47
Sep 27, 2017 Dr./ Ahmed Nagib Elmekawy REE 307 Fluid Dynamics II

REE 307 Fluid Dynamics II - Ahmed Nagib

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: REE 307 Fluid Dynamics II - Ahmed Nagib

Sep 27, 2017Dr./ Ahmed Nagib Elmekawy

REE 307

Fluid Dynamics II

Page 2: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

2

โ€ข Pipe in Series

โ€ข Pipe in Parallel

Page 3: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

3

โ€ข Pipe in Series

โ€ข Pipe in Parallel

Page 4: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

4

โ€ข Electrical circuits

๐‘‰๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ = ๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ร— ๐‘…๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’

โ€ข Fluid Flow

โˆ†๐‘ =๐‘“๐‘™๐‘‰2

2๐‘”๐‘‘=0.8 ๐‘“๐‘™๐‘„2

๐‘”๐‘‘5= ๐‘…๐‘„2

๐‘…: ๐‘๐‘–๐‘๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ =0.8 ๐‘“๐‘™

๐‘”๐‘‘5

Page 5: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

5

โ€ข Pipe in Series

๐‘„1 = ๐‘„2 = ๐‘„3

โ„Ž๐‘™๐ดโˆ’๐ต = โ„Ž๐‘™1 + โ„Ž๐‘™2 + โ„Ž๐‘™3

Page 6: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

6

โ€ข Pipe in Parallel

๐‘„๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ = ๐‘„1 + ๐‘„2 + ๐‘„3

โ„Ž๐‘™๐ดโˆ’๐ต = โ„Ž๐‘™1 = โ„Ž๐‘™2 = โ„Ž๐‘™3

๐‘“1๐‘™1๐‘‰12

2๐‘”๐‘‘1=๐‘“2๐‘™2๐‘‰2

2

2๐‘”๐‘‘2

๐‘‰1๐‘‰2

=๐‘“2๐‘™2๐‘‘1๐‘“1๐‘™1๐‘‘2

0.5

Page 7: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

7

โ€ข Loop

๐‘„1 = ๐‘„2 + ๐‘„3๐‘ƒ๐ด๐›พ+๐‘‰๐ด2

2๐‘”+ ๐‘ง๐ด =

๐‘ƒ๐ต๐›พ+๐‘‰๐ต2

2๐‘”+ ๐‘ง๐ต + โ„Ž๐‘™1 + โ„Ž๐‘™2

๐‘ƒ๐ด๐›พ+๐‘‰๐ด2

2๐‘”+ ๐‘ง๐ด =

๐‘ƒ๐ต๐›พ+๐‘‰๐ต2

2๐‘”+ ๐‘ง๐ต + โ„Ž๐‘™1 + โ„Ž๐‘™3

โ„Ž๐‘™2 = โ„Ž๐‘™3

Page 8: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

8

Supply at several points

Page 9: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

9

โ€ข Three Tank Problem

Page 10: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

10

โ€ข Three Tank Problem

Page 11: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

11

โ€ข Three Tank Problem

Page 12: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

12

โ€ข Three Tank Problem

Page 13: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution of 3 Tanks Problem

13

1. Assume EJ less than Za, and greater than Zc

๐ธ๐‘Ž > ๐ธ๐ฝ > ๐ธ๐‘2. Applying Bernoulli's equation between A & J

๐ธ๐‘Ž= ๐ธ๐ฝ+ โ„Ž๐‘™

ฮ”๐ธ๐‘Žโˆ’๐ฝ = ๐ธ๐ฝ โˆ’ ๐‘๐‘Ž = โ„Ž๐‘™= 0.8 ๐‘“๐‘™๐‘„๐‘Ž

2

๐‘”๐‘‘5

โˆด ๐‘„๐‘Ž =โ„Ž๐‘™๐‘”๐‘‘

5

0.8 ๐‘“๐‘™

๐‘ƒ๐‘Ž๐œ”+ ๐‘๐‘Ž +

๐‘‰๐‘Ž2

2๐‘”= ๐ธ๐‘— +

0.8 ๐‘“๐‘™๐‘„๐‘Ž2

๐‘”๐‘‘5

Page 14: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution of 3 Tanks Problem

14

Similarly between B & J : Get ๐‘„๐‘between C & J : Get ๐‘„๐‘

3. Checking the assumption

If ๐‘„๐‘Ž+ ๐‘„๐‘+ ๐‘„๐‘ = 0.0 Right Assumption

If ๐‘„๐‘Ž+ ๐‘„๐‘+ ๐‘„๐‘ โ‰  0.0 ๐‘„๐‘Ž> (๐‘„๐‘+ ๐‘„๐‘)

Wrong Assumption

๐‘„๐‘Ž< (๐‘„๐‘+ ๐‘„๐‘)

Increase the Energy of

junction (EJ), and decrease

the losses

Increase the Energy of

junction (EJ), and decrease

the losses

Page 15: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution of 3 Tanks Problem

15

4. We repeat the last step, by increasing or decreasing the value

โˆ†๐‘„ = ๐‘„๐‘Ž+ ๐‘„๐‘+ ๐‘„๐‘ โ‰… 0.0 < ๐‘‡๐‘œ๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘›๐‘๐‘’

As it won't equal to zero

Page 16: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Systems

Supply at Several Points

16

โ€ข Pipe Flows

- For known nodal demands, the rates can be partially determined.

- Flow rates & directions in the pipe routes connecting the sources

depend on the piezometrie heads at the sources and the

distribution of nodal demands.

โ€ข Velocities

- Also partially known.

โ€ข Pressures

- Conditions are the same as in case of the single source, once the

flows and velocities have been determined.

โ€ข Hydraulic calculation

- Single pipe calculation can only partially solve the system.

- Additional condition รฌs necessary.

Page 17: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution of Branched Pipe

Systems

17

โ€ข Note

In case of rectangular duct or not circular cross section.

๐‘‘ =4๐ด

๐‘ค๐‘’๐‘ก๐‘ก๐‘’๐‘‘ ๐‘๐‘’๐‘Ÿ๐‘–๐‘’๐‘ก๐‘’๐‘Ÿ (๐‘)

Page 18: REE 307 Fluid Dynamics II - Ahmed Nagib

Example

18

โ€ข Given :

โ€ข Required :

Qa, Qb, Qc, Flow Direction

L1 = 3000 m D1 = 1 m f1 = 0.014 Za = 30 m

L2 = 6000 m D2 = 0.45 m f2 = 0.024 Zb = 18 m

L3 = 1000 m D3 = 0.6 m f3 = 0.02 Zc = 9 m

Page 19: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution

19

1. Assume EJ = 25 m

2. Applying Bernoulli's equation between A & J

๐ธ๐‘Ž= ๐ธ๐ฝ+ โ„Ž๐‘™

๐‘ƒ๐‘Ž๐œ”+ ๐‘๐‘Ž +

๐‘‰๐‘Ž2

2๐‘”= ๐ธ๐‘— +

0.8 ๐‘“๐‘™๐‘„๐‘Ž2

๐‘”๐‘‘5

ฮ”๐ธ๐‘Žโˆ’๐ฝ = ๐ธ๐ฝ โˆ’ ๐‘๐‘Ž = โ„Ž๐‘™= 0.8 ๐‘“๐‘™๐‘„๐‘Ž

2

๐‘”๐‘‘5

โˆด ๐‘„๐‘Ž =โ„Ž๐‘™๐‘”๐‘‘

5

0.8 ๐‘“๐‘™=

30โˆ’25 ร—9.8ร—15

0.8 ร—0.014ร—3000

โˆด ๐‘„๐‘Ž = 1.2 m3/s

Page 20: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution

20

3. Similarly between B & J and C & J

โˆด ๐‘„๐‘ =25โˆ’18 ร—9.8ร—0.455

0.8 ร—0.024ร—6000= 0.105 m3/s

โˆด ๐‘„๐‘ =25โˆ’9 ร—9.8ร—0.65

0.8 ร—0.02ร—1000= 0.873 m3/s

โˆ†๐‘„ = ๐‘„๐‘Ž+ ๐‘„๐‘+ ๐‘„๐‘ = 1.2 โˆ’ 0.105 โˆ’ 0.873 = 0.222 > 0.0

๐‘„๐‘Ž = 1.2 m3/s ๐‘„๐‘ = 0.105 m3/s ๐‘„๐‘ = 0.873 m3/s

Page 21: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution

21

4. Increase energy of junction (EJ = 26.6 m)

โˆด ๐‘„๐‘Ž =โ„Ž๐‘™๐‘”๐‘‘

5

0.8 ๐‘“๐‘™=

30โˆ’26.6 ร—9.8ร—15

0.8 ร—0.014ร—3000= 0.996 m3/s

โˆด ๐‘„๐‘ =26.6โˆ’18 ร—9.8ร—0.455

0.8 ร—0.024ร—6000= 0.116 m3/s

โˆด ๐‘„๐‘ =26.6โˆ’9 ร—9.8ร—0.65

0.8 ร—0.02ร—1000= 0.916 m3/s

โˆ†๐‘„ = ๐‘„๐‘Ž+ ๐‘„๐‘+ ๐‘„๐‘ = 0.996 โˆ’ 0.116 โˆ’ 0.916 = โˆ’0.036 โ‰… 0.0

๐‘„๐‘Ž = 0.996 m3/s ๐‘„๐‘ = 0.116 m3/s ๐‘„๐‘ = 0.916 m3/s

Page 22: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution

22

Page 23: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution

23

โ€ข For more accuracy, use more assumptions, but the result can

be accepted, as โˆ†Q is very small w.r.t the smallest value, which

is Qb

โ€ข For more accuracy and saving time, use programming

languages to solve the problem.

Page 24: REE 307 Fluid Dynamics II - Ahmed Nagib

Network of pipes

24

Function of piping system:

1. Transmission ---- One single pipeline

2. Collection ---- Waste water system

3. Distribution ---- Distribution of drinking water

---- Distribution of natural gas

---- Distribution of cooling water

---- Air conditioning systems

---- Distribution of blood in veins and

arteries

Page 25: REE 307 Fluid Dynamics II - Ahmed Nagib

Types of Network

25

1. Branched network

Properties

1. Lower reliability

2. High down time

3. Less expensive

4. Used in rural area

Page 26: REE 307 Fluid Dynamics II - Ahmed Nagib

Types of Network

26

2. Looped network

Properties

1. Higher reliability

2. lower down time

3. More expensive

4. Used in urban area

Page 27: REE 307 Fluid Dynamics II - Ahmed Nagib

Looped Networks

27

Page 28: REE 307 Fluid Dynamics II - Ahmed Nagib

Looped Networks

28

โ€ข Pipe Flows

โžข Flow rates and directions are unknown.

โ€ข Velocities

โžข The velocities and their directions are known only after the

flows have been calculated.

โ€ข Pressures

โžข Conditions are the same as in case of branched networks

once the flows and hydraulic losses have been calculated

for each pipe.

โ€ข Hydraulic calculation

โžข The equations used for single pipe calculation are not

sufficient.

โžข Additional conditions have to be introduced.

โžข Iterative calculation process is needed.

Page 29: REE 307 Fluid Dynamics II - Ahmed Nagib

Network Components

29

1.Pipes

2.Pipes fitting

3.Valves

4.Pumps / Compressors

5.Reservoir and tanks

Page 30: REE 307 Fluid Dynamics II - Ahmed Nagib

Network Analysis โ€“ Hardy Cross Method

30

โ€ข Pipe/Element/Branch: 12, 23, 36, 16, 34, 65, 45

โ€ข Hydraulic node (junction): 1, 2, 3, 4, 5, 6

โ€ข Loop: 12361, 63456

Page 31: REE 307 Fluid Dynamics II - Ahmed Nagib

Network Analysis โ€“ Hardy Cross Method

31

โ€ข It is not acceptable that the outlet of consumption

is a junction

Page 32: REE 307 Fluid Dynamics II - Ahmed Nagib

Basic Equations

32

1. Continuity equation ฯƒ๐‘„ at any node = 0.0

2. Energy equation ฯƒโ„Ž๐‘™๐‘œ๐‘ ๐‘  around any closed loop = 0.0

For losses โ„Ž๐‘™=0.8 ๐‘“๐‘™๐‘„2

๐‘”๐‘‘5

๐‘“ = fn(Re, ๐œ€

๐‘‘) from Moody Chart

Page 33: REE 307 Fluid Dynamics II - Ahmed Nagib

Basic Equations

33

โ€ข In case of using programming, we can't use moody chart

Hazen Williams equation Colebrook equation

โ„Ž๐‘™๐ฟ=

๐‘…๐‘„๐‘›

๐ท๐‘š

๐‘› = 1.852

๐‘š = 4.8704

๐‘… =10.675

๐ถ๐‘›,

๐ถ = 60 โŸท 140

๐ถ : is a constant depending on

the pipe age and roughness

(pipe condition)

1

๐‘“= โˆ’2 log

ฮคํœ€ ๐ท

3.7+

2.51

๐‘…๐‘’ ๐‘“

โ„Ž๐‘™๐ฟ= ๐‘“

๐‘‰2

2๐‘”๐‘‘

โ€ข Colebrook is a curve fitting

โ€ข 1st equation is solved by

trial & error

โ€ข Colebrook equation is the

most commonly used in the

industrial field

Rough Smooth

Page 34: REE 307 Fluid Dynamics II - Ahmed Nagib

Hardy Cross Method

34

1. Assume flow rate at each pipe ๐‘„0, so that:

โ€ข The velocity range between 1 - 3 m/s

โ€ข Satisfying the continuity equation

2. If โ„Ž๐‘™ = 0.0 (stop) Impossible

If โ„Ž๐‘™ โ‰  0.0

2. Adjust ๐‘„: ๐‘„ = ๐‘„0 + โˆ†๐‘„

โ„Ž๐‘™๐‘œ๐‘ ๐‘  = ๐‘Ÿ๐‘„๐‘› = ๐‘Ÿ ๐‘„0 + โˆ†๐‘„ ๐‘›

โ„Ž๐‘™๐‘œ๐‘ ๐‘  = ๐‘Ÿ ๐‘„0๐‘› + ๐‘›โˆ†๐‘„๐‘„0

๐‘›โˆ’1 + โ€ฆ . .

Since ฯƒโ„Ž๐‘™๐‘œ๐‘ ๐‘  = ฯƒ๐‘Ÿ๐‘„๐‘› = 0.0 โˆด โˆ’ฯƒ๐‘Ÿ ๐‘„0|๐‘„0|๐‘›โˆ’1 = ฯƒ๐‘Ÿ ๐‘›|๐‘„0|

๐‘›โˆ’1โˆ†๐‘„

Page 35: REE 307 Fluid Dynamics II - Ahmed Nagib

Hardy Cross Method

35

โˆด โˆ’๐‘Ÿ๐‘„0|๐‘„0|๐‘›โˆ’1 =๐‘Ÿ๐‘›|๐‘„0|

๐‘›โˆ’1โˆ†๐‘„

โˆด โˆ†๐‘„ =โˆ’๐‘Ÿฯƒ๐‘„0|๐‘„0|

๐‘›โˆ’1

ฯƒ๐‘Ÿ ๐‘›|๐‘„0|๐‘›โˆ’1

โ„Ž๐‘™๐‘œ๐‘ ๐‘  =0.8 ๐‘“๐‘™๐‘„2

๐‘”๐‘‘5= ๐‘Ÿ๐‘„๐‘›

where

n=2

๐‘Ÿ =0.8 ๐‘“๐‘™

๐‘”๐‘‘5โ€ฆโ€ฆpipe resistance

Page 36: REE 307 Fluid Dynamics II - Ahmed Nagib

Hardy Cross Method

36

Note:

Since โ„Ž๐‘™๐‘œ๐‘ ๐‘  won't reach 0.0

Then Hardy Cross Method is used till

ฯƒ |โˆ†๐‘„| <Small value (Tolerance)

Page 37: REE 307 Fluid Dynamics II - Ahmed Nagib

Network Analysis โ€“ Hardy Cross Method

37

โ€ข Pipe/Element/Branch: 12, 23, 36, 16, 34, 65, 45

โ€ข Hydraulic node (junction): 1, 2, 3, 4, 5, 6

โ€ข Loop: 12361, 63456

Page 38: REE 307 Fluid Dynamics II - Ahmed Nagib

Kirchhoff's Laws

38

Flow continuity at junction of pipes

The sum of all ingoing and outgoing flows in each node equals

zero (ฯƒ๐‘„๐‘–= 0).

Head loss continuity at loop of pipes

The sum of all head-losses along pipes that compose a complete

loop equals zero (ฯƒโˆ†๐ป๐‘–; = 0).

โ€ข Hardy Cross Method

o Method of Balancing Heads

o Method of Balancing Flows

โ€ข Linear Theory

โ€ข Newton Raphson

โ€ข Gradient Algorithm

Page 39: REE 307 Fluid Dynamics II - Ahmed Nagib

Hardy CrossMethod of Balancing Heads

39

Step 1

Arbitrary flows are assigned to each pipe; (ฯƒ๐‘„๐‘– = 0).

Step 2

Head-loss in each pipe is calculated.

Step 3

The sum of the head-losses along each loop is checked.

Step 4

lf ฯƒโˆ†๐ป๐‘– differs from the required accuracy, a flow

correction ๐›ฟ๐‘„ is introduced in loop โ€˜iโ€™

Step 5

Correction ๐›ฟ๐‘„ is applied in each loop (clockwise or anti-

clockwise). The iteration continues with Step 2

Page 40: REE 307 Fluid Dynamics II - Ahmed Nagib

Hardy CrossMethod of Balancing Heads

40

โˆด โˆ†๐‘„ =โˆ’ฯƒ๐‘Ÿ๐‘„0|๐‘„0|

๐‘›โˆ’1

ฯƒ๐‘Ÿ ๐‘›|๐‘„0|๐‘›โˆ’1

๐›ฟ๐‘„๐‘– =โˆ’ฯƒ๐‘–=1

๐‘› โˆ†๐ป๐‘–

2ฯƒ๐‘–=1๐‘› |

โˆ†๐ป๐‘–๐‘„๐‘–

|

Page 41: REE 307 Fluid Dynamics II - Ahmed Nagib

Dealing with network pressure heads

41

1. Using valves or fittings

โ€ข Valves and fittings are source of energy loss

Page 42: REE 307 Fluid Dynamics II - Ahmed Nagib

Dealing with reservoir

42

1. Draw a pipe connecting the tanks, and it's resistance = โˆž2. This pipe creates a new loop

3. The losses between the tanks = the difference between the

heads of the tanks, and it's sign depends on the direction of

the loop

Example:

โ„Ž๐‘ก๐‘Ž๐‘›๐‘˜(๐ด) = 100 ๐‘š

โ„Ž๐‘ก๐‘Ž๐‘›๐‘˜(๐ต) = 70 ๐‘š

โˆ†โ„Ž = 100 โˆ’ 70 = +30 ๐‘š(+) the flow direction in the

pipe is the same direction

of loop III

Page 43: REE 307 Fluid Dynamics II - Ahmed Nagib

Example

43

Page 44: REE 307 Fluid Dynamics II - Ahmed Nagib

Example

44

Page 45: REE 307 Fluid Dynamics II - Ahmed Nagib

Example

45

L ๐‘Ÿ๐‘„0|๐‘„0|๐‘›โˆ’1 ๐‘Ÿ๐‘›|๐‘„0|

๐‘›โˆ’1

3-4

4-1

1-3

5(-30)(30)

6(70)(70)

3(35)(35)

5(2)(30)

6(2)(70)

3(2)(35)

28575 1350

L ๐‘Ÿ๐‘„0|๐‘„0|๐‘›โˆ’1 ๐‘Ÿ๐‘›|๐‘„0|

๐‘›โˆ’1

1-2

2-3

3-1

1(15)(15)

2(-35)(35)

3(-35)(35)

1(2)(15)

2(2)(35)

3(2)(35)

-5900 380

โˆ†๐‘„1 =โˆ’28575

1350= โˆ’21.17 ๐‘š3/๐‘  โˆ†๐‘„2 =

5900

380= 15.53 ๐‘š3/๐‘ 

|โˆ†๐‘„| = 21.17 + 15.5 = 36.67 > Tolerance

Page 46: REE 307 Fluid Dynamics II - Ahmed Nagib

Epanet Software

46

Page 47: REE 307 Fluid Dynamics II - Ahmed Nagib

Why do we solve network problems ?

47

1. Replacement and renovation of networks

2. Network Design

Consumption of network elements

Flow rate of network

Select Velocity (1-3 m/s)

Diameter

3. Selecting pumps, valves and fittings