Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

Embed Size (px)

Citation preview

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    1/36

     

    LMX248x Evaluation Board

    User's Guide 

    Revised – March 2014SNAU137

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    2/36

     

    www.ti.com

    2 SNAU137  LMX248x Evaluation Board User’s Guide Revised - March 2014Copyright © 2014, Texas Instruments Incorporated 

    LMX248xEvaluation Board Operating Instructions 

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    3/36

     

    www.ti.com

    Revised - March 2014 LMX248x Evaluation Board User’s Guide SNAU137 3 Copyright © 2014, Texas Instruments Incorporated 

    Table of Contents

    EQUIPMENT ..................................................................................................................................................................................... 4 

    BASIC OPERATION ........................................................................................................................................................................... 5 

    LMX2485 BOARD I NFORMATION .................................................................................................................................................... 7 

    RF PLL PHASE NOISE ..................................................................................................................................................................... 9 

    RF PLL FRACTIONAL SPURS ......................................................................................................................................................... 11 

    RF PLL LOCK TIME ...................................................................................................................................................................... 12 

    IF PLL LOCK TIME ........................................................................................................................................................................ 14 

    IF PLL PHASE NOISE ..................................................................................................................................................................... 15 

    IF PLL SPURS ................................................................................................................................................................................ 16 

    LMX2486 BOARD I NFORMATION .................................................................................................................................................. 17 

    RF PLL PHASE NOISE ................................................................................................................................................................... 18 

    RF PLL FRACTIONAL SPURS ......................................................................................................................................................... 20 

    RF PLL LOCK TIME (WITH A SPECTURM A NALYZER ) .................................................................................................................. 21 

    IF PLL PHASE NOISE ..................................................................................................................................................................... 22 

    IF PLL SPURS ................................................................................................................................................................................ 23 

    IF PLL LOCK TIME ........................................................................................................................................................................ 24 

    LMX2487 BOARD I NFORMATION .................................................................................................................................................. 25 

    FINDING A VCO ............................................................................................................................................................................ 25 

    R EPLACING THE VCO WITH A FOOTPRINT COMPATIBLE VCO ...................................................................................................... 26 

    APPENDIX A: SCHEMATICS ............................................................................................................................................................ 27 

    APPENDIX B: BUILD DIAGRAMS .................................................................................................................................................... 28 

    APPENDIX C: BILL OF MATERIALS ................................................................................................................................................ 31 

    APPENDIX D: QUICK START FOR EVM COMMUNICATIONS ........................................................................................................... 34 

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    4/36

     

    www.ti.com

    4 SNAU137  LMX248x Evaluation Board User’s Guide Revised - March 2014Copyright © 2014, Texas Instruments Incorporated 

    EquipmentPower Supply

    The Power Supply should be a low noise power supply. An Agilent 6623A Triple power supply with LC filters on theoutput to reduce noise was used in creating these evaluation board instructions.

    Signal GeneratorThe Signal Generator should be capable of frequencies and power level required for the part. A Rohde & Schwarz SML03was used in creating these evaluation board instructions.

    Phase Noise / Spectrum AnalyzerFor measuring phase noise an Agilent E5052A is recommended. An Agilent E4445A PSA Spectrum Analyzer with thePhase Noise option is also usable although the architecture of the E5052A is superior for phase noise measurements. Atfrequencies less than 100 MHz the local oscillator noise of the PSA is too high and measurements will be of the localoscillator, not the device under test.

    OscilloscopeThe oscilloscope and probes should be capable of measuring the output frequencies of interest when evaluating thisboard. The Agilent Infiniium DSO81204A was used in creating these evaluation board instructions.

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    5/36

     

    www.ti.com

    Revised - March 2014 LMX248x Evaluation Board User’s Guide SNAU137 5 Copyright © 2014, Texas Instruments Incorporated 

    Basic Operation

    1. Connect the signal generator output to the OSCin input of the board. For this example we use a 10 MHz sinsignal at +5dBm power level.

    2. Connect a low noise 3.3 V power supply to the Vcc connector located at the top left of the board.

    3. Please see Appendix D for quick start on interfacing the board. Connect PC to the uWire header.

    4. Start CodeLoader4.exe.

    5. Click “Select Device” “PLL-Fractional” LMX248x depending on which chip is on your board. 

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    6/36

     

    www.ti.com

    6 SNAU137  LMX248x Evaluation Board User’s Guide Revised - March 2014Copyright © 2014, Texas Instruments Incorporated 

    6. Select USB or LPT Communication Mode on the Port Setup tab as appropriate.

    7. Click “CTRL + L”  to load settings into device

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    7/36

     

    www.ti.com

    Revised - March 2014 LMX248x Evaluation Board User’s Guide SNAU137 7 Copyright © 2014, Texas Instruments Incorporated 

    LMX2485 Board Information

    The LMX2485 Evaluation Board simplifies evaluation of the LMX2485 2.6 GHz/0.8 GHz PLLatinumTM

     dual frequencysynthesizer . The board enables all performance measurements with no additional support circuitry. The evaluationboard consists of a LMX2485 device, a RF VCO module and IF VCO & RF/IF loop filters built by discrete components.The SMA flange mount connectors are provided for external reference input, RF and IF VCO outputs, and the power andgrounding connection. A cable assembly is bundled with the evaluation board for connecting to a PC through the parallelprinter port. By means of USB2ANY-uWire serial port emulation, the CodeLoader  software included can be run on a PCto facilitate the LMX2485 internal register programming for the evaluation and measurement.

    RF LOOP FILTER Theoretical ( NOT Measured ) Simulation

    (Done with EasyPLL at http ://www.ti.com/lsds/ti/wireless)

    Phase Margin 48.3 degPole Ratio

    T3 /T140.2 %

    Loop Bandwidth 11.3 KHzPole Ratio

    T4/T336.3 %

    Lock Time2400 – 2480 MHz to 1

    KHz tolerance in247 uS w/o Fastlock

    Spur Gain@ 200 KHz

    -45.8 dB

    VCO

    CPoRF

    2.7 nF

    47 nF

    820270 pF 180 pF

    3.9 K  5.6 K 

    Settings for Operation 

    Kφ  400 uA

    ComparisonFrequency

    10 MHz

    OutputFrequency

    2400 – 2480MHz

    PLL Supply 2.5 Volts

    VCO Supply 3 Volts

    Other Information

    VCO Used VARIL2450UVCO Gain 55 MHz/Volt

    VCO InputCapacitance

    22 pF

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    8/36

     

    www.ti.com

    8 SNAU137  LMX248x Evaluation Board User’s Guide Revised - March 2014Copyright © 2014, Texas Instruments Incorporated 

    IF LOOP FILTER 

    Theoretical ( NOT Measured ) Simulation ( Done wi th EasyPLL at www.ti.com )

    Phase Margin 47.1 deg Lock Time

    760 - 780 MHz

    MHz to 1 KHztolerance in 453uS

    Loop Bandwidth 5.1 KHzSpur Gain

    @ 200 KHz22.1 dB

    VCO

    CPoRF

    1.8 nF

    10 nF

    8.2 K 

    Open Open

    0 0

    Settings for Operation 

    Kφ  4 mA

    ComparisonFrequency

    50 kHz

    OutputFrequency

    760 - 780 MHz

    PLL Supply 2.5 Volts

    VCO Supply 3 Volts

    Other Information

    VCO Used VARIL191-773UVCO Gain 18 MHz/Volt

    VCO InputCapacitance

    100 pF

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    9/36

     

    www.ti.com

    Revised - March 2014 LMX248x Evaluation Board User’s Guide SNAU137 9 Copyright © 2014, Texas Instruments Incorporated 

    RF PLL Phase Noise

    Loop Bandwidth is about 10 kHz. Note that the phase noise gradually improves as one goes fartherfrom the carrier. Also note that this is done with 200 uA of current, and the true phase noisecapability of the part is not shown here because the phase noise is worse, and the VCO phasenoise could still be degrading the in-band phase noise.

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    10/36

     

    www.ti.com

    10 SNAU137  LMX248x Evaluation Board User’s Guide Revised - March 2014Copyright © 2014, Texas Instruments Incorporated 

    For this plot, the charge pump was increased to 1600 uA. This improves the PLL phase noise performance andalso increases the loop bandwidth so the true PLL performance can be seen. The reason that the original loopfilter was not designed for 1600 uA current was that it makes the loop filter capacitors 8X larger and also, thelower current allows one to experiment with lower comparison frequencies like 2.5 MHz, 5 MHz, and 10 MHz.

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    11/36

     

    www.ti.com

    Revised - March 2014 LMX248x Evaluation Board User’s Guide SNAU137 11 Copyright © 2014, Texas Instruments Incorporated 

    RF PLL Fractional Spurs

     At 2400.2 MHz output frequency, theprimary fractional spur at 200 kHz is

    -70.7 dBc, and the sub-fractional spur at100 kHz is -69.5 dBc.

     At 2440.2 MHz output frequency, theprimary fractional spur at 200 kHz is

    -78.9 dBc, and the sub-fractional spur at100 kHz is -72.9 dBc.

     At 2480.2 MHz output frequency, theprimary fractional spur at 200 kHz is

    -80.8 dBc, and the sub-fractional spur at100 kHz is -73.4 dBc.

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    12/36

     

    www.ti.com

    12 SNAU137  LMX248x Evaluation Board User’s Guide Revised - March 2014Copyright © 2014, Texas Instruments Incorporated 

    RF PLL Lock Time

       N  o   C

       S   R   C .

       R   F_

       T   O   C  =   0

     

    Peak time without cycle slipreduction is 1110 uS.

    Peak time without cycle slipreduction is 1622 uS.

    Positive lock time is 1220 uS

    Negative Lock time is 1711 uS

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    13/36

     

    www.ti.com

    Revised - March 2014 LMX248x Evaluation Board User’s Guide SNAU137 13 Copyright © 2014, Texas Instruments Incorporated 

    RF PLL Lock Time

       C  y  c   l  e   S   l   i  p   R  e   d  u

      c   t   i  o  n   E  n  a   b   l  e   d .

       R   F_

       T   O   C  =   5   0   0

     

    Peak time with cycle slip reductionis 222 uS.

    Peak time with cycle slip reductionis 222 uS.

    Positive lock time is 345 uS

    Negative Lock time is 378 uS

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    14/36

     

    www.ti.com

    14 SNAU137  LMX248x Evaluation Board User’s Guide Revised - March 2014Copyright © 2014, Texas Instruments Incorporated 

    IF PLL Lock Time

    Peak time is 97.8 uS

    Peak Time is 133.3 uS

    Positive Lock time is 510 uS

    Negative Lock Time is 474 uS

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    15/36

     

    www.ti.com

    Revised - March 2014 LMX248x Evaluation Board User’s Guide SNAU137 15 Copyright © 2014, Texas Instruments Incorporated 

    IF PLL Phase Noise

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    16/36

     

    www.ti.com

    16 SNAU137  LMX248x Evaluation Board User’s Guide Revised - March 2014Copyright © 2014, Texas Instruments Incorporated 

    IF PLL Spurs

    Spurs at 50 kHz offset for an output frequency of760 MHz are -97.5 dBc.

    Note the cusping effect at 50 kHz. This is becausethe loop bandwidth is wide relative to thecomparison frequency. This is due to the discretesampling action of the phase detector.

    Spurs at 50 kHz offset for an output frequency of770 MHz are -81.7 dBc.

    Spurs at 50 kHz offset for an output frequency of780 MHz are -71.7 dBc.

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    17/36

     

    www.ti.com 

    Revised – March 2014 LMX248x Evaluation Board User’s Guide SNAU137 17 Copyright © 2014, Texas Instruments Incorporated 

    LMX2486 Board Information

    The LMX2486 Evaluation Board simplifies evaluation of the LMX2486 4.5 GHz/3.0 GHz PLLatinumTM

     dual frequencysynthesizer . The board enables all performance measurements with no additional support circuitry. The evaluationboard consists of a LMX2486 device, a RF VCO module and IF VCO & RF/IF loop filters built by discrete components.

    The SMA flange mount connectors are provided for external reference input, RF and IF VCO outputs, and the power andgrounding connection. A cable assembly is bundled with the evaluation board for connecting to a PC through the parallelprinter port. By means of USB2ANY-uWire serial port emulation, the CodeLoader  software included can be run on a PCto facilitate the LMX2486 internal register programming for the evaluation and measurement.

    RF Loop FilterPhase Mar in 46.5 de Pole Ratio T3 4.5 %

    Loop Bandwidth 9.8 KHz Pole Ratio 57.7 %

    Theoretical DiscreteLock Time

    915 uS w/o CSR to 1kHz

    Roll-Off200 KHz

    -42.7 dB

    VCO

    CPoRF

    6.8 nF

    220 nF

    1504.7 nF 15 nF

    56 33

    Settings for Operation

    K φ  8X (760 uA)ComparisonFrequency

    20 MHz

    Output

    Frequency

    3200 – 3300

    MHz

    PLL Supply3.3 Volts from

    regulator

    VCO Supply 5.5 Volts

    VCO Information

    VCO Used VARIL690-

     KVCO 90 MHz/Volt

    InputCapacitance

    22 pF

    IF Loop Filter

    Phase Margin 48.1 degTheoretical

    Discrete Lock

    Time

    160 uS to 1 kHz

    Loop Bandwidth 16.8 KHzSpur Gain

    @ 50 KHz50.5 dB

    VCO

    CPoRF

    680 pF

    4.7 nF

    4.7 K 

    Open

    0

    Settings for Operation

    K φ  3.5 mA

    ComparisonFrequency

    200 kHz

    Output

    Frequency

    2100 - 2200

    MHz

    PLL Supply3.3 Volts from

    regulator

    VCO Supply 5.5 volts

    VCO Information

    http://www.ti.com/http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    18/36

     

    www.ti.com 

    18 SNAU137  LMX248x Evaluation Board User’s Guide Revised – March 2014Copyright © 2014, Texas Instruments Incorporated 

    VCO Used VARIL190-

     KVCO 80 MHz/Volt

    Input

    Capacitance120 pF

    RF PLL Phase Noise

    Loop Bandwidth is about 10 kHz. Note that the phase noise gradually improves as one goes farther from thecarrier. This was taken with the IF PLL powered up and IF VCO connected.

    http://www.ti.com/http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    19/36

     

    www.ti.com 

    Revised – March 2014 LMX248x Evaluation Board User’s Guide SNAU137 19 Copyright © 2014, Texas Instruments Incorporated 

    For this plot, the charge pump was increased to 16X and the other conditions were the same.

    http://www.ti.com/http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    20/36

     

    www.ti.com 

    20 SNAU137  LMX248x Evaluation Board User’s Guide Revised – March 2014Copyright © 2014, Texas Instruments Incorporated 

    RF PLL Fractional Spurs

     At 3200.2 MHz output frequency, the primary

    fractional spur at 200 kHz is

    -80 dBc, and the sub-fractional spur at 100 kHz

    is below the noise floor.

     At 3240.2 MHz output frequency, the primary

    fractional spur at 200 kHz is

     – 88 dBc and the sub-fractional spur at 100

    kHz is below the noise floor.

     At 3200.2 MHz output frequency, the primary

    fractional spur at 200 kHz is –82 dBc and the

    sub-fractional spur is below the noise.

    http://www.ti.com/http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    21/36

     

    www.ti.com 

    Revised – March 2014 LMX248x Evaluation Board User’s Guide SNAU137 21 Copyright © 2014, Texas Instruments Incorporated 

    RF PLL Lock Time (With a Specturm Analyzer)

       C  y  c   l  e   S   l   i  p   R  e   d  u

      c   t   i  o  n   E  n  a   b   l  e   d .

       R   F_

       T   O   C  =   2   5

       0   0

     

    The first step is to tune the PLL to the

    final frequency. On the spectrumanalyzer, set span to 0 Hz and thefrequency to the final frequency. Thenset the resolution bandwidth. If it is toosmall, then it will make your lock timelook longer. If it is too large, frequencyresolution is lost. For this measurement,30 kHz seems just about right. Nowadjust the sweep time to match the timeinterval for the lock time measurement,3 mS in this case. The power is –9.6dBm

    Now tune the PLL slightly off frequency.If the PLL is tuned 10 kHz off frequency,the output power drops to –11.1 dBm.So when the output power is –11.1 dBmor higher, we are theoretically within 10kHz. If the PLL can not be tuned to fineenough resolution, the center frequencyof the spectrum analyzer can also beoffset.

    Using the external trigger to trigger offthe LE pulse, we measure the time ittakes to get and stay high enough inpower to be about 720 uS to a 10 kHztolerance.

    If the timeout counter is set to zero todisable cycle slip reduction, the lock timeincreases to 2145 us. So cycle slipreduction is very worthwhile, consideringit uses no external components andrequires no additional softwareoverhead, once the part is set up.

    http://www.ti.com/http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    22/36

     

    www.ti.com 

    22 SNAU137  LMX248x Evaluation Board User’s Guide Revised – March 2014Copyright © 2014, Texas Instruments Incorporated 

    IF PLL Phase Noise

     Above is the IF PLL phase noise with the RF PLL powered up.

    The above plot was taken with the RF PLL powered down and IF VCO disconnected.

    http://www.ti.com/http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    23/36

     

    www.ti.com 

    Revised – March 2014 LMX248x Evaluation Board User’s Guide SNAU137 23 Copyright © 2014, Texas Instruments Incorporated 

    IF PLL Spurs

    Fout = 2100 MHz

    Not only are the spurs below the noise, but

    they are actually improving the phase noise

    near the offset of the spur!

    This cusping effect is due to discrete sampling

    effects of the phase detector/charge pump that

    occur if the loop bandwidth is wide relative to

    the comparison frequency.

    Fout = 2150 MHz

    Spurs at 200 kHz output frequency are

     –82 dBc, although the noise is still being pulleddown due to this cusping effect.

    Fout = 2200 MHz

    Spurs at 200 kHz are not there and actually

    reducing the noise due to discrete sampling

    effects.

    http://www.ti.com/http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    24/36

     

    www.ti.com 

    24 SNAU137  LMX248x Evaluation Board User’s Guide Revised – March 2014Copyright © 2014, Texas Instruments Incorporated 

    IF PLL Lock Time

    Peak time is 73.3 uS. This peak time is

    increased because the VCO tuning voltage is

    approaching the rail of the charge pump when

    the PLL overshoots.

    Peak Time is 37.8 uS

    Positive Lock time is 253 uS

    Negative Lock Time is 249 uS

    http://www.ti.com/http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    25/36

     

    www.ti.com 

    Revised – March 2014 LMX248x Evaluation Board User’s Guide SNAU137 25 Copyright © 2014, Texas Instruments Incorporated 

    LMX2487 Board Information

    Due to lack of availability for a VCO, there is no evaluation board available to evaluate the performance of the

    LMX2487E. However, there are VCOs at higher frequency that are available in footprints that are not

    compatible to this board that can be attached to it.

    In order to demonstrate the performance of the LMX2487E, one can take the LMX2487 evaluation board and

    modify it for use with an external VCO. If the VCO is one that has a footprint that is the same or pinout

    compatible, the best approach would be to remove the VCO from the existing LMX2487 evaluation board and

    replace the VCO. If the VCO is very different, it can be configured externally. Even though the LMX2487 is not

    guaranteed to the same high frequency operation as the LMX2487E, it is the same part, just tested to different

    specifications. The reason that the LMX2487E sells at a premium is that it requires a special test setup for high

    frequency and the yields are a little lower. Therefore, even though the LMX2487 is being run above it’s

    specified limits, it has a high probability of working at these higher frequencies, the performance is just not

    guaranteed.

    Finding a VCO

    Now this is the main problem. Many of the VCOs require higher tuning voltage or may have long lead times.

    For VCOs that specify a higher tuning voltage than the LMX2487E can supply, there are two options. One is to

    use an active filter and give the specified tuning voltage. Another solution is to use a passive traditional filter

    with the understanding that the upper frequency range of the VCO will be less, since the highest tuning voltage

    can not be achieved.

    Manufacturer   Part No.  Freq. Range (MHz) Tuning Voltage Universal Microwave  UMT-1051-I12  7150 - 7550  0.5 – 6.0 Universal Microwave  UMT-1050-I12  6800 - 6800  0.5 – 4.5 Spectrum Microwave  HVA103SM-22  6800 - 8000  0 - 20 

    Hittite  HMC532LP4  7100 - 7900  1 -13 

    http://www.ti.com/http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    26/36

     

    www.ti.com 

    26 SNAU137  LMX248x Evaluation Board User’s Guide Revised – March 2014Copyright © 2014, Texas Instruments Incorporated 

    Replacing the VCO with a Footprint Compatible VCO

    In order to replace the VCO, take component U2 and replace with the desired VCO. The VCO must be of the

    VARIL-T style footprint, which is used by manufactures like Sirenza, Minicurcuits, Universal Microwave, and

    Zcomm. However, it is suggested that if an LMX2487 board is being modified, the setup for that should be

    verified. The dot signifies the tuning voltage.

    http://www.ti.com/http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    27/36

     

    www.ti.com 

    Revised – March 2014 LMX248x Evaluation Board User’s Guide SNAU137 27 Copyright © 2014, Texas Instruments Incorporated 

     Appendix A: Schematics

    LMX2487

    http://www.ti.com/http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    28/36

    www

    28 SNAU137  LMX248x Evaluation Board User’s Guide Revised – March 2014Copyright © 2014, Texas Instruments Incorporated 

     Appendix B: Build Diagrams

    LMX2485

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    29/36

     

    www.ti.com 

    Revised – March 2014 LMX248x Evaluation Board User’s Guide SNAU137 29 Copyright © 2014, Texas Instruments Incorporated 

    LMX2486

    http://www.ti.com/http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    30/36

    www

    30 SNAU137  LMX248x Evaluation Board User’s Guide Revised – March 2014Copyright © 2014, Texas Instruments Incorporated 

    LMX2487

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    31/36

     

    www.ti.com 

    Revised – March 2014 LMX248x Evaluation Board User’s Guide SNAU137 31 Copyright © 2014, Texas Instruments Incorporated 

     Appendix C: Bill of Materials

    LMX2485 

    Item QtyManu-

    facturerPart #

    Val-ue

    Unit Size Voltage Tolerance Material Designator

    0 25

    -- C2_RF, C2pIF, C3, C3_IF, C29, C30p-- OSCin*, CPLR-- R2, R2pRF, R3p, R24, R25, R26, R27p, R30, R33p-- R100, R101, R102, R103, R104, R105, R106, C100, C101, C102

    1 1 Texas Instruments LMX2485SQACBPCB er = 4.2 Top and Bottom Layers are 14 mil Getek n/a

    2 4 SPC Technology SPCS-6 Stand-Offs Nylon Place in 4 holds in edge of bo

    3 8 Com Con Connectors CCIJ255G 2-Pin Shunt PlasticPlace accross POWER_PLL (1-2, 3-4, 5

    11-12)and POWER_VCO (1-2, 3-4

    4 1 Com Con Connectors HTSM3203-4G2 4-Pin Header Plastic POWER_VCO

    5 1 Com Con Connectors HTSM3203-12G2 12-Pin Header Plastic POWER_PLL

    6 1 FCI Electronics 52601-S10-8 10-Pin Header Plastic uWire

    7 6 Johnson Components 142-0701-851 Edge SMA MetalFtest/LD, IF_OUT, OSCin, RF_OUT,

    VccVCO

    8 13 Kemet C0603C470J5GAC 47 pF 603 50 V 5% C0GC12, C13, C14, C15, C16, C17, C18, C1

    C27, C28, C30

    9 1 Kemet C0603C180J5GAC 180 pF 604 50 V 5% C0G C4_RF

    10 1 Kemet C0603C270J5GAC 270 pF 605 50 V 5% C0G C3_RF

    11 1 Kemet C0805C182J3GAC 1.8 nF 805 25 V 5% C0G C1_IF

    12 1 Panasonic ECHU1C103JX5 10 nF 805 16 V 5% Film C2_IF

    13 1 Kemet C0805C272J3GACTU 2.7 nF 603 C1_RF

    14 2 Kemet C0603C104K3RAC 100 nF 603 25 V 10% X7R C20, C21

    15 1 Panasonic ECHU1C473JB5 47 nF 1206 50 5 Film C2pRF

    16 11 Kemet C0603C105K3PAC 1 uF 603 25 V 10% X5R C4, C5, C6, C7, C8, C9, C10, C11, C24

    17 3 Kemet T494A106K010AS 10 uF 1206 10 V 10% Tantalum C1, C2

    18 3 Vishay CRCW0603000ZRT1 0 ohm 0603 10 V 5% Cermaic R3_IF, R31

    19 8 Vishay CRCW0603100JRT1 10 ohm 0603 10 V 5% Cermaic R1, R4, R5, R6, R7, R8, R9, R10

    20 6 Vishay CRCW0603180JRT1 18 ohm 0603 10 V 5% Cermaic R3, R27, R28, R29, R33, R3

    21 1 Vishay CRCW0603510FRT1 51 ohm 0603 10 V 1% Cermaic R32

    22 1 Vishay CRCW0603821JRT1 820 ohm 0603 10 V 5% Cermaic R2_RF

    23 1 Vishay CRCW0603392JRT1 3.9 Kohm 0603 10 V 5% Cermaic R3_RF

    24 1 Vishay CRCW0603562JRT1 5.6 Kohm 0603 10 V 5% Cermaic R4_RF

    25 1 Vishay CRCW0603822JRT1 8.2 Kohm 0603 10 V 5% Cermaic R2_IF

    26 6 Vishay CRCW0603103JRT1 10 Kohm 0603 10 V 5% Cermaic R13, R15, R17, R19, R21, R2

    27 6 Vishay CRCW0603123JRT1 12 Kohm 0603 10 V 5% Cermaic R12, R14, R16, R18, R20, R2

    28 2 Steward LI0603D301R-00 Inductor nH 603 Ferrite L1, L2

    29 1 Texas Instrument s LMX2485 PLL n/a 24P 3.6 n/a Silic on U1

    30 1 VARIL VCO191-2450U2400 -2480

    MHz U 3 V Can U2

    31 1 VARIL VCO191-773U 760-780 MHz U 3 V Can U3

    http://www.ti.com/http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    32/36

    www

    32 SNAU137  LMX248x Evaluation Board User’s Guide Revised – March 2014Copyright © 2014, Texas Instruments Incorporated 

    LMX2486

    Revision 6/24/2005

    Item Qty Manufacturer Part Number Value Unit Size Voltage Tolerance Material Designator

    0 21Open

    (No Component)

    C2pRF, C2_IF, C3_IF, C29, C100, C101R1, R2pRF, R3, R20, R21, R24, R25, R27pR30p, R100, R101, R102, R103Ftest/LD, VccPLL

    1 1 Texas Instruments LMX2487SQAEBPCB εr = 3.38  4 Layer board. Thickness is 62 mils. Rogers 4003 n/a

    2 4 SPC Technology SPCS-8 Stand-Offs Nylon Place in 4 holds in edge of board

    3 9 Com Con Connectors CTIJ-255G 2-Pin Shunt PlasticPlace accross POWER_PLL

    (1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14)and POWER_VCO (1-2, 3-4)

    4 1 Com Con Connectors HTSM3203-4G2 4-Pin Header Plastic POWER_VCO

    5 1 Com Con Connectors HTSM3203-14G2 14-Pin Header Plastic POWER_PLL

    6 1 FCI Electronics 52601-S10-8 10-Pin Header Plastic uWire

    7 4 Johnson Components 142-0701-851 Edge SMA Metal IF_OUT, OSCin, RF_OUT, VccVCO

    8 14 Kemet C0603C470J5GAC 47 pF 603 50 V 5% C0GC12, C13, C14, C15, C16, C17, C18,C19, C22, C23, C27, C28, C30, C33

    9 1 Kemet C0603C681J3GAC 680 pF 603 25 V 5% C0G C1_IF

    10 1 Kemet C0603C472J3RAC 4.7 nF 603 25 V 5% X7R C3_RF

    11 1 Kemet C0603C682J3RAC 6.8 nF 603 25 V 5% X7R C1_RF

    12 1 Kemet C1206C472J5GAC 4.7 nF 1206 50 V 5% C0G C2pIF

    13 1 Kemet C0603C153J3RAC 15 nF 603 25 V 5% X7R C4_RF

    14 1 Kemet C1206C103J3GAC 10 nF 1206 25 V 5% C0G C32

    15 2 Kemet C0603C104K3RAC 100 nF 603 25 V 10% X7R C20, C21

    16 1 Kemet C0805C224J4RAC 220 nF 805 16 V 5% X7R C2_RF

    17 13 Kemet C0603C105K4PAC 1 uF 603 16 V 10% X5RC3, C4, C5, C6, C7, C8, C9,

    C10, C11, C24, C25, C26, C31

    18 2 Kemet C0805C106K8PAC 10 uF 805 10 V 10% X5R C1, C2

    19 1 Vishay CRCW0603000ZRT1 0 ohm 0603 10 V 5% Cermaic R3_IF

    20 9 Vishay CRCW0603100JRT1 10 ohm 0603 10 V 5% Cermaic R4, R5, R6, R7, R8, R9, R10, R11, R26

    21 8 Vishay CRCW0603180JRT1 18 ohm 0603 10 V 5% Cermaic R27, R28, R29, R30, R31, R32, L1, L2

    22 1 Vishay CRCW0603510FRT1 51 ohm 0603 10 V 1% Cermaic R2

    23 1 Vishay CRCW0603330FRT1 33 ohm 603 10 V 5% Cermaic R4_RF

    24 1 Vishay CRCW0603560FRT1 56 ohm 603 10 V 5% Cermaic R3_RF

    25 1 Vishay CRCW0603151JRT1 150 ohm 603 10 V 5% Cermaic R2_RF

    26 1 Vishay CRCW0603472JRT1 4.7 Kohm 0603 10 V 5% Cermaic R2_IF

    27 5 Vishay CRCW0603103JRT1 10 Kohm 0603 10 V 5% Cermaic R12, R14, R16, R18, R22

    28 5 Vishay CRCW0603123JRT1 12 Kohm 0603 10 V 5% Cermaic R13, R15, R17, R19, R23

    29 1 Texas Instruments LMX2486SQ PLL n/a 24P 3.6 V n/a Silicon U1

    30 1 VARIL VCO690-3300T 3120-3300 MHz T 5 V Can U2

    31 1 VARIL VCO190-2200T 2100-2200 MHz T 5 V Can U3

    32 1 Texas Instruments LP3985IM5X-3.3 3.3 V SOT23 3.3V Silicon U4

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    33/36

     

    www.ti.com 

    Revised – March 2014 LMX248x Evaluation Board User’s Guide SNAU137 33 Copyright © 2014, Texas Instruments Incorporated 

    LMX2487 

    # Qty Manufacturer Part # Value Unit Size Voltage Tolerance Material Designator

    0 27

    -- C2_RF, C2pIF, C3, C3_IF, C29, C30p-- OSCin*, U1,CPLR-- R1, R2, R2pRF, R3p, R24, R25, R26, R27p, R30, R33p-- R100, R101, R102, R103, R104, R105, R106, C100, C101, C102

    1 1 Texas Instruments LMX2487ESQACBPCB er = 4.2 Top and Bottom Layers are 14 mil Getek n/a

    2 4 SPC Technology SPCS-6 Stand-Offs Nylon Place in 4 holds in edge of board

    3 8 Com Con Connectors CCIJ255G 2-Pin Shunt PlasticPlace accross POWER_PLL (1-2, 3-4, 5-6, 7-8, 9-10, 1

    and POWER_VCO (1-2, 3-4)

    4 1 Com Con Connectors HTSM3203-4G2 4-Pin Header Plastic POWER_VCO

    5 1 Com Con Connectors HTSM3203-12G2 12-Pin Header Plastic POWER_PLL

    6 1 FCI Electronics 52601-S10-8 10-Pin Header Plastic uWire

    7 6 Johnson Components 142-0701-851 Edge SMA Metal Ftest/LD, IF_OUT, OSCin, RF_OUT, VccPLL, VccV

    8 13 Kemet C0603C470J5GAC 47 pF 0603 50 V 5% C0G C12, C13, C14, C15, C16, C17, C18, C19, C22, C23, C27,

    9 1 Kemet C0603C151J5GAC 150 pF 0603 50 V 5% C0G C4_RF

    10 1 Kemet C0603C181J5GAC 180 pF 0603 50 V 5% C0G C3_RF

    11 1 Kemet C0603C681J3GAC 680 pF 0603 25 V 5% C0G C1_IF

    12 1 Kemet C0805C472K3RAC 4.7 nF 0805 16 V 5% X7R C2_IF

    13 1 Kemet C0603C102J5GAC 1 nF 0603 25 V 5% C0G C1_RF

    14 2 Kemet C0603C104K3RAC 100 nF 0603 25 V 10% X7R C20, C21

    15 1 Kemet C0805C183K3RAC 18 nF 1206 16 V 20% X7R C2pRF

    16 11 Kemet C0603C105K3PAC 1 uF 0603 25 V 10% X5R C4, C5, C6, C7, C8, C9, C10, C11, C24, C25, C2

    17 2 Kemet T494A106K010AS 10 uF 1206 10 V 10% Tantalum C1, C2

    18 2 Vishay CRCW0603000ZRT1 0 ohm 0603 10 V 5% Cermaic R3_IF, R3119 8 Vishay CRCW0603100JRT1 10 ohm 0603 10 V 5% Cermaic R4, R5, R6, R7, R8, R9, R10, R11

    20 6 Vishay CRCW0603180JRT1 18 ohm 0603 10 V 5% Cermaic R3, R27, R28, R29, R33, R34

    21 1 Vishay CRCW0603510FRT1 51 ohm 0603 10 V 1% Cermaic R32

    22 1 Vishay CRCW0603272JRT1 2.7 Kohm 0603 10 V 5% Cermaic R2_RF

    23 1 Vishay CRCW0603472JRT1 4.7 Kohm 0603 10 V 5% Cermaic R3_RF

    24 1 Vishay CRCW0603682JRT1 6.8 Kohm 0603 10 V 5% Cermaic R4_RF

    25 1 Vishay CRCW0603472JRT1 4.7 Kohm 0603 10 V 5% Cermaic R2_IF

    26 6 Vishay CRCW0603103JRT1 10 Kohm 0603 10 V 5% Cermaic R13, R15, R17, R19, R21, R23

    27 6 Vishay CRCW0603123JRT1 12 Kohm 0603 10 V 5% Cermaic R12, R14, R16, R18, R20, R22

    28 2 Steward LI0603D301R-00 Inductor nH 603 Ferrite L1, L2

    29 1 VARIL MHz U 3 V Can U2

    30 1 VARIL VCO191-773U 760-780 MHz U 3 V Can U3

    http://www.ti.com/http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    34/36

     

    www.ti.com

    34 SNAU137  LMX248x Evaluation Board Instructions Revised – March 2014Copyright © 2014, Texas Instruments Incorporated 

     Appendix D: Quick Start for EVM Communications

    Codeloader is the software used to communicate with the EVM (Please download the latest version fromTI.com - http://www.ti.com/tool/codeloader ). This EVM can be controlled through the uWire interface on

    board. There are two options in communicating with the uWire interface from the computer.

    OPTION 1

    Open Codeloader.exe Click “Select Device” Click “Port Setup” tab Click “LPT” (in Communication

    Mode)

    OPTION 2

    http://www.ti.com/http://www.ti.com/tool/codeloaderhttp://www.ti.com/tool/codeloaderhttp://www.ti.com/tool/codeloaderhttp://www.ti.com/tool/codeloaderhttp://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    35/36

     

    www.ti.com

    Revised – March 2014 LMX248x Evaluation Board Instructions SNAU137 35 Copyright © 2014, Texas Instruments Incorporated 

    The Adapter BoardThis table describes the pins configuration on the adapter board for each EVM board (See examples below table)  

    EVMJumper Bank Code Loader Configuration

    A B C D E F G H

    LMX2581 A4 B1 C2 E5 F1 G1 H1 BUFEN (pin 1), Trigger (pin 7)LMX2541 A4 C3 E4 F1 G1 H1 CE (pin 1), Trigger (pin 10)

    LMK0400x A0 C3 E5 F1 G1 H1 GOE (pin 7)

    LMK01000 A0 C1 E5 F1 G1 H1 GOE (pin 7)

    LMK030xx A0 C1 E5 F1 G1 H1 SYNC (pin 7)

    LMK02000 A0 C1 E5 F1 G1 H1 SYNC (pin 7)

    LMK0480x A0 B2 C3 E5 F0 G0 H1 Status_CLKin1 (pin 3)

    LMK04816/4906 A0 B2 C3 E5 F0 G0 H1 Status_CLKin1 (pin 3)

    LMK01801 A0 B4 C5 E2 F0 G0 H1 Test (pin 3), SYNC0 (pin 10)

    LMK0482x (prelease) A0 B5 C3 D2 E4 F0 G0 H1 CLKin1_SEL (pin 6), Reset (pin 10)

    LMX2531 A0 E5 F2 G1 H2 Trigger (pin 1)

    LMX2485/7 A0 C1 E5 F2 G1 H0 ENOSC (pin 7), CE (pin 10)

    LMK03200 A0 E5 F0 G0 H1 SYNC (pin 7)

    LMK03806 A0 C1 E5 F0 G0 H1LMK04100 A0 C1 E5 F1 G1 H1

    Example adapter configuration (LMK01801)

    Open Codeloader.exe Click “Select Device” Click “Port Setup” Tab Click “USB” (in Communication

    Mode)

    * Remember to also make modifications in “Pin Configuration” Section according to Table above 

    http://www.ti.com/http://www.ti.com/

  • 8/15/2019 Texas Instruments VCO LMX248x Evaluation Board User's Guide Snau137a

    36/36