39
Steady Heat Conduction (Chapter 3) Zan Wu [email protected] Room: 5113

Steady Heat Conduction - Lunds tekniska högskola

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Steady Heat Conduction - Lunds tekniska högskola

Steady Heat Conduction(Chapter 3)Zan Wu [email protected] Room: 5113

Page 2: Steady Heat Conduction - Lunds tekniska högskola

Objectives

Steady-state heat conduction• Without internal heat generation

- Derive temperature profile for a plane wall

- Derive temperature profile for a circular layer

- Interpret thermal resistance and apply this concept to calculate heat transfer rate

• With internal heat generation

- Derive temperature profile for a plane wall with Q’

Page 3: Steady Heat Conduction - Lunds tekniska högskola

Heat conduction equation (isotropic material)

If constant

Thermal diffusivity

+ + 1 18

1 19

Page 4: Steady Heat Conduction - Lunds tekniska högskola

Simple plane wall

BC: x = 0, t = t1; x = b, t = t2

General solution: t = c1x + c2

0

0

0

constant0 (1-19)

Page 5: Steady Heat Conduction - Lunds tekniska högskola

Simple plane wall

Heat flow, Fourier’s law

Alternate formulation

potential = resistance · current

)33(xb

tttt 121

(3-4)

·

Page 6: Steady Heat Conduction - Lunds tekniska högskola

Composite wall

“Serial circuit” 1 4 ( thermal resistence)t t Q

QA

bA

bA

btt3

3

2

2

1

141

)63(

Ab

Ab

Ab

ttQ

3

3

2

2

1

141

Page 7: Steady Heat Conduction - Lunds tekniska högskola

Convective thermal resistance

A

Newton’s law of cooling

1A ·

Convective thermal resistance:

Page 8: Steady Heat Conduction - Lunds tekniska högskola

Composite wall, convective BC

tf2

tf1

b1

1 2 3

b2 b3

1

2

)73(

A1

Ab

A1

ttQ

2

3

li i

i

1

2ff1

Hot liquid

Cold liquid

Page 9: Steady Heat Conduction - Lunds tekniska högskola

Circular tube or layer (Shell)

(3 10)

1 2 lni o

o i

t tQL r r

Page 10: Steady Heat Conduction - Lunds tekniska högskola

Composite circular walls

i of f

32

1 1 1 2 2 3 0

1 1 1 1ln ln2 2 2 2i

t tQ rr

r L L r L r r L

Page 11: Steady Heat Conduction - Lunds tekniska högskola

Contact resistanceTemperature drop due to thermal contact resistance

Page 12: Steady Heat Conduction - Lunds tekniska högskola

Fouling

The accumulation and formation of unwanted materials on the surfaces of processing equipmentOne of the major unsolved problems in heat transfer

Page 13: Steady Heat Conduction - Lunds tekniska högskola

Plane wall with internal heat generation

b

x

btf tf

Q'

Uniform heat generation per unit volume

Page 14: Steady Heat Conduction - Lunds tekniska högskola

Governing equation

)181(

Qzt

z

yt

yxt

xtc

2

2 0d t Qdx

21 2

'2Qt x c x c

General solution

Page 15: Steady Heat Conduction - Lunds tekniska högskola

Boundary conditions

0x 0dtdx

bx wall fdt t tdx

At the plane of symmetry

Adiabatic or insulated BC

Page 16: Steady Heat Conduction - Lunds tekniska högskola

Solution

2 2f( )

2Q Q bt b x t

bQbQtt 2

fmax 2

Page 17: Steady Heat Conduction - Lunds tekniska högskola

Recap: steady-state heat conduction

• Start with the heat conduction equation, simply it with proper assumptions

• Then get a general solution, combining with BCs to obtain a specific solution for temperature distribution

• Use the Fourier’s Law to obtain the heat transfer rate based on the temperature distribution

Page 18: Steady Heat Conduction - Lunds tekniska högskola

Heat Transfer from Fins, Extended Surfaces

Page 19: Steady Heat Conduction - Lunds tekniska högskola

Objectives

• Derive governing equations and formulate boundary conditions for rectangular and triangular fins

• Calculate fin efficiency and fin effectiveness

• Understand optimal fin criteria for rectangular and triangular fins

• Apply fin efficiency in heat transfer rate calculations

Page 20: Steady Heat Conduction - Lunds tekniska högskola

Example fins

(a) Individually finned tubes(b) flat (continuous) fins on an array of tubes

Page 21: Steady Heat Conduction - Lunds tekniska högskola

Example fins

Page 22: Steady Heat Conduction - Lunds tekniska högskola

Example microfins

Microfin copper tubeCarbon nanotube microfins

on a chip surface

Page 23: Steady Heat Conduction - Lunds tekniska högskola

Fins on Stegosaurus

Absorb radiation from the sun or cool the blood?

Page 24: Steady Heat Conduction - Lunds tekniska högskola

Rectangular fin

Page 25: Steady Heat Conduction - Lunds tekniska högskola

Rectangular fin

Boundary conditions:

long and thin fin, heat transfer at the fin tip is negligible

)313(0AC

dxd

2

2

)tt( fb

2bZ

Z2ACm 2

)tt(dxdt:Lx fLx

0dxdt

Lx

f111 tttt:0x

x d x

L

t 1

Q 1

.

t f

bZ

Page 26: Steady Heat Conduction - Lunds tekniska högskola

Rectangular fin

General solution:

(co sh2

sin h )2

m x m x

m x m x

e em x

e em x

1 2

3 4c o s h s in h

m x m xC e C e

C m x C m x

Hyperbolic functions

Page 27: Steady Heat Conduction - Lunds tekniska högskola

For x = L = 2

1 1

c o s h ( ) ( 3 3 8 )c o s h

f

f

t t m L xt t m L

2

1

1c o s h m L

heat transfer from the fin ?Q

1 10

s in h ( )co shx

d m LQ A A mdx m L

CmA

Rectangular fin

· tanh 2 · tanh 3 40

Page 28: Steady Heat Conduction - Lunds tekniska högskola

Rectangular fin

= 25 W/m2K, b = 2 cm, L = 10 cmEq. (3-38)

Page 29: Steady Heat Conduction - Lunds tekniska högskola

Fin performance evaluation

1: Fin effectiveness

2: Fin efficiency

1

1

from the finfrom the base area w ithout the fin

QQ

fromthefinfromasimilarfinbutwithλ ∞

Page 30: Steady Heat Conduction - Lunds tekniska högskola

Optimal fin: maximum heat transfer at a given fin weight

M = b L Z = Z A1

A1 = b L, Z, are given.

Find maximum for A1 = bL, constant.

(3-40)

C 2Z , A = bZ (3-35)

(3-52)

mLtanhACQ 11

b2

ACm 2

1Q

b

Ab

2tanhZb2Q 111

LZb

Page 31: Steady Heat Conduction - Lunds tekniska högskola

Optimal rectangular fin

Condition

1 0 gives optimum

after some algebra one obtains

21.419 (3 55)/ 2

dQdb

Lb b

Page 32: Steady Heat Conduction - Lunds tekniska högskola

Straight triangular fin

= t tf

Heat balance

Solution:

K0 as x 0 B = 0 because is finite for x = 0

x = L = 1

)623(0bL2

x1

dxd

x1

dxd

2

2

bL2

)x2(BKx2AI 00

L2AI 01

LxbZA

L

d x

x

b t 1

t f

1Q

Bessel differential equation

I0 and K0 are the modified Bessel functions of order zero

Page 33: Steady Heat Conduction - Lunds tekniska högskola

Triangular fin

)L2(IA

0

1

)653(

)L2(I)x2(I

0

0

1

LxdxdtAQ

1

Lx

0

011 dx

)x2(dI)L2(I

1bZQ

)663()L2(I)L2(Ib2ZQ

0

111

Table 3.2 for numerical values of I0 and I1

Page 34: Steady Heat Conduction - Lunds tekniska högskola

)673(b

2309.12/b

L

Optimal triangular fin: maximum heat transfer at given weight

Page 35: Steady Heat Conduction - Lunds tekniska högskola

Summary of formulae for rectangular and triangular fins

optimal fin optimal fin

)383(mLcosh

)xL(mcosh

ft1tftt

1

b22m

)403(mLtanh1Zb21Q

mLtanhb

2

mLmLtanh

)553(b

2419.12/b

L

)653()L2(0I)x2(0I

1

bL2

)L2(0I)L2(1I

1Zb21Q

)L2(0I)L2(1I

b2

L)L2(0I/)L2(1I

)673(b

2309.12/b

L

Page 36: Steady Heat Conduction - Lunds tekniska högskola

Formulas for fin performance

Some simple calculations give:

Rectangular fin

Triangular fin

mLtanhb

2

)L2(I)L2(I

b2

0

1

L)L2(I/)L2(I 01

mLmLtanh

Fin effectiveness

Fin efficiency

Page 37: Steady Heat Conduction - Lunds tekniska högskola

37

Circular or annular fins

Heat conducting area

A = 2r b

Convective perimeter

C = 2 2r = 4r

r 1 r 2

b

Page 38: Steady Heat Conduction - Lunds tekniska högskola

Fin efficiency for circular fins

Page 39: Steady Heat Conduction - Lunds tekniska högskola

How to use the fin efficiency in engineering calculations

s

flänsarareaoflänsad

QQQ

QQQ

finareaunfinned

( )

( )

fins b f

b b f fins

A t t

Q A t t Q

a

( ) (3 7 1)b f b f in sQ t t A A a