31
Ramanova spektroskopija Igor Lukacevic, Dept. Of Physics, UJJS Predavanje 9 Atomska fizika i spektroskopija

Ramanova spektroskopija · 2015. 2. 17. · mikroskopija Jednostavna ili nikakva priprema uzorka (voda odlicno otapalo za Raman i ne rasprsuje se na plastici ili staklu) Prednosti

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Ramanova spektroskopija

    Igor Lukacevic, Dept. Of Physics, UJJS

    Predavanje 9 Atomska fizika i spektroskopija

  • Sadrzaj

    Uvod

    Princip rada

    Osobine Ramanove spektroskopije

    Instrumentacija

    Primjene

  • Ramanova spektroskopija – uvod

    C. V. Raman (1888 – 1970)

    • Nobelova nagrada 1930.

    • Journey into Light: Life

    and Science of C. V.

    Raman, G.

    Venkataraman, 1988.

  • Ramanova spektroskopija – uvod

    Ramanovo rasprsenje ili Ramanov efekt

    Neelasticno rasprsenje fotona.

  • Ramanova spektroskopija – uvod

    Osnovne osobine

    Dotice se rovibracijske strukture tvari

    Uzorak u plinovitom, tekucem ili krutom stanju

    Izvor zracenja – laser

    Ne mijesati s fluorescencijom

  • Ramanova spektroskopija – princip

  • Ramanova spektroskopija – princip

    Ram

    an

    ov p

    om

    ak

    ∆𝜔

    𝑐𝑚−1

    =1 λ0−

    1 λ1

    Stokesov pomak:

    𝐸𝑓 > 𝐸𝑖, 𝜔𝑜𝑢𝑡 < 𝜔𝑖𝑛

    Rayleighevo rasprsenje: 𝐸𝑓 = 𝐸𝑖,

    𝜔𝑜𝑢𝑡 = 𝜔𝑖𝑛

    Anit-Stokesov pomak: 𝐸𝑓 < 𝐸𝑖, 𝜔𝑜𝑢𝑡 > 𝜔𝑖𝑛

  • Spectrum of CCl4, using an Ar+

    laser at 488 nm

    Ramanova spektroskopija – princip

  • The oscillating electric field of the excitation light.

    The induced dipole moment from this oscillating field.

    The molecular polarizability changes with bond length.

    The bond length oscillates at vibrational frequency.

    Hence the polarizability oscillates at same frequency.

    Substitute.

    Remember trig identity.

    Induced dipole has Rayleigh,

    Stokes, and anti-Stokes

    components.

    E E0 cosext

    induced E E0 cos ex t

    0 r req d

    dr

    r req rmax cosvibt

    0 d

    dr

    rmax cosvibt

    induced 0 d

    dr

    rmax cos vibt

    E0 cosex t 0E0 cos ex t

    E0rmaxd

    dr

    cos ex t cosvibt

    cosx cosy 1

    2cos x y cos x y

    induced 0E0 cosex t

    E0rmax

    2

    d

    dr

    cos ex vib t cos ex vib t

    Ramanova spektroskopija – princip

  • Ramanova spektroskopija – princip

    Molekularna polarizabilnost

  • Ramanova spektroskopija – princip

    Molekularna polarizabilnost

    𝑟~1

    𝜖

  • Spektar PETN

    eksploziva (D.N.

    Batchelder, Univ. of

    Leeds)

    Ramanova spektroskopija – osobine

  • Nedestruktivna / neinvazivna

    metoda

    Ne ovisi o temperaturi/tl

    aku

    ν ≥ 100 𝑐𝑚−1 Jednostavna mikroskopija

    Jednostavna ili nikakva priprema

    uzorka (voda odlicno

    otapalo za Raman i ne rasprsuje se na plastici ili

    staklu)

    Prednosti Ramanove spektroskopije

    Ramanova spektroskopija – osobine

  • Ramanova spektroskopija – osobine

  • Ramanova spektroskopija – osobine

    Spektar antracena

    A: Ar+ laser (514.5 nm)

    B: Nd:YAG laser (1064 nm)

    𝐼~1

    λ4 →

    zelimo krace λ

    Fluorescencija → zelimo duze λ

  • • Rayleigh = 105 – 106 SS ili ASS

    • ψ𝑣𝑖𝑟𝑡 ≈ ψ𝑟𝑒𝑎𝑙 → 𝑃𝑔𝑠→𝑒𝑥𝑐 ≈ 1

    • 𝐼𝑟𝑒𝑠 = 102 − 106 𝐼𝑟𝑎𝑚𝑎𝑛

    • c ≥ 10-8 M

    • kromofor

    Ramanova spektroskopija – osobine

    Rezonantni Ramanov ucinak

  • Ramanova spektroskopija – osobine

    • Surface-enhanced Raman spectroscopy

    • Resonance Raman spectroscopy

    • Surface-enhanced resonance Raman spectroscopy (SERRS)

    • Angle-resolved Raman spectroscopy

    • Hyper Raman

    • Spontaneous Raman spectroscopy (SRS)

    • Optical tweezers Raman spectroscopy (OTRS)

    • Stimulated Raman spectroscopy

    • Spatially offset Raman spectroscopy (SORS)

    • Coherent anti-Stokes Raman spectroscopy (CARS)

    • Raman optical activity

    • Transmission Raman

    • Inverse Raman spectroscopy.

    • Tip-enhanced Raman spectroscopy (TERS)

    • Surface plasmon polaritons enhanced Raman scattering (SPPERS)

  • Instrumentacija

    • Slab I → treba jak intenzitet

    • Monokromatski izvor → jednostavniji spektar

    • Monokromatski izvor → niska snaga

    Lampe

    •Ar+ Ion: 488.0 and 514.5 nm

    •Kr+ Ion: 530.9 and 647.1 nm

    •He:Ne: 632.8 nm

    •Diode Lasers: 782 and 830 nm

    •Nd: YAG: 1064 (532 when doubled) nm

    Laseri

    500 mW Ar ion laser – eBay $1000

  • Tipicne snage izvora

    Ion lasers, 40 W cw

    He:Ne, 10 W cw

    YAG (Yttrium aluminium garnet – Y3Al5O12), 1 J/10 ns pulse (100 MW average pulse)

    Poboljsani detektori – potrebna manja snaga

    Diode laser, 25 mW

    Ar+, 5 mW

    Instrumentacija

    SSD, SDD, SPD, PIN, CCD

  • • laser (NIR ili Vis) +

    interferometar

    • array detektori

    Instrumentacija

    FT Raman

  • Multichannel Raman Spectroscopy

    Instrument of Hans Hallen in Phyiscs Dept. at North Carolina State.

  • KTiOPO4 + Rb

    NSOM Raman Imaging

    A near-field scanning microscope was used and the Raman signal was

    used to key the substrate response.

  • Chemical Mapping

    • Focus laser to small spot.

    • Tune spectrometer to particular Raman transition peak.

    • Raster scan the sample under the laser beam, record intensity changes. Resultant map correlates with

    substance.

    • Acquire an entire spectrum at every point, then choose the feature

    with which to key the image.

    Motorized stage from

    Renishaw for chemical

    mapping.

    This is a drug tablet.

    The yellow

    corresponds to the

    active ingredient.

    Particles are in the

    10’s of µm range.

  • Chemical Imaging

    • Now defocus the laser (not a small spot, but rather “baths” the sample in laser radiation).

    • Pass the emitted radiation through a narrow bandpass filter, adjusted to a particular

    wavelength, chosen to be a certain Raman band.

    • Focus this light on the CCD camera. Bright regions correspond to locations of substance giving

    rise to Raman signal.

    Mixture of cocaine and sugar. Bright spots are cocaine.

  • Primjena u restauraciji

    • Ovo je freska iz 12. st. iz crkve u Italiji, koju je

    trebalo restaurirati

    • Koje boje upotrijebiti?

    • Raman analiza pomoću Ramanove spektroskopije

    identificira boje i pigmente koji su prisutni u originalu,

    dozvoljavajući ispravan izbor materijala za čišćenje i

    ponovno bojanje nakon toga, kako bi se vratilo

    originalno stanje

  • Applications - Paint Chips

    Forensic analysis of paint chips in vehicle accidents. Often

    multiple layers. Can analyze with IR by stripping successive

    layers. Image edge with microRaman.

    • Layers 1 and 3 turned out to be rutile phase TiO2 - a white

    paint.

    • Layer 2 was a goethite, a red pigment and corrosion inhibitor.

    • Layer 4 was molybdate orange, a common red paint in the 70’s

    in North America and still used in the U.K. today.

    • Layer 5 was a silicate based paint. Data arising from a case

    investigated by LAPD.

  • Applications - Gem Forgery

    GE POL (1999) →

    brown type IIa diamonds = naturally clear diamonds

  • Applications - Gem Forgery

    GE POL (1999) →

    brown type IIa diamonds = naturally clear diamonds

    Naturally clear diamond Originally brown diamond

  • Applications - Bullet Proof Glass

    Identify poly(carbonate) from poly(methylmethacrylate).

    Both used for shatter-proof glass

  • Applications - Sunscreen Formulations

    Here are the spectra of 5 common

    sunscreen ingredients. Raman is able to

    determine from a spectrum on the arm

    the nature of the sunscreen being used.

    A: ODPABA (octyl N,N-dimethyl-p-

    aminobenzoic acid)

    B: OMC (octyl p-methoxycinnamate)

    C: BZ3 (oxybenzone)

    D: OCS (octyl salicylate)

    E: DBM (dibenzoylmethane)

    G. R. Luppnow et al.,

    J. Raman. Spec. 34,

    743 (2003).

  • Literatura

    1. http://cartwright.chem.ox.ac.uk/tlab/605/html/introduction01.htm

    2. http://www.spectroscopynow.com/raman?tzcheck=1

    3. http://www.wurm.info/

    4. http://rruff.info/

    5. http://www.horiba.com/de/scientific/products/raman-spectroscopy/

    6. http://nsdl.niscair.res.in/bitstream/123456789/801/1/

    7. http://www.azom.com/article.aspx?ArticleID=10089

    8. http://www.gia.edu/

    http://cartwright.chem.ox.ac.uk/tlab/605/html/introduction01.htmhttp://cartwright.chem.ox.ac.uk/tlab/605/html/introduction01.htmhttp://cartwright.chem.ox.ac.uk/tlab/605/html/introduction01.htmhttp://www.spectroscopynow.com/raman?tzcheck=1http://www.spectroscopynow.com/raman?tzcheck=1http://www.wurm.info/http://www.wurm.info/http://rruff.info/http://rruff.info/http://www.horiba.com/de/scientific/products/raman-spectroscopy/http://www.horiba.com/de/scientific/products/raman-spectroscopy/http://www.horiba.com/de/scientific/products/raman-spectroscopy/http://www.horiba.com/de/scientific/products/raman-spectroscopy/http://nsdl.niscair.res.in/bitstream/123456789/801/1/http://nsdl.niscair.res.in/bitstream/123456789/801/1/http://www.azom.com/article.aspx?ArticleID=10089http://www.azom.com/article.aspx?ArticleID=10089http://www.gia.edu/