42
Industrial Electrical Engineering and Automation Lund University, Sweden Resonance and Multilevel converters

Resonance and Multilevel converters

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Resonance and Multilevel converters

Industrial Electrical Engineering and Automation

Lund University, Sweden

Resonance and Multilevel

converters

Page 2: Resonance and Multilevel converters

Conventional 2-level Inverter

• Topology reference

• Two level output: ±Vdc/2

• High dv/dt (=𝑉𝑑𝑐

𝑡𝑠𝑤)

• Few components

• Easy to control

• EMC reducing

implementation required

One phase leg of a 2-level inverter

Page 3: Resonance and Multilevel converters

Multilevel Inverters

Introduction:

• Inverters with 3+ voltage levels are

called multilevel inverters

• m-1 capacitors split the DC voltage into

m levels (m-1 levels in the line voltage)

• The switches select the correct level

• The output only changes 1 level

up/down at a time (𝑑𝑣

𝑑𝑡=

𝑉𝑑𝑐/(𝑚−1)

𝑡𝑠𝑤)

Example in figure:

Assume m = 5 which means 4 capacitors are

used to split up the DC voltage.

Then the output shown in the figure is:

𝑉𝑜𝑢𝑡 =𝑉𝑑𝑐2−𝑉𝑑𝑐4

=𝑉𝑑𝑐4

Simplified m-level

inverter

Page 4: Resonance and Multilevel converters

Multilevel Inverters pros/cons

Benefits:

• Less total harmonic distortion

• Can run on lower switching frequency

• Less component stress

• Lower component voltage rating

Drawbacks:

• Higher complexity

• Higher amount of components

Page 5: Resonance and Multilevel converters

Neutral Point Clamped Multilevel

Inverter (NPCMLI )

Principle:

• The DC voltage is split into smaller

levels by the capacitors.

• Diodes are used to clamp each

switch to one capacitor voltage

level.

• Switch state determines output

voltage

Components:

• Number of capacitors: m-1

• Number of clamping diodes: (m-

1)(m-2) per phase

• Number of switches: 2(m-1) per

phase

• All components must have voltage

rating higher than Vdc/(m-1)

5-level Natural Point

Clamped Inverter

Page 6: Resonance and Multilevel converters

NPCMLI pros/cons

Benefits:

• Easy to control.

Drawbacks:

• High amount of clamping

diodes when number of

voltage levels is high.

• Capacitor unbalance

occurs when transferring

real power.

3-level Natural Point

Clamped Converter

Page 7: Resonance and Multilevel converters

Capacitor Clamped Multilevel

Inverter (CCMLI )

Principle:

• Same basic principle as the NPCMLI

• Capacitors are used to clamp the

device voltage to one voltage level

• Has redundant switching states, which

makes capacitor balancing possible.

Components:

• Number of DC-bus capacitors: m-1

• Number of clamping capacitors: (m-

1)(m-2)/2 per phase

• Number of switches: 2(m-1) per phase

• All components must have voltage

rating higher than Vdc/(m-1)

Page 8: Resonance and Multilevel converters

CCMLI pros/cons

Benefits:

• Redundant switch combinations makes voltage

balancing possible

Drawbacks:

• High amount of clamping capacitors when

number of voltage levels is high

• Capacitors are more expensive and bulky than

diodes

• Balancing modulation is very complicated and

requires high switching frequency resulting in

high switching losses

Page 9: Resonance and Multilevel converters

Modular Multilevel Inverter (MMI)

Principle:

• Modularized setup with submodules.

• Each submodule have a capacitor

charged to Vdc/(m-1).

• The submodules can be inserted to

make their capacitor contribute to the

output.

• Has redundant switching states, which

makes capacitor balancing possible.

Components:

• Number of capacitors: 2(m-1) per phase

+2

• Number of switches: 4(m-1) per phase

• 2 inductors per phase (to take up

voltage difference when switching

occurs)

Page 10: Resonance and Multilevel converters

MMI pros/cons

Benefits:

• Modularized setup

• Redundant switch combinations makes voltage

balancing possible

• The number of required components dose not

grow quadratic with number of levels.

Drawbacks:

• Complicated balancing modulation

Page 11: Resonance and Multilevel converters

Matrix Converter

© Mats Alaküla L5 – 3-phase modulation

• Three VARYING levels IN

• Modulation to any

number of potentials

OUT

• No intermediate Energy

Storage

• Simple modulation

• Sort the three input

levels in [min med

max] and ”think 3-

level”

• Difiicult Switching

Page 12: Resonance and Multilevel converters

Star C

Principle:

• The switches generate block-shaped voltage pulse

• The pulse is shaped to a semi-sinusoidal pulse

• This pulse is fed to the output capacitor for one of the phases

The Star C topology got two different approaches: a) The

series resonant (soft switched) and b) the inductive (hard

switched).

Page 13: Resonance and Multilevel converters

Star C pros/cons

Benefits:

• Low number of semiconductor switches (compared to MLI:s)

• Very low output voltage derivatives

Drawbacks of series resonant Star C:

• May run in to problems if the load is

unsymmetrical

Drawbacks of inductive Star C:

• Higher switching losses as a result of hard

switching

Page 14: Resonance and Multilevel converters

2- and 3-level inverter simulations

One phase leg of the 2-lvl inverter

One phase leg of the 3-lvl inverter

Page 15: Resonance and Multilevel converters

Modulation - Control of voltage

time area

Electric Drives

Control

0when

1when

sv

svv

b

a

c

0when 0

1when

s

suusvvsu

k

kba

i

u e

L R ,

a v

b v

0

+ b v

+ a v

k u c v 1 s

0 s

15

Page 16: Resonance and Multilevel converters

Output voltage

Electric Drives

Control

v

t

u

v

v

a

b

u k

0

T 2T 3T

c

t

1 y 2 y 3 y

16

Page 17: Resonance and Multilevel converters

Control with both flanks

Electric Drives

Control

++ + yyy ),(

+

-

u

T 0

+ y y

k u

+

+

+

0

0

2/

dtuYdtuy k

T

k

+

2/

2/

T

T

k dtuy

2/

0

0

T

k dtuY

T/2

17

+ - 0 T T

2

y

m y m y * 3 y y *

3 y y * 3 y *

3 y

Page 18: Resonance and Multilevel converters

Industrial Electrical Engineering and Automation

Lund University, Sweden

Page 19: Resonance and Multilevel converters

To Simulink !

© Mats Alaküla L5 – 3-phase modulation

Page 20: Resonance and Multilevel converters

Balancing the capacitor clamped

inverter

One phase leg of a 5-lvl

capacitor clamped inverter

Available switch states and

corresponding voltage evolution (from “Flying Capacitor Multilevel Inverters and DTC

Motor Drive Applications” by M. Escalante, J. Vannier,

A. Arzandé)

Page 21: Resonance and Multilevel converters

Simulation work to do

• Add the motor model

• Balancing modulation for the Modular

Multilevel Inverter

• Balancing circuit for the Diode Clamped

Multilevel Inverter

• Adjust all simulations to specifications

One phase leg of the 5-lvl diode

clamped inverter

One phase leg of the 5-lvl

modular inverter

Page 22: Resonance and Multilevel converters

Capacitor Clamped MLI

- Kapacitanser i serie

- Mäta alla kapacitans

värden

- Look-up Table i

Spice

Page 23: Resonance and Multilevel converters

CCMLI - Balansering

Page 24: Resonance and Multilevel converters

Modular MLI

- Balansera en fas som i

CCMLI

- Balansera tre faser –

Se modular.pdf

Page 25: Resonance and Multilevel converters

Natural Point Clamped MLI

- 3-level version (simulering)

- Fler nivåer => Balanserings

problem

- Balansera med extra krets

Page 26: Resonance and Multilevel converters

NPCMLI - Balansering

Page 27: Resonance and Multilevel converters

Two quadrant DC converters : II

u

0 T 2T 3T t

0 T 2T 3T t

u

u*

u m

U dc

U

U dc

dc,max

U dc,max

y1

y2

y3

+

Udc

-

+

u

-

i

27

Page 28: Resonance and Multilevel converters

© Mats Alaküla L5 – 3-phase modulation

The generic 3-phase load

R

R

R

L

L

L

+ ae

+ be

+ ce

+ au

+ bu

+ cu

ai

bi

ci

edt

diLiRu

edt

diLiRue

edt

diLiRue

edt

diLiRu

ca

cc

j

ba

bb

j

aa

aa

++

+++

++

++

3

4

3

2

3

2

3

2

3

2

Page 29: Resonance and Multilevel converters

© Mats Alaküla L5 – 3-phase modulation

Vectors in 3-phase systems

a i

b i

c i

a

b

3

4j

e

3

2j

e

1

bbaa iuiuiuiuiutp ccbbaa +++)(

Effekt-invarians

edt

diLiRu

edt

diLiRue

edt

diLiRue

edt

diLiRu

ca

cc

j

ba

bb

j

aa

aa

++

+++

++

++

3

4

3

2

3

2

3

2

3

2

Page 30: Resonance and Multilevel converters

© Mats Alaküla L5 – 3-phase modulation

Symmetric emf

3

4cosˆ

3

2cosˆ

cosˆ

tee

tee

tee

c

b

a

R

R

R

L

L

L

+ ae

+ be

+ ce

+ au

+ bu

+ cu

ai

bi

ci

Page 31: Resonance and Multilevel converters

© Mats Alaküla L5 – 3-phase modulation

Example, grid voltage vector

tj

j

c

j

ba

eEttjte

ttjte

jtt

jttt

e

jtjtte

eeeeee

+

++

++

+

+

+

+

+

+

+

+

++

)sin(cosˆ2

3

4

3

4

3)sin(

4

1

4

11cosˆ

3

2

2

3

2

1

3

4sinsin

3

4coscos

2

3

2

1

3

2sinsin

3

2coscoscos

ˆ3

2

2

3

2

1

3

4cos

2

3

2

1

3

2coscosˆ

3

2

3

2 3

4

3

2

Page 32: Resonance and Multilevel converters

© Mats Alaküla L5 – 3-phase modulation

Rotating reference frame

2

00

tj

ttj

t

eE

j

edteEdte

Use the integral of

The grid back emf

vector: ie

t

2

t

a

b

d

q

Page 33: Resonance and Multilevel converters

© Mats Alaküla L5 – 3-phase modulation

Voltage equation in the (d,q)-frame

eiLjdt

idLiRu

+++

Page 34: Resonance and Multilevel converters

© Mats Alaküla L5 – 3-phase modulation

Active power ...

3

21

22

***** ReRe)(

qqqq

dd

qdiei

dt

diLi

dt

diLRiRi

ieiiLjidt

idLiiRiutp

eiLjdt

idLiRu

++++

+++

+++

Resistive

losses Energizing

inductances

Power absorbed

by the grid back emf

)cos()cos(ˆ)cos()( , phasermsphase IEiEiEtp 32

3

Stationarity:

Page 35: Resonance and Multilevel converters

© Mats Alaküla L5 – 3-phase modulation

3-phase converters – 8 switch states

)0,0,1( )0,1,1( )0,1,0(

)1,1,0( )1,0,0( )1,0,1()1,1,1(

)0,0,0(

)0,0,1(u

)0,1,0(u

)1,0,0(u

)0,1,1(u

)1,1,0(u

)1,0,1(u

)1,1,1(u

)0,0,0(u

)1,1,1(0)0,0,0(

)0,1,1(3

2)1,0,0(

)1,0,1(3

2)0,1,0(

)1,1,0(3

2)0,0,1(

3

4

3

2

uu

ueUu

ueUu

uUu

j

dc

j

dc

dc

Page 36: Resonance and Multilevel converters

© Mats Alaküla L5 – 3-phase modulation

3-phase converters - sinusoidal references

***

***

**

6

1

2

1

6

1

2

1

3

2

ab

ab

a

uuu

uuu

uu

c

b

a

***** )sin()cos( ba ujutjtueuu tj ++

)3

4cos(

3

2

)3

2cos(

3

2

)cos(3

2

**

**

**

tuu

tuu

tuu

c

b

a

Page 37: Resonance and Multilevel converters

© Mats Alaküla L5 – 3-phase modulation

3-phase converters modulation

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 -400

-200

0

200

400

Simplest with sinusoidal references...

... but the DC link voltage is badly utilized.

Page 38: Resonance and Multilevel converters

© Mats Alaküla L5 – 3-phase modulation

3-phase converters – symmetrization

3 phase potentials, only 2 vector components. One degree of

freedom to be used for other purposes.

***

***

***

zccz

zbbz

zaaz

vuv

vuv

vuv

Page 39: Resonance and Multilevel converters

© Mats Alaküla L5 – 3-phase modulation

3-phase symmetrized modulation

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 -400

-200

0

200

400

Maximum phase voltage with sinusoidal modulation : Udc/2

Maximum phase-to phase voltage with symmetrized modulation : Udc -> Phase

voltage Udc/sqrt(3), i.e. 2/sqrt(3)=1.15 times larger than with sinusoidal

modulation.

2

),,min(),,max( ******* cbacbaz

uuuuuuv

+

Page 40: Resonance and Multilevel converters

© Mats Alaküla L5 – 3-phase modulation

3-phase minimum switching modulation

****** ,,min

2,,,max

2min* cba

dccba

dcz uuu

Uuuu

Uv

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02-400

-200

0

200

400

One phase is not switching for 2 60 degree intervals ...

Page 41: Resonance and Multilevel converters

© Mats Alaküla L5 – 3-phase modulation

Modulation sequence vs. ripple

av

bv

cv

*au

*bu

*cu

mu

)0,0,0(u )0,0,1(u

)0,1,1(u

)1,1,1(u

*u

b

1

0

1

0

1

0

Page 42: Resonance and Multilevel converters

© Mats Alaküla L5 – 3-phase modulation

Modulation sequence vs. ripple

dcuu e

ei

iL

0

a

b

d

q

dte

L

eu

dt

id

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

Current ripple in the (d,q)-frame