93
1 Particle space trajectory Frame of reference v i m a O F k j p Newton’s second law for a particle , m = F a n i i1 = = F F KAP 5. Equations of Motion

Newton’s second law - Lunds tekniska högskola

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Slide 1,m=F a n
2
O •
m m =
System of external forces:
Contact force


Body forces:
3
O
OPp
Euler’s laws – Master Laws for Dynamics Postulate I: Euler’s first and second law of motion: There exists a frame of reference relative to which e
P Pdm= ∫F a
(Eu2; 5.5)
for all bodies where Pdm is the mass element at particle P∈ .
4 Inertial frame of reference
The internal force
Postulate II: There is a system of internal forces { } ( ) i
Pd P= ∈Fi iF = F
where
P P P Pd dm d= −F a F

5
e i P P P P Pd d d dm= + =F F F aThe motive force (Newton). We will here
use the term accelerating force.
The internal force

6
7
O •
i
j
i
ip
jp
ij ji= −F F
(Lem)e i P P P P Pd d d dm= + =F F F a
The local equation of motion (Lem)
”Newton’s second law”
Local implies global
, (Lem)P P P OP OP OP P Pd dm d dm= × = × ⇒∫ ∫ ∫ ∫F a p F p a
(Lem) , P P P OP P OP P Pd dm d dm⇒ = × = ×∫ ∫ ∫ ∫F a p F p a
The implication requires assumtions on continuity!
Global does not imply local!
9
(Lem)e i P P P P Pd d d dm= + =F F F a
Box 5.1: Equations of motion e
P Pdm= ∫F a
e e

i Pd =∫ F 0
Summary
10
= ∫p p
12
= ∫p p
eF
Balance of linear momentum. Motion of the center of mass.
e cm= =F l a
13
the equation of motion for the centre of mass


P P
l
14
e OP P P O
d dm dt
constant vectore O o o= ⇒ = ⇒ −M 0 L 0 L
e O O=M L
Balance of moment of momentum
When we calculate the moment we prefer fix point or the center of mass.
O fixed in frame of reference:
O moving: e O O O= + ×M L v l
O = c: e c c=M L
15

e rel O O Oc Om= + ×M L p a
rel c c=L L
rel O O Oc Om= + ×L L p v
OP P O= −p v v
17
It is related to (‘the absolute’) moment of momentum by:
and, in particular, if O c=
By differentiating with respect to time one obtain rel O O Oc Om= + ×L L p v
A concept which will be useful in the discussion of the dynamics of the rigid body is the relative moment of momentum defined by:
18

cose e e P P P PdP d d θ= ⋅ = ⋅v F v F
e P P
d dP d 0
Power and energy
Power of external forces:

e i kP P E+ =
e i kW P E P= − = −
: 2 k P P
iP 0=
Power theorem for rigid bodies:
A fixed in the body:
21
22
Gravity
( ) ( )
dP dm dm m m V dt
= ⋅ = ⋅ = ⋅ = ⋅ = −∫ ∫v g v g v g p g
k gE E V= +
Potential energy:
e ex g ex P P P P Pd d d d dm= + = +F F F F g e ex gP P P= +
g OcV m= − ⋅p g
Mechanical energy:
Summary
24
( ( )) c
a
F a a α p ω ω p
( ) ( )Ac A AP AP P AP AP Pm dm dm× + × × + × × × =∫ ∫p a p α p ω p ω p
e A AP P Pdm= × =∫M p a

Ac A A Am× + + ×p a I α ω I ω
A fixed in the body
e A Ac A A A
Gyroscopic term
25
Eu 1:
Eu 2:
We will now apply the master laws to the case of a rigid body.
- inertia tensor
The moment equation for a rigid body
e sys O Oc O O Om= × + + ×M p a I α ω I ω
e A A A= + ×M I α ω I ω
e c c c= + ×M I α ω I ω
e A Ac A A Am= × + + ×M p a I α ω I ω
Version 1: A fixed in the body:
Version 2: A fixed in the body and in space:
Version 3: A = c:
Version 4: O arbitrary:
( ) ( ) , A AP AP Pdm= × × ∈∫I a p a p a
V
( ; ) ( ; ) ( ; )A A A∨ = +I a I a I a
, , ( ) , ,A A A ∈+ = + ∀ ∈I a b I a I b a bα β α β α β V
=∧ For separate bodies:
27
We now introduce one of the fundamental concepts in rigid body dynamics, the inertia tensor
The inertia tensor is ‘additive’ with respect to separate bodies.


The inertia tensor may be written:
28
( ) ( ) , A AP AP Pdm= × × ∈∫I a p a p a
V
, A 0⋅ > ≠a I a a 0
, 2 2
A n A AP P P PI dm d dm 0= ⋅ = × = >∫ ∫n I n n p
6.1 Properties of the inertia tensor
, , ( ) , ,A A A ∈+ = + ∀ ∈I a b I a I b a bα β α β α β V
Linearity (tensor property):
( , ), A 1⋅ =n n n
29
( ),1 2 3=b b b b [ ]O O= b
I b b I
O O ij O 21 O 22 O 23
O 31 O 32 O 33
I I I I I I I
I I I
b I
, , ,( ) ( )O ij i O j O ij O jiI I t I t= ⋅ = =b I b
( , ), , ,iO i 1 2 3=b
Arbitrary RON-basis:
Inertia matrix:
Matrix components: Moments of inertia with respect to the coordinate axes
1b
tB
Matrix representation of the inertia tensor
( ),o o o o 1 2 3=e e e e ( ) ( ( ) ( ) ( )),1 2 3t t t t=e e e e o=e Re
[ ] ,A A= e
A ij 21 22 23
31 32 33
I I I
= =
e I ( )ij i A j ijI I t= ⋅ =e I e
31
Inertia tensor in the reference placement Matrix representation

I e e I ( )0
0 0 0 11 12 13
0 0 0 0 0 A ij 21 22 23
0 0 0 31 32 33
I I I I I I I
I I I
e I
0 0 0 0 ij i A jI = ⋅e I e
time-independent
32
( )2 A AP AP AP Pdm= − ⊗∫I p 1 p p
time-dependent
[ ]A A= e
A ij 21 22 23
31 32 33
I I I
( )ij i A j ijI I t= ⋅ =e I e
33
0 T A A=I RI R
0 T T 0 T o 0 o 0 ij i A j i A j i A j i A j ijI I= ⋅ = ⋅ = ⋅ = ⋅ =e I e e RI R e R e I R e e I e
[ ] 0
I I
Thus is time-independent! [ ]A e I 34
AP AP=p Rr

( )
2 T 0 T AP AP AP P Adm= − ⊗ =∫R r 1 r r R RI R
The inertia matrices are identical, i.e.
Moments of inertia with respect to coordinate axes
; ; ;( ) 2 20 0 0 0 0 0 0 0
11 1 A 1 1 AP P 1 1 1 P 2 2 P 3 3 P PI dm dm= ⋅ = × = × + + =∫ ∫e I e e r e e e e
x x x
; ; ; ;( ) ( ) 20 0 2 2
3 2 P 2 3 P P 2 P 3 P Pdm dm+ − = +∫ ∫e e
x x x x
; ; ; 0 0 0
AP 1 1 P 2 2 P 3 3 P= + +r e e ex x x
; ;( )2 2 33 1 P 2 P PI dm= +∫
x x
x x
Introduce Cartesian coordinates ( , , )1 2 3x x x
The moments of inertia with respect to the coordinate axes are then given by:
Moments of inertia off-diagonal elements, inertia products
; ;31 13 3 P 1 P PI I dm= = −∫
x x
; ;( )2 AP 1 2 AP 1 AP 2 P 1 P 2 P Pdm dm⋅ − ⋅ ⋅ = −∫ ∫p e e p e p e
x x

x x
11 12 13
31 32 33
I I I

( )2 2 22 3 1 0I dv= +∫


ρx x B0
ρx x B
ρx x B
Mass density:
, , 11 22 33 33 11 22 22 33 11I I I I I I I I I+ ≥ + ≥ + ≥ 37

Principal axis, principal moments of inertia
Is it possible to choose so that: ? If so, then =e i 12 23 31I I I 0= = =
[ ] 1
=
i I
, , ,A k k kI k 1 2 3= =I i i
The numbers , , 1 2 3I I I are called principal moments of inertia and the axis ( , )kA i is called a principal axis of inertia at the reduction point A.
Eigenvalue problem: [ ] [ ] [ ] [ ]( ) ( )A A AI I I= ⇔ − = ⇔ − = e e
I i i I 1 i 0 I 1 i 0
( )1 2 3=i i i i RON-basis
38
[ ] [ ] [ ] [ ]( ) 11 12 13 1
31 32 33 3
I I I I i 0 I I I I I i 0
I I I I i 0
− − = ⇔ − = −
e e I 1 i 0
[ ] [ ]( ) det( ) det( ) A A Ap I I I 0= − = − =I e
I 1 I 1
6.2.3 Steiner’s theorem
( )2 A c Ac Ac Ac m= + − ⊗I I p 1 p p
Corollary 6.3 (Steiner’s theorem) Consider the two parallel axis ( , )A n and ( , )c n . Then , ,
2 A n c n AcI I d m= +
where Acd is the distance between the axis, i.e. ( )2 2 2
Ac Ac Acd = − ⋅p n p
40
What happens if we change the moment point from A to another point B?
(‘The two parts theorem’). The inertia tensor with respect to the moment point A is equal to the inertia tensor with respect to c plus the inertia tensor with respect to A of a particle with mass m located at c, i.e.
Free axis Corollary 6.4 Let A be a point on the axis ( , )c n then A c=I n I n In particular ( , )c n is a principal axis if and only if ( , )A n is a principal axis.
Proposition 6.14 A free axis is a principal axis at all its points. All other principal axes are principal axes at precisely one point.
41
A principal axis through the centre of mass is called a free axis
Pdm Qdm
Use symmetry to identify principal axes! 42
Q Pdm dm=
: , ( )t t OP OP OQ Q PS S dm dm∗→ = = ⇒ =p p pB B
Mass symmetry
Pdm Qdm
Symmetry plane
Proposition 6.16 If the mass distribution has a symmetry plane Π , then the centre of mass of the body belongs to Π and every axis orthogonal to Π is a principal axis at the point of intersection with Π . In particular there exists a free axis orthogonal to Π .
45
46
2i
Corollary 6.7 If the mass distribution of the body has two symmetry planes then these will intersect and the line of intersection is a free axis.
Symmetry axis An axis ( , )O n is said to be a symmetry axis of the mass distribution if the transformation OP OP
∗ =p Sp defined by the rotation , 0 2θ θ π< <S n: , is a symmetry transformation. If
2 n πθ =
and n 2= the symmetry is called diagonal, if n 3= trigonal and if n 4= it is called tetragonal etc. See figure below.
θ π= 2 3 πθ =
Diagonal symmetry Trigonal symmetry 47
Symmetry axis
Proposition 6.17 A symmetry axis for the mass distribution is a free axis.
Proposition 6.18 Let ( , )O n be a symmetry axis with θ π≠ (i.e. not diagonal symmetry) then every axis perpendicular to the symmetry axis is a principal axis at the point of intersection with the symmetry axis. The moments of inertia for any two such axes, intersecting the symmetry axis at the same point, are equal.
, principal axisO i
O
i
48
Proposition 6.19 If one principal axis ( , )O ez is known then the other two, in the plane perpendicular to ez , are determined by the angle θ given by
arctan( ) if
I I I 0
I I I 0
6.4 The moment equation for a rigid body Matrix formulation
[ ] [ ] [ ] [ ] [ ] [ ] [ ]e A Ac A A Am = × + + × e e e e e e ee
M p a I α ω I ω
e A Ac A A Am= × + + ×M p a I α ω I ω
( )1 2 3=e e e eRON-basis fixed in body:
o=e Re
50
Euler equations for rigid body motion
( ) ,1 2 3 Ai i i
e A 1 1 2 2 3 3M M M= + +M i i i 1 1 2 2 3 3ω ω ω= + +ω i i i
The principal frame:
[ ] [ ] [ ] [ ] [ ]e A A A = + × i i i i ii
M I α ω I ω
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
= + ×



( ) ( )
( )
1 1 1 3 2 2 3
2 2 2 1 3 3 1
3 3 3 2 1 1 2
= + − = + − = + −



c
51
The inertia tensor, in its turn, is determined by the principal moments of inertia and a parallel coordinate system. , and 1 2 3I I I
Euler equations for rigid body motion
( ) ( ) ( ), , ,
( )
2 2 2 1 3 3 1 i i
3 3 3 2 1 1 2
= + − = + − ⇒ = = ⇒ = + −



ω ω ω ω ω ω ω ω ω ω ω
( )1 2 3 Ai i i
, ( )e A 1 1 2 2 3 3 i iM M M M M t= + + =M i i i
1 1 2 2 3 3ω ω ω= + +ω i i i
sin sin cos ( ) sin cos sin ( ) ( ( ), ( ), ( ))
( )cos
1
2
3
+ = = − = ⇒ = ⇒ = =+ =
R R
ψ θ φ θ φ ω ψ ψ ψ θ φ θ φ ω θ θ ψ θ φ
φ φψ θ φ ω






The principal frame: , fixed in space or A c=A
prescribed
52
Professor of mathematics at Stockholms Högskola 1889-1891
No closed form solutions when applied to a body of arbitrary shape and subjected to an arbitrary system of external forces. However, there are three classical integrable cases with technical interest: • The case of Euler (1758) - moment-free rotation
where it is assumed that the external moment sum is equal to zero.
• The case of Lagrange (1815) - rotation of a body around a fixed point in the gravitational field. In the case of Lagrange one assumes that the body has a symmetry axis.
• The case of Kovalevskaya (1889) - rotation of a body around a fixed point in the gravitational field. Solution for a non-symmetric body.
Euler equations for rigid body motion
Joseph-Louis Lagrange (1736-1813)
1 2 3M M M 0= = =
( ) ( ) ( )
1 1 3 2 2 3
2 2 1 3 3 1
3 3 2 1 1 2
= + − = + − = + −



54
One example of this is a body rotating (around its centre of mass c) in free space, neglecting all external forces, but gravitation. Another example is body mounted in a suspension where the reaction forces are producing zero moment with respect to the centre of mass of the body. One important realization of this is the so-called Gimbal - or Cardan - suspension and this design is, for instance, used in gyroscopes.
Figure 6.22 The moment free motion, a) free body in the gravitational field, b) body with moment free support at the centre of mass.
55
, , ,, , 1 0 2 0 3 00 0 0ω ω ω≠ = =
Impose the initial conditions ( ) ( ) ( )
1 1 3 2 2 3
2 2 1 3 3 1
3 3 2 1 1 2
= + − = + − = + −



The solution is given by:
Body is initially spinning around the first principal axis
,( ) , ( ) , ( ) , 1 1 0 2 3t t 0 t 0 t 0ω ω ω ω= = = ≥
If we start the rotation around a principal axis then the body will continue to rotate about this axis with a constant angular speed.
cL
c
3h
1h
η
1
1
1 2I I=
Symmetry:
Precession
Spin
56
( ) ( )
= + − = + − =



ω ω ω ω ω ω ω
( ) ( ) ( )
1 1 3 2 2 3
2 2 1 3 3 1
3 3 2 1 1 2
= + − = + − = + −



1 2
2 1
I ω−
= ⋅ + ⋅v l ω L
57

Point A fixed in the body:
The time derivative of the kinetic energy of a rigid body is equal to the power expended by the external forces.
- momentum (linear momentum) - moment of momentum (angular momentum) of the body with respect to A

The kinetic energy for rigid bodies
rel A A Ac A A Ac Am m= + × = + ×L L p v I ω p v
k A A Ac A 1 1E m 2 2
= ⋅ + ⋅ + ⋅ ×v l ω I ω ω p v
k A 1E 2
( )
rel A AP AP P AP AP P Adm dm= × = × × =∫ ∫L p p p ω p I ω
If point A fixed in the body can be expressed as :
Point A = c : 2 k c c
1 1E m 2 2
= + ⋅v ω I ω
6.5.2 Stability of moment-free rotation
Theorem 6.6 The moment free rotation of a rigid body around a principal axis is stable if and only if the corresponding moment of inertia is the largest or the smallest.
, 1I stable
, 3I stable
, 2I unstable
59
We know that if the rotation is started around any one of the principal axes then the body will continue to rotate around this axis with constant angular speed.
The rotation around the middle sized principal moment of inertia axis is unstable!
To flip a coin
60
The general conclusion is that only the rotation around the 3-axis is stable.
1 2 3I I I I= = <
6.6 The case of Lagarange. The spinning top.
A
61
Famous and simple play toy - Its complicated motion and sometimes peculiar behaviour may be analysed using the rigid body concept.
The spinning top
cz
g
mg
ze
f
c
3i
A
62
The moment of the external forces with respect to A given by the gravitational force:
e A Ac m= ×M p g
From the moment equation
( )Ac A A dm dt
× = =p g L I ω
we conclude that the component of the moment of momentum in the vertical direction
,A z z A z AL constant= ⋅ = ⋅ =e L e I ω
z Ac m 0⋅ × =e p g
,z A A zL⋅ =e L
Since
cz
g
mg
ze
f
c
3i
A
63
Since the power expended by the reaction force R is zero and the mechanical energy E of the body is conserved
A =v 0
k g A c 1E E V m constant 2
= + = ⋅ − ⋅ =ω I ω p g
We have thus found two constants of motion for the spinning top, namely, the vertical component of the moment of momentum and the mechanical energy.
The spinning top
c
1g
2g
θ
a
64
Assume that the body has a symmetry axis and that the fixed point A is located on this axis. We introduce Euler angles and the corresponding basis systems.
( , )3c i
The spinning top
c
( sin cos ) ( cos )
= − + +
= + − +
= +
θ θ ψ θ θ ψ ψ θ φ θ
ψ θ ψθ θ θ ψ θ φ
ψ θ φ
c
( sin cos ) ( cos )
= − + +
= + − +
= +
θ θ ψ θ θ ψ ψ θ φ θ
ψ θ ψθ θ θ ψ θ φ
ψ θ φ
Steady precession
67
We now specialize to the case of steady precession. We thus assume that
0 constantθ θ= =
c
1g
2g
θ
a
,
,
Figure 6.34 The tippe top
Figure 6.35 Picture of Wolfgang Pauli and Niels Bohr studying a Tippe Top. The picture is taken at the opening of the new institute of physics
at the University of Lund on May 31 1951.
ω
ω
68
The ‘tippe top’ is a top consisting of slightly more than a hemisphere resting on a cylindrical stem (concentric with the rotation axes). The surprising thing about this top is that upon spinning on the hemispherical portion, it spontaneously turns itself upside- down and begins spinning on the stem. See, for instance, https://demonstrations.wolfram.co m/TippeTop/
Exercise 1:14
The mechanism to control the deployment of a spacecraft solar panel from position A to position B is to be designed. Determine the transplacement, i.e. the translation vector and rotation tensor R , which can achieve the required change of placement. The side facing the positive x-direction in position A must face the positive z-direction in position B. Calculate the rotation vector n corresponding to the rotation. (Meriam & Kraige 7/1).
70
72
Proposition 6.16 If the mass distribution has a symmetry plane Π , then the centre of mass of the body belongs to Π and every axis orthogonal to Π is a principal axis at the point of intersection with Π . In particular there exists a free axis orthogonal to Π .
Proposition 6.14 A free axis is a principal axis at all its points. All other principal axes are principal axes at precisely one point.
Exercise 2a:17
74
( )a a a a 1 2 3=e e e e
( )x y z=e e e e
Fixed to the airplane
Fixed to the propeller
Fixed to the background ( )o o o o 1 2 3=e e e e
Free axis according to Proposition 6.17 ( , )xc

Exercise 2b:15
75
The solid circular disk of mass m and small thickness is spinning freely on its shaft at the rate p. If the assembly is released in a vertical position at 0θ = and 0θ =& determine the horizontal components of the forces at A and B exerted by the respective
bearings on the horizontal shaft as the position 2 πθ = is passed. Neglect the mass of the
two shafts compared with m and neglect all friction. Solve by using the appropriate moment equations. (Meriam 7/127).
Exercise 2b:17
Ground: G
Det gick inte att hitta bilddelen med relations-ID rId8 i filen.
Exercise 2b:17 Solution Definition of RON-bases
[ ] ,o o o
1 1= = e
e R f f R
o o 1 2→ = → =e R e f R f e
77
( )o o o o 1 2 3=e e e e
( )1 2 3=f f f f
( )1 2 3=e e e e
78
0 0 0 1
θ θ
e f e R R e e R R e
[ ] cos sin
0 0 1 0
[ ] cos sin sin cos2 2
0 0
Exercise 2b:17 Solution
Exercise 2b:17 Solution
T o oT o oT 1 1
0 0 ax ax 0 0 0 0 1 0
0 0=
fe 1
ω R R e e e e θ θ θ θ
θ θ θ θ θ

0 0
θ θ θ θ θ

0 0 1 ax 0 0 0
1 0 0
79
[ ]
sin cos cos sin (( ) ) ( cos sin sin cos )T T T
2 2
⋅ − − = = − − =
1
ω R R f f f f
sin cos cos sin ( cos sin sin cos )T
0 0 ax 0 0
0 0 0 0 0 1
− − − − =
f f
( )T 3 3
0 0 0
Exercise 2b:17 Solution
Exercise 2b:17 Solution

81

1 2 3= + + ⇒ω e e e ω ω ω
θ θ



1 2 3= + + − +ω e e e ωω ω
θ θ θ θ




rel= × +a ω a a
Exercise 2b:17 Solution
3 C 0⋅ =e M 2 A 0⋅ =f R
Free body diagrams:

Exercise 2b:17 Solution
( ) C C C 3 C 3 C0= + × ⇒ = ⋅ + × ⋅M I ω ω I ω e I ω e ω I ω
, C 1 1 1 2 2 2 3 3 3 C 1 1 1 2 2 1 3 3 3I I I I I I= + + = + +I ω e e e I ω e e eω ω ω ω ω ω

85
l 0=
2
1
2
2
2
3
S
C CC S CA A CB B CC C S C S S C S
S C A B C s
m m
m m
− + × + × + × = × + + ×
− + + =
M p g p R p R p a I ω ω I ω
g R R R a

( )
s
S
S CA A CB B C C CC C C S S C S
A B C C s
m m
× + × = + × + × + + × + + = + −
p R p R I ω ω I ω p R I ω ω I ω
g R R a a g

Combining the equations by eliminating : CM
CA A CB B C C× + × = + ×p R p R I ω ω I ω
A B Cm m+ + =g R R a
,Sm 0=Neglecting inertia of the shaft: !C =I 0
Exercise 2b:17 Solution
C O S OC S S OC
= + × + × × =
+ × + × × = + −
a a ω p ω ω p


Exercise 2b:17 Solution
( )2 A B 2 B0 0⋅ + = ⇒ ⋅ =f R R f R
[ ] [ ] [ ] [ ]A B Cm m+ + = f f f f
g R R a
[ ] [ ] [ ] [ ] [ ] [ ] [ ] CA A CB B C C × + × = + × f f f f f f ff f
p R p R I ω ω I ω
Equations of motion in matrix representation:
90
,2 A 0⋅ =f R A B Cm m+ + =g R R a
( sin cos )1 3 gθ θ= −g f f
Exercise 2b:17 Solution
4 b R R 0
R R mg lm
+ − = −
Equations of motion:
Five equations and five unknowns: , , , ,, , , ,A 1 A 3 B 1 B 3R R R Rθ 92
(4), (2) sin ( ) 2
2 2
= + = +∫ ∫ ∫ π π πθ


[ ] ( )
− = + ⇔ = +



A 1 B 1 2 22
⇒ = = = = ++
A 3 2 2
+= − = − +
B 3 A 3 2 2
+= − = − + = − + +
Newton’s second lawfor a system of particles
Bildnummer 3
Bildnummer 4
Bildnummer 5
Bildnummer 6
Bildnummer 7
Bildnummer 8
Bildnummer 9
Bildnummer 10
Bildnummer 11
Bildnummer 12
Bildnummer 13
Bildnummer 14
Bildnummer 15
Bildnummer 16
Bildnummer 17
Bildnummer 18
Bildnummer 19
Bildnummer 20
Bildnummer 21
Bildnummer 22
Bildnummer 23
Bildnummer 24
Bildnummer 25
Bildnummer 26
Bildnummer 27
Bildnummer 28
Bildnummer 29
Bildnummer 30
Bildnummer 31
Bildnummer 32
Bildnummer 33
Bildnummer 34
Bildnummer 35
Bildnummer 36
Bildnummer 37
Bildnummer 38
Bildnummer 39
Bildnummer 40
Bildnummer 41
Bildnummer 42
Bildnummer 43
Bildnummer 45
Bildnummer 46
Bildnummer 47
Bildnummer 48
Bildnummer 49
Bildnummer 50
Bildnummer 51
Bildnummer 52
Bildnummer 53
Bildnummer 54
Bildnummer 55
Bildnummer 56
Bildnummer 57
Bildnummer 58
Bildnummer 59
Bildnummer 60
Bildnummer 61
Bildnummer 62
Bildnummer 63
Bildnummer 64
Bildnummer 65
Bildnummer 66
Bildnummer 67
Bildnummer 68
Bildnummer 69
Bildnummer 70
Bildnummer 71
Bildnummer 72
Bildnummer 73
Bildnummer 74
Bildnummer 75
Bildnummer 76
Bildnummer 77
Bildnummer 78
Bildnummer 79
Bildnummer 80
Bildnummer 81
Bildnummer 82
Bildnummer 83
Bildnummer 84
Bildnummer 85
Bildnummer 86
Bildnummer 87
Bildnummer 88
Bildnummer 89
Bildnummer 90
Bildnummer 91
Bildnummer 92
Bildnummer 93
Bildnummer 94