Qa

Pau Q P uE A

ì ü ì üé ù- ï ï ï ïï ï ï ïê ú =í ý í ýê ú ï ï ï ï-ë ûï ï ï ïî þ î þ

= =- =-

Beam element, AB1

2 221 1

31

2 22

1 2

6 3 6 33 2 326 3 6 3

3 3 2

0 0

AA

AA

BB

BB

B BA A, , ,

wa a Qa a a a QE I

wa a a Qa a a a Q

w Q F Q Pb

q

q

q

ì üì üé ù ï ï- - - ï ï ï ïï ïê ú ï ïï ï ï ïê ú ï ï- ï ïï ïï ï ï ïê ú =í ý í ýê ú ï ï ï ï- ï ï ï ïê ú ï ï ï ïê ú ï ï ï ï- ï ï ï ïë û ï ïî þ ï ïî þ= = =- =

PP b

x

1A B

F

••a

F

PP b

x

P

2

C

B•

F

Bar element, BC2 2

CFbu

E A=

12 2

22 23

12 2

2

1 2

6 3 6 33 2 326 3 6 33 3 2

0 0 0

BB

BB

CC

CC

C CB B, , ,

wb b Qb b b b QE I

wb b b Qb b b b Q

w Q P Q

q

q

q

ì üì üé ù ï ï- - - ï ï ï ïï ïê ú ï ïï ï ï ïê ú ï ï- ï ïï ïï ï ï ïê ú =í ý í ýê ú ï ï ï ï- ï ï ï ïê ú ï ï ï ïê ú ï ï ï ï- ï ï ï ïë û ï ïî þ ï ïî þ= = =- =

Beam element, BC

JN Reddy 19

Displacements at C relative to point B

Page 20: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

xk

L

q0

z, w

k w (L )

k

k w (L )

1 2• •1

U4 0¹

14 0Q =

11Q 1

2Q

1 2 0U U= =

3U

=- =-13 3

( )Q kw L kU

=3

( )kw L kU

13Q

JN Reddy 20

ì ü ì üé ù ï ï ï ï- ï ï ï ïï ï ï ïê ú = = = =í ý í ýê ú ï ï ï ï-ê ú ï ï ï ïë û ï ï ï ïî þ î þ

1 11 2 3 2 3

2 2

1 1, 0,

1 1

s ss s s

s s

u Qk u u U Q kU

u Q

Alternatively,

EXAMPLE – 3: Handling of a vertical spring

Page 21: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

JN Reddy Beams 21

SOLUTION TO THE SPRING-SUPPORTED BEAM

1 1 12 2

2 1 203

3 2 32 2

4 2 4

6 3 6 3 63 2 32

126 3 6 3 63 3 2

Boundary conditio

U w QL LU QL L L L Lq LEIU w QL L LU QL L L L L

q

q

ì ü ì üé ù ì ü=- - - ï ï ï ïï ïï ï ï ïï ïê ú ï ï ï ïï ïê ú ï ï ï ïï ï=- -ï ï ï ïï ïï ï ï ïê ú = +í ý í ý í ýê ú ï ï ï ï ï ï=- ï ï ï ï ï ïê ú ï ï ï ï ï ïê ú ï ï ï ï ï ï=- ï ï ï ï ï ïë û î þï ï ï ïî þ î þ

1 1 3 3 40 0 0ns, , ,w Q kU Qq= = =- =

3kU-

0

00

33 20

2 4

12 6 6

126 4

EI EI Uk q LL LEI EI

LUL L

é ù ì ü ì üï ï ï ïê ú+ ï ï ï ïï ïê ú ï ïï ï ï ï=ê ú í ý í ýï ï ï ïê ú ï ï ï ïê ú ï ï ï ï-ï ïî þï ïî þê úë û

Condensed equations for the unknown generalized nodal displacements

Page 22: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

HANDLING OF A POINT SOURCES INSIDE AN ELEMENT

2 3 2

1 2

2 3 2

3 4

( ) 1 3 2 , ( ) 1

( ) 3 2 , ( )

s s ss s s

h h h

s s s ss s s

h h h h

f f

f f

æ ö æ ö æ ö÷ ÷ ÷ç ç ç= - + = - -÷ ÷ ÷ç ç ç÷ ÷ ÷è ø è ø è øé ùæ ö æ ö æ ö÷ ÷ ÷ê úç ç ç= - = - -÷ ÷ ÷ç ç ç÷ ÷ ÷ê úè ø è ø è øë û

f= ò0( ) ( )

h

i iq q s s ds

f f= = =ò 0 00( ) ( ) ( ), 1,2, 3, 4

h

i i iq q s s ds F s i

1 2

0F= 01 2

Fq = 0

3 2

Fq

=- 02 8

F hq = 0

4 8

F hq

=0

0

for placedat 0.5Fs h

JN Reddy 22

ff

=

== =-ò 00

0

1, 2, 3, 4( ) ( ) ,h

ii i

s s

id

q q s s ds Mds

1 2

0F0s

hs

d= -0 0

( ) ( )q s F s s

1 20M

0s

hs

d= -0 0

( ) '( )q s M s s

Page 23: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

JN Reddy

xL

0F

EXAMPLE – 4: A simply-supported beam

(a) Find the center deflection using oneEuler-Bernoulli element in full beam

1 1 1 12 2

2 1 2 23

3 2 3 32 2

4 2 4 4

6 3 6 33 2 326 3 6 3

3 3 2

U w q QL LU q QL L L LEIU w q QL L LU q QL L L L

q

q

ì ü ì ü ì üé ù =- - - ï ï ï ï ï ïï ï ï ï ï ïê ú ï ï ï ï ï ïê ú ï ï ï ï ï ï=- ï ï ï ï ï ïê ú = +í ý í ý í ýê ú ï ï ï ï ï ï=- ï ï ï ï ï ïê ú ï ï ï ï ï ïê ú ï ï ï ï ï ï=- ï ï ï ï ï ïë û î þ î þ î þ

0

0= 0

1 2

Fq = 0

3 2

Fq

= 04 8

F Lq

1 2= 0

2 8

F Lq

0

8

F L

- 0

8

F L

2 22 0

3 2 24

1228 12

UL L F LEIUL L L

é ù ì ü ì üï ï ï ïï ï ï ïê ú =í ý í ýê ú ï ï ï ï-ï ïî þï ïî þë û

Condensed equations

2 20 0

2 416 16,F L F LU U

EI EI= =-

1 1 2 2 3 3 4 4

2 2 4 4

2 220

2 30 0

116

0 516 8 8 64

( ) ( ) ( ) ( ) ( )( ) ( )

( . )

w x U x U x U x U xU x U x

F L x x xx xEI L L L

F L F LL Lw LEI EI

f f f f

f f

= + + +

= +

ì üé ù é ùï ïæ ö æ ö æ öï ïï ïê ú ê ú÷ ÷ ÷ç ç ç= - - + -÷ ÷ ÷í ýç ç çê ú ê ú÷ ÷ ÷ç ç çï ïè ø è ø è øê ú ê úï ïë û ë ûï ïî þæ ö÷ç= - - =-÷ç ÷çè ø

0

0

Page 24: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

JN Reddy

xL

0F

EXAMPLE – 4: A simply-supported beam

(b) Find the center deflection using oneEuler-Bernoulli element in half beam

1 1 12 2

2 1 23

3 2 32 2

4 2 4

6 1 5 6 1 51 5 0 5 1 5 0 2516

6 1 5 6 1 53 0 25 1 5 0 5

. .. . . .

. .. . .

U w QL LU QL L L LEIU w QL L LU QL L L L

q

q

ì ü ì üé ù =- - - ï ï ï ïï ï ï ïê ú ï ï ï ïê ú ï ï ï ï=- ï ï ï ïê ú =í ý í ýê ú ï ï ï ï=- ï ï ï ïê ú ï ï ï ïê ú ï ï ï ï=- ï ï ï ïë û î þ î þ

0

0

0

2

F

==-

4

3 0

0,

0.5

U

Q F

1==

1

2

0,

0

U

Q

0

-0

0.5F

22

033

00 5 1 516 0 511 5 6

. . ..

UL LEI FUL L

é ù ì ü ì üï ï ï ïï ï ï ïê ú =í ý í ýê ú ï ï ï ï-ï ïî þï ïî þë û

Condensed equations

3 20 0

2 2

3 320 0

3 2

4 1 532 3 1 16

4 0 532 3 1 48

. ,

.

F L F LLUEI L EI

F L F LLUEI L EI

= =

= =

2

Page 25: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

JN Reddy Beams 25

EXERCISE PROBLEM

2 2 2

2 2 2 0 0,d d w d wEI P x Ldx dx dx

+ = < <

Problem: Develop weak form and the finite element model of the following equation, where w and P are unknowns:

Page 26: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

JN Reddy Beams 26

EXERCISE PROBLEM

dF0

hh k

Linear elasticspring,

Rigid loading frame

q0

2EI EI

Problem: Use the minimum number of EBT elements to find the compression in the spring, reactions at the fixed support, and spring force.

Page 27: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

JN Reddy Beams 27

Governing Equations Finite element model Shear locking Numerical example

TIMOSHENKO BEAM THEORYand its Finite Element Model

Page 28: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

28

Kinematics of Timoshenko Beam Theory

Undeformed Beam

Euler-Bernoulli Beam Theory (EBT)Straightness, inextensibility, and normality

Timoshenko Beam Theory (TBT)Straightness and inextensibility

JN Reddy

z, w

x, u

x

z

dwdx−

φx

u

dwdx−

dwdx−

Deformed Beams

( )q x

( )f x

90

Page 29: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

29

Timoshenko Beam Theory

Kinematic Relations

1

2 3

1

1

31

3 1

( , ) ( ) ( ),0, ( , ) ( )

,

x

xxx

xz x

u x z u x z xu u x z w x

du du zx dx dx

uu dwx x dx

f

fe

g f

= +

= =

¶= = +

¶¶= + = +

¶ ¶

z

x

w

dwdx−

z

u

Constitutive Equations

xxx xx

xz xz x

dduE E zdx dx

dwG Gdx

fs e

s g f

æ ö÷ç= = + ÷ç ÷÷çè øæ ö÷ç= = + ÷ç ÷÷çè ø

JN Reddy

xzf

xf

Page 30: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

30

Equilibrium Equations

Beam Constitutive Equations

0 0 0fdN dV dMf , q c w , V .dx dx dx

+ = − − + = − + =

xxx

A A

xxA A

s xz s sA A

ddu duN dA E z dA EAdx dx dx

du d dM z dA E z z dA EIdx dx dx

dw dwV K dA GK dA GAKdx dx

fs

f fs

s f f

æ ö÷ç= = + =÷ç ÷ç ÷è ø

æ ö÷ç= = + =÷ç ÷÷çè ø

æ ö æ ö÷ ÷ç ç= = + = +÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø

ò ò

ò ò

ò ò

(1)

0 (2)

s f

s

d dwGAK c w qdx dx

d d dwEI GAKdx dx dx

f

ff

é ùæ ö÷çê ú- + + =÷ç ÷÷ê úçè øë ûæ ö æ ö÷ ÷ç ç- + + =÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø

Governing Equations in terms of the displacements

Timoshenko Beam Theory (Continued)

JN Reddy

Page 31: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

31

Weak Form of Eq. (1)

1

11 1 1

1

0b

a

bb

aa

b

a

x

s fx

xx

s f sxx

x

sx

d dwv GAK c w q dxdx dx

dv dw dwGAK c v w v q dx v GAKdx dx dx

dv dwGAKdx dx

f

f f

f

ì üé ùï ïæ öï ï÷çê ú= - + + -÷í ýç ÷÷ê úçï ïè øï ïë ûî þì üé ù é ùï ïæ ö æ öï ï÷ ÷ç çê ú ê ú= + + - - ⋅ +÷ ÷í ýç ç÷ ÷÷ ÷ê ú ê úç çï ïè ø è øï ïë û ë ûî þ

é æ ö÷ç= + ÷ç ÷÷çè ø

ò

ò

ò 1 1

1 1

11 1 1 1 1 3

( ) ( )

( ) ( )

a b

b

a

f

a s b sx x

x

s f a bx

c v w v q dx

dw dwv x GAK v x GAKdx dx

dv dwGAK c v w v q dx v x Q v x Qdx dx

f f

f

ì üùï ïï ïê ú + -í ýê úï ïï ïë ûî þé ù é ùæ ö æ ö÷ ÷ç çê ú ê ú- ⋅ - + - ⋅ +÷ ÷ç ç÷ ÷÷ ÷ê ú ê úç çè ø è øë û ë û

ì üæ öï ïï ï÷ç= + + - - ⋅ - ⋅÷í ýç ÷÷çï ïè øï ïî þò

WEAK FORMS OF TBT

JN Reddy

Page 32: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

32

Weak Form of Eq. (2)

2

22 2

22

0b

a

bb

aa

b

a

x

sx

xx

sx x

x

sx

d d dwv EI GAK dxdx dx dx

dv d dw dEI GAK v dx v EIdx dx dx dx

dv d dwEI GAK vdx dx dx

ff

f ff

ff

é ùæ ö æ ö÷ ÷ç çê ú= - + +÷ ÷ç ç÷ ÷÷ ÷ê úç çè ø è øë ûé ùæ ö æ ö é ù÷ ÷ç çê ú ê ú= + + - ⋅÷ ÷ç ç÷ ÷÷ ÷ê úç ç ê úè ø è ø ë ûë ûé æ ö æ ö÷ ÷ç ç= + +÷ ÷ç ç÷ ÷÷ ÷ç çè ø è øë

ò

ò

ò 2 2

22 2 2 2 4

( ) ( )

0 ( ) ( )

a b

b

a

a bx x

x

s a bx

d ddx v x EI v x EIdx dx

dv d dwEI GAK v dx v x Q v x Qdx dx dx

f f

ff

ù æ ö æ ö÷ ÷ç çê ú - ⋅ - - ⋅÷ ÷ç ç÷ ÷÷ ÷ê ú ç çè ø è øûé ùæ ö æ ö÷ ÷ç çê ú= + + - ⋅ - ⋅÷ ÷ç ç÷ ÷÷ ÷ê úç çè ø è øë û

ò

Total Potential Energy2 2

2

1 3 2 4

( )2 2 2

( ) ( ) ( ) ( )

b

a

b

a

x fsx x

x

a b a bx

cG A KE I d dww , w dxdx dx

w q dx w x Q w x Q x Q x Q

φφ φ

φ φ

Π = + + +

− + + + +

Weak Forms of TBT (continued)

JN Reddy

Page 33: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

33

Finite Element Approximation

{ }{ }

{ }{ }

11 12 1

21 22 2

K K FwSK K F

é ù ì üé ù é ù ï ïì ü ï ïï ïê úê ú ê úë û ë û ï ïï ïê ú =í ý í ýï ï ï ïê úé ù é ù ï ï ï ïî þê úê ú ê ú ï ïë û ë û î þë û

11 12 21

22 21

1 21 3 2( ) ( ) ( ) ( )

b b

a a

b b

a a

b

a

x xji iij s f i j ij s j jix x

x xj jiij s i j ij s ix x

x

i i i a i b i i a i bx

dd dK GAK c dx, K GAK dx Kdx dx dx

d ddK EI GAK dx, K GAK dxdx dx dx

F q dx x Q x Q , F x Q x

yy yy y j

j yjj j j

y y y j j

æ ö÷ç ÷ç= + = =÷ç ÷ç ÷çè øé ùê ú= + =ê úê úë û

= + + = +

ò ò

ò ò

ò 4Q

1 1( ), ( )

m n

j j j jj j

w w x S xy f j= =

» »å å

FINITE ELEMENT MODELS OFTIMOSHENKO BEAMS

2he

1 2he

1

w w s s221 1

3

he

1 3he

1

w1

2 2

w w s ss2 23 312m n= =

3m n= =

JN Reddy

Page 34: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

34

Shear Locking in Timoshenko Beams

Linear interpolation of both , :xw f

1 1 2 2 1 1 2 2, xw( x ) w ( x ) w ( x ) ( x ) S ( x ) S ( x )y y f y y» + » +

2he

1he

1 21w 2w

1S 2S

(1) Thick beam experiences shear deformation,

(2) Shear deformation is negligible in thin beams,

xdwdx

f ¹-

xdwdx

f =-

Thus, in the thin beam limit it is not possible for the element to realize the requirement

xdwdx

f =-JN Reddy

2 2

1 1( ), ( )e e e e

j j x j jj j

w w x S xy f y= =

» »å å

Page 35: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

35

SHEAR LOCKING - REMEDY

In the thin beam limit, φ should become constant so that it matches dw/dx. However, if φ is a constant then the bending energy becomes zero. If we can mimic the two states (constant and linear) in the formulation, we can overcome the problem. Numerical integration of the coefficients allows us to evaluate both φ and dφ/dx as constants. The terms highlighted should be evaluated using “reduced integration”.

(1)(1)11 (1) (1)

(1)12 (2) 21

(2)(2)22 (2) (2)

b

a

b

a

b

a

x jiij s f i jx

xi

ij s j jix

x jiij s i jx

ddK GAK c dxdx dx

dK GAK dx Kdx

ddK EI GAK dxdx dx

yyy y

yy

yyy y

æ ö÷ç ÷ç= + ÷ç ÷ç ÷çè ø

= =

é ùê ú= +ê úê úë û

ò

ò

ò

JN Reddy

Page 36: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

JN Reddy Beams 36

STIFFNESS MATRICES OF TIMOSHENKO BEAM ELEMENT

(for constant EI and GA)

1 1 12 2

1 2 23

20 3 32 2

2 4 4

6 3 6 33 326 3 6 3

3 3

e ee e

e ee e e e e ee e

e e ee ee

e ee e e e e e

h h w q Qh h h h q QE I

h h wh q Qh h h h q Q

x z fm

z x f

ì ü ì üé ù ì ü- - - ï ï ï ïï ï ï ï ï ïï ïê ú ï ï ï ïï ï ï ï ï ïê ú ï ï- ï ï ï ïï ïï ï ï ï ï ïê ú = +í ý í ý í ýê ú ï ï ï ï ï- ï ï ï ï ïê ú ï ï ï ï ïê ú ï ï ï ï ï- ï ï ï ï ïê ú ï ïî þë û ï ï ïî þ î

021 5 6 1 5 6 12. , . , , ee ee e e e e e

e e s e

E IG A K h

x z m

ïïïïïïþ

= + L = - L L = = L

Reduced integration linear element (RIE)

1 1 12 2

1 2 23

2 3 32 2

2 4 4

6 3 6 33 32

2

26 3 6 3

3 3

e ee e

e ee e e e e ee e

e ee ee e

e ee e e e e e

h h w q Qh h h h q QE I

h h wh q Qh h h h q Q

fm

f

ì ü ì üé ù ì ü- - - ï ï ï ïï ï ï ï ï ïï ïê ú ï ï ï ïï ï ï ï ï ïê ú ï ï- S Q ï ï ï ïï ïï ï ï ï ïê ú = +í ý í ý í ýê ú ï ï ï ï ï- ï ï ï ï ïê ú ï ï ï ï ïê ú ï ï ï ï ï- Q S ï ï ï ï ïê ú ï ïî þë û ï ï ïî þ î

21 0 1 0 6 1 13 2. , . , ,e ee e e e e e e

e e s e

E IG A K h

m

ïïïïïïïþ

S = + L Q = - L L = = + L

Consistent interelement element (CIE)

Linear approximation of both w and f

of w and dependent quadratic approximation of Hermite cubic approximation

f

Page 37: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

3

3( ) FLw L

EI=

Exact solution (according to the E-B beam theory)

One element discretization using the RIE element

,EA EI

L

F

• •

1 2,U U 3 4,U U

Boundary conditions:

1 2 3 40 0, ,U U Q F Q= = = =

AN EXAMPLE of TBT

JN Reddy 37

1 1 12 2

1 2 23

20 3 32 2

2 4 4

6 3 6 33 326 3 6 3

3 3

e ee e

e ee e e e e ee e

e e ee ee

e ee e e e e e

h h w q Qh h h h q QE I

h h wh q Qh h h h q Q

x z fm

z x f

ì ü ì üé ù ì ü- - - ï ï ï ïï ï ï ï ï ïï ïê ú ï ï ï ïï ïê ú ï ï ï ïï ï- ï ï ï ïï ï ï ï ï ïê ú = +í ý í ý í ýê ú ï ï ï ï ï ï- ï ï ï ï ï ïê ú ï ï ï ï ï ïê ú ï ï ï ï ï- ï ï ï ï ïê ú î þë û ï ï ïî þ î þ

021 5 6 1 5 6 12. , . , , ee ee e e e e e

e e s e

E IG A K h

x z m

ïïï

= + L = - L L = = L

Page 38: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

AN EXAMPLE (TBT) (continued)

( )

( )

3 2 33 0

33 2 2 240

3 3

3

32

3

3

6 32 12 1 5 62 6 123 0 6 9

1 506 4

1 5 036

75 36

( . )( )

.When too stiff

( . )When 0, then ( . )

s

UL F LEI FL FLUUL EI EIL L L L

EI FL FLUGAK L EI EI

FLUEI

EI

FLE

GA

I

m xm x x

ì üé ù ì üï ï ï ï L + Lï ï ï ïê ú = = =í ý í ýê úï ï ï ï L-ï ïë û î þï ïî þ

L = = = =

+ LL ¹ = =

L =

+ L

2 2 22

2 2

2 1 1 1 3 0 2612 6 5( ) ( ) . .

s s s

H H H HK L L K K L L L

n n æ ö æ ö æ ö+ + ÷ ÷ ÷ç ç ç= = = =÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø

JN Reddy 38

Page 39: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

One element discretization using the CIE element

AN EXAMPLE of TBT

JN Reddy 39

1 12 2

1 23

2 32 2

2 4

2

6 3 6 33 2 326 3 6 3

3 3 2

1 0 3 1 0 6 1 12. , . , ,s

L L w QL L L L QEI

L L wL QL L L L Q

E IG A K L

fm

f

m

ì üé ù ì ü ï ï- - - ï ï ï ïï ïê ú ï ïï ï ï ïê ú ï ï- S Q ï ïï ïï ï ï ïê ú =í ý í ýê ú ï ï ï ï- ï ï ï ïê ú ï ï ï ïê ú ï ï ï ï- Q S ï ï ï ïê ú ï ïë û î þ ï ïî þ

S = + L Q = - L L = = + L

( )3 2 3

333 2 2 2

4

6 32 22 12 93 2 0 12 9 ( )

UL FEI L FL FLUUL EI EIL L L L

m mm

ì üé ù ì üï ï ï ï S Sï ï ï ïê ú = = =í ý í ýê úï ï ï ï S-S S-ï ïë û î þï ïî þ

Condensed equations for the unknown displacements

Page 40: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

AN EXAMPLE (TBT) (continued)

3 3

3

3 3

3

2

3

2 22

2 2

0 1 112 9 3

1 3 1 1212 9 3 1 12

2 1 1 1 3 0 261

1 3

2 6

3

5

When and ; then( )

( )( )When 0, ( ) ( )

( ) ( ) .

( )

.s s s

FL FLUEI EI

FL FLUEI EI

EI H H H HGAK L L K K L L L

FLEI

mm

m

n n

SL = S= = = =

S-

S + L + LL ¹ = = =

S- + L

æ ö æ ö æ ö+ + ÷ ÷ ÷ç ç çL = = = = =÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè è

L

ø ø è ø

+

JN Reddy 40

Page 41: The Finite Element Method - TAMU Mechanicsmechanics.tamu.edu/wp-content/uploads/2016/09/03_Ch5Beams.pdfJN Reddy The Finite Element Method Read: Chapter 5 Euler-Bernoulli beam theory

41

SUMMARY

In this lecture we have covered the following topics:

• Derived the governing equations of the Euler-Bernoulli beam theory

• Derived the governing equations of theTimoshenko beam theory

• Developed Weak forms of EBT and TBT• Developed Finite element models of EBT

and TBT• Discussed shear locking in Timoshenko beam

finite element• Discussed assembly of beam elements• Discussed examples

JN Reddy