Porozni materijali

Embed Size (px)

DESCRIPTION

Important properties

Citation preview

  • 5/21/2018 Porozni materijali

    1/67

    POROZNI MATERIJALITeksturalne osobine

    Silica Carbon Zeolite

    V. Dondur 2011.

  • 5/21/2018 Porozni materijali

    2/67

    Important properties are:

    Surface area - determined by BETPore structureChemical composition of the surface.

    Techniques for studying composition of surface include

    IR and Raman

    X-ray fluorescence (XRF)Low energy electron diffraction (LEED)X-ray photoelectron spectroscopy (ESCA)Auger-electron spectroscopy (AES)

  • 5/21/2018 Porozni materijali

    3/67

    Porosi ty is usually defined as the ratio of thevolume of pores and voids to the volume occupied

    by the solid.

    In many cases the internal sur face area ismuch larger than the externalsu rface area andthe agglomerate then possesses a well-definedpore structure.

  • 5/21/2018 Porozni materijali

    4/67

    Texture and morphology of poroussystems pore size

    pore shape pore-size distribution (same size or

    various sizes?)

    pore volume specific surface area of adsrbent

  • 5/21/2018 Porozni materijali

    5/67

    0.5nm

    Pore diameters micropores (< 2 nm)

    mesopores (2 - 50 nm)

    macropores (> 50 nm)

    Pore Size and Shape

    0.5nm

  • 5/21/2018 Porozni materijali

    6/67

    Table 1. Definitions: porous solidsTerm DefinitionPorous solid Solid with cavities or channels which are deeper than they are wideopen pore Cavity or channel with access to the surface

    Interconnected pore Pore which communicates with other poresBlind pore' Pore with a single connection to the surface (Deadend pore)Closed pore Cavity not connected to the surfaceVoid Space between particlesMiclopore Pore of internal width less than 2 nmMesopore Pore of internal width between 2 and 50 nmMacropore Pore of internal width greater than 50 nm

    Pore size Pore width (diameter of cylindrical porc or distance between oppositePore volume Volume of pores determined by stated methodPorosity Ratio of total pore volume to apparent volume of particle or powderTotal porosity Ratio of volume of voids and pores (open and closed) to volume occuOpen porosity Ratio of volume of voids and open pores to volume occupied by solidSurface area Extent of total surface area as determined by given method under

    conditionsExternal surface area Area of surface outside poresIntemal surface area Area of pore wallsDensity Density of solid, excluding pores and voids

    Apparent density Density of material including closed and inaccessible pores, as deter stated method

  • 5/21/2018 Porozni materijali

    7/67

    ACTIVATED Carbon pores consist of:1. Micro pores with a radius of less than 1 nm (small pores)

    2. Meso pores with a radius of 1-25 nm (medium pores)3. Macro pores with a radius larger than 25 nm (largepores)

    Large pores are used for the transport of liquid throughthe carbon, and absorption occurs in the medium andsmall pores. Pores are formed during themanufacturing process, when the carbon is activated.

    The activation basically means that pores are created ina non-porous material by means of chemical reactions.

  • 5/21/2018 Porozni materijali

    8/67

    AFM image of a typical nanoporousalumina template (dark areas arepores and the surrounding lightareas are aluminum oxide aroundthe pores (pore diameter is ~50nm)

    SEM image of a typical nanoporousalumina (dark areas are pores and

    the surrounding light areas arealuminum oxide around the pores(pore diameter is ~25nm)

  • 5/21/2018 Porozni materijali

    9/67

    SILICATE / ALUMINOSILICATE POROUS MATERIALS

    Macroporous(>500)

    Mesoporous(20-500)

    Microporous(

  • 5/21/2018 Porozni materijali

    10/67

    Figure 1 Microporo us polym er.

    These polymers are formed bycross-linking linear chains ofmonomer. Cross-links (shown asheavy lines above) create verysmall pores within the threedimensionalmatrix.

    Figure 2. Macroporou s

    polymer.

    These materials have a highdegree of cross-linking,

    preventingthem from swelling in solvents.Pores are larger than gels,but are irregular and terminateinside the matrix. Total porevolumes are typically 50%.

    Figure 3. High in ternal phase

    emuls ion. HIPE polymers,

    illustratedabove, contain extremelylarge cavities that areinterconnected.Cavities are of micrometerdimensions, rather than angstromdimensions of conventional

    polymers. Total pore volumecan exceed 90%.

    polymers

  • 5/21/2018 Porozni materijali

    11/67

    Bro ken sph ere of Cavi l ink polym er.

    This is interiorof polymer type shown in Fig. 9and shows cavities and poresfully communicating with spheresurface.

    Cavi l ink polym er with fu l ly open surface.

    This SEMphoto shows distinctive regularityof cavities in Cavilink polymers.

    Cavities have diameters greaterthan 10,000 . Higher magnificationsreveal characteristic interconnectedstructure, (see Fig. 7).

    Cavi l ink polym er with fu l ly open

    surface.

    Higher magnifications

    reveal characteristic interconnectedStructure.

  • 5/21/2018 Porozni materijali

    12/67

    Pore Shapes

    Slit

    Ink-bottle

    Cylindrical

    Wedge

    a b

    dc

  • 5/21/2018 Porozni materijali

    13/67

    Pore Diameters and MeasurementTechniques

    Experimental techniques

    capillary condensation Hg intrusion

    microscopy

  • 5/21/2018 Porozni materijali

    14/67

    Pore Shape Selectivity

    Reactant selectivity

    +

    Product selectivity

    CH3OH +

    Restricted transition-state selectivity

  • 5/21/2018 Porozni materijali

    15/67

    Why is it important? It dictates the diffusion process through thematerial.

    Pore Size and Diffusion Regimes

    Configurationaldiffusion

    Surfacemigration

    1000 100 10 1 0.1

    10-4

    10-8

    10-12

    10-16

    1000 100 10 1 0.1

    100

    50

    0

    Ea(kJ/mol)

    D(m2/s)

    Pore diameter (nm)

    Pore diameter (nm)

    Moleculardiffusion Knudsen

    diffusion

    Surfacemigration

    Knudsen number: Kn = /d

    = molecular free path length

    d= characteristic pore diameter

    Kn> 1 Knudsen diffusion

    Types of diffusion

    Molecular Knudsen

    Surface

    Cylindrical pore

    dpdm

  • 5/21/2018 Porozni materijali

    16/67

    Volumetric Adsorption Measurement

    N2(77.3 K) or

    Ar, He, CH4, CO

    2, Kr

    adsorbate

    adsorbent

    pressuregauge

    P V1

    V2

    high vacuum

    PV=nRT

  • 5/21/2018 Porozni materijali

    17/67

    Adsorption Isotherms

    0

    5

    10

    15

    20

    25

    0 0.2 0.4 0.6 0.8 1p/p

    0

    n

    ad(mmol/g)1

    Adsorption

    Desorption

    p is gas pressure

    po is vapour pressure

  • 5/21/2018 Porozni materijali

    18/67

    Adsorption Isotherms

    III

    nad

    p/p0

    VI

    nad

    p/p0

    V

    nad

    p/p0

    I

    nad

    p/p0 p/p

    II

    nad

    0

    B

    IV

    nad

    p/p0B

  • 5/21/2018 Porozni materijali

    19/67

    Langmuir AdsorptionIsotherm (Type I)

    Assumptions:

    homogeneous surface(all adsorption sites energetically identical)

    monolayer adsorption (so no multilayer adsorption)

    no interaction between adsorbed molecules

    pK

    pKnnn mmad

    1

    I

    nad

    p /p 0

  • 5/21/2018 Porozni materijali

    20/67

    LANGMUIR ISOTHERM

    Assumptions

    all adsorption sites equivalent

    ability of adsorbate to bind is independent ofwhether the adjacent sites are occupied or not.adsorbate behaves as an ideal gas in gas phaseonly monomolecular adsorption takes place

    adsorbed molecules occupy fixed sitesheat of adsorption is independent of surfacecoverage.

  • 5/21/2018 Porozni materijali

    21/67

    Type II and IV Isotherms

    Multilayer adsorption (starting at B)

    Common for pore-free materials

    Similar to II at low p

    Pore condensation at high p

    p/p

    II

    nad

    0

    B

    IV

    nad

    p /p0

    B

  • 5/21/2018 Porozni materijali

    22/67

    Type III and V Isotherms

    III

    nad

    p/p0

    V

    n

    ad

    p/p0

    Strong cohesion force betweenadsorbed molecules, e.g. whenwater adsorbs on hydrophobicactivated carbon

    Similar to III at low p

    Pore condensation at high p

  • 5/21/2018 Porozni materijali

    23/67

    Surface Area & Monolayer Capacity

    S =nmAmN

    monolayercapacity (mol/g)

    specific surfacearea (m2/g)

    area occupied by onemolecule (m2/molecule)

    Avogadros number

    (molecules/mol)

    BET model: SBET

    t model: St

  • 5/21/2018 Porozni materijali

    24/67

    Properties of Adsorbates for PhysisorptionMeasurements

    Adsorbate Boiling Point (K) Am (nm2/molecule)

    N2 77.3 0.162

    Ar 87.4 0.142CO2 194.5 0.17

    Kr 120.8 0.152

  • 5/21/2018 Porozni materijali

    25/67

    N2Adsorption Isotherm in ZSM-5

    0

    1

    2

    3

    4

    5

    6

    0 0.2 0.4 0.6 0.8 1

    p/p0

    nad(m

    mol/g)1

    Langmuir Adsorption?

    strong adsorption at low pdue to condensation inmicropores

    at higher psaturation due to finite (micro)pore volume

    Adsorption and Desorption Isotherms

    BET (B E tt T ll ) M th d

  • 5/21/2018 Porozni materijali

    26/67

    BET (Brunauer, Emmett, Teller) Method

    Modification of Langmuir isotherm

    Both monolayer and multilayer adsorption

    Layers of adsorbed molecules divided in:

    First layer with heat of adsorption Had,1

    Second and subsequent layers with Had,2= Hcond

    BET isotherm:

    BET equation does not fit entire adsorption isotherm

    different mechanisms play a role at low and at highp

    0mm0ad11pp

    CnC

    Cnppnp

    RTHH

    C condadexp

  • 5/21/2018 Porozni materijali

    27/67

    BET ADSORPTION ISOTHERMS

    Assumptions:

    Multiple layers form and langmuir model applies toeach layer.

    Heat of adsorption, Hads for first layer has a valuedetermined by properties of surface and adsorbate,but for second and all subsequent layers, it is equalto heat of vapourization H vap.

    Evaporation (or desorption) only occurs fromexposed surfaces.Rate of evaporation is equal to rate of condensationon preceding layer.

    BET Model

  • 5/21/2018 Porozni materijali

    28/67

    reality model5

    43

    21

    0

    ...321 210mad nni

    1-nn1-n1

    0

    nn1-n

    1

    0101

    0

    11

    1

    0

    0

    pKp

    k

    kkpk

    pKpk

    kkpk

    d

    an

    d

    n

    a

    d

    ada1stlayer

    nthlayer

    For every layer

    Langmuir model

    Assume

    RT

    H

    RT

    H

    RT

    H

    KKK

    KKcondn

    ads

    ee

    e

    0,n0,nn

    0,11

    0

    0

    0

    m

    ad

    111 p

    p

    C

    p

    p

    p

    p

    C

    n

    n

    RT

    HH

    C

    condads

    e

    BET Model

    BET Equation

  • 5/21/2018 Porozni materijali

    29/67

    x1c1x1cx

    V

    v

    m

    BET Equation

    p is gas pressurepo is vapour pressure

    Vm is monolayervolumeV is volume measuredof gas adsorbed

    Step 1: Plot x / [V(1-x)] vs x

    Step 2: Determine from the plotIntercept 1 / (cVm)Slope (c-1) / (cVm)

    Step 3: Calculate c, Vm

    Vm= 1/ (slope + intercept)

    o

    mm

    ppxwhere

    cV

    xc

    cVxV

    x

    /

    ,11

    1

    Vmcan be used tocalculate Specific SurfaceArea,

    SBET= VmAmwhereAmis area per adsorption sitenumber of gas molecules /

    cm3

  • 5/21/2018 Porozni materijali

    30/67

    p/p0

    nad/nm

    (B) (A)

    Low p/p0:

    filling of micropores

    favoured adsorption atmost reactive sites(heterogeneity)

    High p/p0:

    capillary condensation

    Range 0.05 < p/p0

    < 0.3 is used to determine SBET

    BET equation

    Porous Silica and Alumina

    Adsorption at Pore Wall

  • 5/21/2018 Porozni materijali

    31/67

    Adsorption at Pore Wall

    Cylindrical pore

    Ink-bottle pore

    Pore with shape of intersticebetween close-packed particles

    Adsorbed layert

    dpdm

  • 5/21/2018 Porozni materijali

    32/67

    t-method BET

    only valid in small pressure interval

    interpretation not very easy

    thickness (t) of adsorbed layer can be calculated

    plot of tversus pfor non-porous materials is thesame (has been checked experimentally)

    t-plot helps in interpretation

    0.354nm

  • 5/21/2018 Porozni materijali

    33/67

    t-method

    nm354.0m

    ad nn

    t

    tnS

    NAt

    nS

    NAnS

    ad6t

    m

    9adt

    mmt

    1073.5

    10354.0

    nad

    t

    Proportional to St

  • 5/21/2018 Porozni materijali

    34/67

    Shape of t-plots

    nm354.0m

    ad n

    nt

    t

    nad

    t

    nad

    t

    nad

    Non-porous Microporous Micro- and

    mesoporous

    St

    Smesopores

    p

    nad

    Adsorption isotherm

    t= f(p)

    Pore Size Distribution

  • 5/21/2018 Porozni materijali

    35/67

    Kelvin Equation for Nitrogen

    m

    012lnrRT

    Vpp L

    micro meso macro

    VL= 34.6810-6m3/mol molar volume

    = 8.88 mN/m surface tension

    r is surface radius

    dm(nm)

    Relativepressurep/p0

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.1 1 10 100 1000 10000

    Pore filling Model

    Cylindrical Pore Channel

    Pore Size DistributionCharge in vapor pressure for a curved surface

  • 5/21/2018 Porozni materijali

    36/67

    Hysteresis Loops

    HI

    na

    d

    p/p0

    H2

    na

    d

    p/p0

    H3

    na

    d

    p/p0

    Information on pore shape

  • 5/21/2018 Porozni materijali

    37/67

    t-curves

    p/p0

    Ads

    orbed-layerthicknesst(nm)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 0.2 0.4 0.6 0.8 1

    a

    bHalsey

    Harkins-Jura-de Boer

    333.0

    0/ln

    00.5354.0

    ppt

    5.0

    0/log034.0

    99.131.0

    ppt

    Interpretation of t Plot

  • 5/21/2018 Porozni materijali

    38/67

    t-plot of -alumina

    0

    2

    4

    6

    8

    10

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    t( nm)

    nad(mmol/g)

    St,micro= 0 m2

    /gVt,micro = 0 ml/g

    mesopores

    macropores

    St,micro = 0 m2/g

    Vt,micro = 0 ml/g

    St= 200 m2/g

    Interpretation of t-Plot

    nm354.0

    m

    ad

    n

    nt

    Dubinin-Radushkevich equation

  • 5/21/2018 Porozni materijali

    39/67

    Dubinin Radushkevich equation

    Where xrepresents the work done by the adsorption

    forces when adsorbate is brought up to a distance lfrom surface

    p

    pRT ox lne

    For porous solids Vo is taken to be the pore volume,and V, the volume adsorbed at given po/p value.

    pp

    ERTVV oo lnlnln

    2

    Volume of micropores

    )exp( 2ebVV o

    Pore Size Distribution n

  • 5/21/2018 Porozni materijali

    40/67

    Pore Size Distribution

    alumina

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    1 10 100 1000

    dp(nm)

    dV/dd(ml/g/nm)

    tr o

    o

    p

    pRT

    Vtr

    ln

    2

    nm354.0m

    ad n

    nt

    p

    p

    E

    RTVV oo lnlnln

    2

  • 5/21/2018 Porozni materijali

    41/67

    t-plot of N2Physisorption onZSM-5

    t (nm)

    0 0.5 1

    n2

    n1

    n1 = liquid N2

    n2 = solid N2

    nad

    (mmol/g

    )

    6

    3

    0

  • 5/21/2018 Porozni materijali

    42/67

    Mercury Intrusion Curve of -Alumina

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0.1 1 10 100 1000

    p(MPa)

    V(ml/g)

    Texture Data of Commercial Catalysts

  • 5/21/2018 Porozni materijali

    43/67

    Texture Data of Commercial CatalystsMaterial Mean dp(nm) SBET(m

    2/g)

    Catalyst supports

    Silica gel 10 200

    6 400

    4 800

    -Al2O3 10 150

    5 500

    Zeolite 0.6-2 400-800

    Activated carbon 2 700-1200

    TiO2 400-800 2-50

    Aerosil SiO2 - 50-200

    CatalystsMeOH synthesis (Cu/ZnO/Al2O3) 20 80

    NH3synthesis (Fe/Al2O3/K2O) 100 10

    Reforming (Pt/Re/Al2O3) 5 250

    Epoxidation (Ag/-Al2O3) 200 0.5

  • 5/21/2018 Porozni materijali

    44/67

    Mercury Intrusion Porosimetry

    pd

    14860p

    Hg does not wet surfaces; pressure is needed toforce intrusion

    From a force balance:

    (d in nm, pin bar)

    Convenient method for determining pore volumeversus pore size

  • 5/21/2018 Porozni materijali

    45/67

    Discrepancy SHgand SBETfor Microporous Materials

    Hg cannot penetrate small (micro)pores,N2can

    Uncertainty of contact angle andsurface tension values

    Cracking or deforming of samples

  • 5/21/2018 Porozni materijali

    46/67

    Surface Areas - SHgand SBET

    Adsorbent SHg SBET

    m2/g m2/g deg

    Iron Oxide 14.3 13.3 130

    Tungsten Oxide 0.11 0.10 130

    Anatase 15.1 10.3 130

    Hydroxy Apatite 55.2 55.0 130

    Carbon Black (Spheron-6) 107.8 110.0 130

    0.5 % Ru/-Al2O3 237.0 229.0 140

    0.5 % Pd/-Al2O3 115.0 112.0 140

    TiO2Powder 31.0 25.0 140

    Sintered Silica Pellets 20.5 5.0 140

    Zeolite H-ZSM-5 39.0 375.0 140

    Norit Active Carbon R1 Extra 112.0 915.0 140

  • 5/21/2018 Porozni materijali

    47/67

    Texture PropertiesN2-physisorption Hg-porosimetry

    SBET St Vp dp SHg Vp dp

    m2/g m2/g ml/g nm m2/g ml/g nm

    Wide Pore Silica 78 52 0.91 47 80 0.92 54

    -Alumina 196 202 0.49 10 163 0.49 10

    -Alumina 9 8 0.12 112 12 0.48 150

    Active Carbon 1057a 28 0.51 2 0.6 0.46 106

    Raney Ni 76 - 0.14 5.80 - - -

    ZSM-5 345 344 0.19 0.58 11 1.1 820b

    ap/p0range of 0.01-0.1 was used in the calculation.

    bintraparticle voids.

    N Adsorption Isotherms & Pore Volume

  • 5/21/2018 Porozni materijali

    48/67

    N2Adsorption Isotherms & Pore VolumeDistributions

    0

    5

    10

    15

    20

    25

    0 0.2 0.4 0.6 0.8 1p/p

    0

    nad(mmol/g)1

    wide-pore silica -alumina

    0

    5

    10

    15

    20

    25

    0 0.2 0.4 0.6 0.8 1p/p

    0

    nad(mmol/g)1

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    1 10 100 1000dpore(nm)

    dV/dd(ml/g/nm)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    1 10 100 1000dpore(nm)

    dV/dd(ml/g/nm)

    N Adsorption Isotherms & Pore Volume

  • 5/21/2018 Porozni materijali

    49/67

    N2Adsorption Isotherms & Pore VolumeDistributions

    -alumina activated carbon

    0

    5

    10

    15

    20

    25

    0 0.2 0.4 0.6 0.8 1

    p/p0

    nad(mmol/g)1

    0

    5

    10

    15

    20

    25

    0 0.2 0.4 0.6 0.8 1

    p/p0

    nad(mmol/g)1

    0.000

    0.002

    0.004

    0.006

    0.008

    0.010

    1 10 100 1000dpore(nm)

    dV/dd(ml/g/nm)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    1 10 100 1000dpore(nm)

    dV/dd(ml/g/nm)

    } Tensile strength effect

    N Adsorption Isotherms & Pore Volume

  • 5/21/2018 Porozni materijali

    50/67

    N2Adsorption Isotherms & Pore VolumeDistributions

    Raney Ni ZSM-5

    0

    5

    10

    15

    20

    25

    0 0.2 0.4 0.6 0.8 1p/p

    0

    nad(mmol/g)1

    0

    5

    10

    15

    20

    25

    0 0.2 0.4 0.6 0.8 1p/p

    0

    nad(mmol/g)1

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    1 10 100 1000dpore(nm)

    dV/dd(ml/g/nm)

    0

    2

    4

    6

    8

    10

    0.0 0.5 1.0 1.5 2.0dpore(nm)

    dV/dd(ml/

    g/nm

    Hg Intrusion Curves & Pore Volume

  • 5/21/2018 Porozni materijali

    51/67

    Hg Intrusion Curves & Pore VolumeDistributions

    wide-pore silica -alumina

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0.1 1 10 100 1000p (MPa)

    V(

    ml/g)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0.1 1 10 100 1000

    p (MPa)

    V(

    ml/g)

    0

    0.02

    0.04

    0.06

    0.08

    1 10 100 1000 10000

    dpore(nm)

    dV/dd(ml/g/nm)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    1 10 100 1000 10000dpore(nm)

    dV/dd(ml/g/nm)

    Hg Intrusion Curves & Pore Volume

  • 5/21/2018 Porozni materijali

    52/67

    Hg Intrusion Curves & Pore VolumeDistributions

    -alumina activated carbon

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0.1 1 10 100 1000

    p (MPa)

    V(

    ml/g)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0.1 1 10 100 1000p (MPa)

    V(

    ml/g)

    0.000

    0.001

    0.002

    0.003

    0.004

    0.005

    1 10 100 1000 10000dpore(nm)

    dV

    /dd(ml/g/nm)

    0.000

    0.002

    0.004

    0.006

    0.008

    0.010

    1 10 100 1000 10000dpore (nm)

    dV/dd(ml/g/nm)

    Hg Intrusion Curves & Pore Volume

  • 5/21/2018 Porozni materijali

    53/67

    Hg Intrusion Curves & Pore VolumeDistributions

    Raney Ni ZSM-5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0.1 1 10 100 1000

    p (MPa)

    V(

    ml/g)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0.1 1 10 100 1000p (MPa)

    V(

    ml/g)

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    1 10 100 1000 10000

    dpore(nm)

    dV/dd(m

    l/g/nm)

    0

    0.001

    0.002

    0.003

    0.004

    0.005

    1 10 100 1000 10000 100000

    dpore(nm)

    dV/dd(ml/g/nm)

  • 5/21/2018 Porozni materijali

    54/67

    BET- & t-plots

    wide-pore silica -alumina

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.00 0.05 0.10 0.15 0.20 0.25 0.30

    p/p0

    p/[nad(p0-p)](g/mmol)

    SBET= 78 m2/g

    C= 146

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.00 0.05 0.10 0.15 0.20 0.25 0.30

    p/p0

    p/[nad(p0-p)](g/mmol)

    SBET= 196 m2/g

    C = 97

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0.0 0.2 0.4 0.6 0.8 1.0 1.2t( nm)

    nad

    (m

    mol/g)

    St,micro=28 m2/g

    Vt,micro= 0.013 ml/g

    0

    2

    4

    6

    8

    10

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    t( nm)

    nad

    (m

    mol/g)

    St,micro= 0 m2/g

    Vt,micro = 0 ml/g

  • 5/21/2018 Porozni materijali

    55/67

    -alumina activated carbon

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.00 0.05 0.10 0.15 0.20 0.25 0.30

    p/p0

    p/[nad(p

    0-p)](g/mmol)

    SBET= 9.3 m2/g

    C= 142

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.00 0.05 0.10 0.15 0.20 0.25 0.30

    p/p0

    p/[nad(p

    0-p)](g/mmol)

    SBET= 1057 m2/g

    C = 1057/p

    0 = 0.01 - 0.1

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.0 0.2 0.4 0.6 0.8 1.0 1.2t ( nm)

    nad

    (mm

    ol/g)

    St, micro= 1.4 m2/g

    Vt,mcro = 0.001 ml/g

    0

    5

    10

    15

    0.0 0.2 0.4 0.6 0.8 1.0 1.2t( nm)

    nad

    (mm

    ol/g)

    St,micro= 856 m2/g

    Vt,micro= 0.42 ml/g

    BET- & t-plots

  • 5/21/2018 Porozni materijali

    56/67

    Raney Ni ZSM-5

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.00 0.05 0.10 0.15 0.20 0.25 0.30

    p/p0

    p/[nad(p0-p)](g/mmol)

    SBET= 76 m2/g

    C= 46

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.00 0.05 0.10 0.15 0.20 0.25 0.30

    p/p0

    p/[nad(p

    0-p)](g/mmol)

    SBET= 345 m2/g

    C = -245

    /p0: 0.01 -0.1

    0

    1

    2

    3

    4

    5

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    t ( nm)

    nad

    (mm

    ol/g)

    St,micro= 0 m2/g

    Vt,micro= 0 ml/g

    0

    2

    4

    6

    0.0 0.2 0.4 0.6 0.8 1.0 1.2t ( nm)

    nad(mm

    ol/g)

    St,micro= 344 m2/g

    Vt,micro= 0.18 ml/g

    BET- & t-plots

    Sintering of Alumina upon

  • 5/21/2018 Porozni materijali

    57/67

    Sintering of Alumina uponHeating

    Tcalc(K)

    SBET

    (m2/g)

    Sintering

    Reduction of surface area

  • 5/21/2018 Porozni materijali

    58/67

  • 5/21/2018 Porozni materijali

    59/67

    COMMERCIAL SORBENTS AND APPLICATIONSOnly four types of generic sorbents havedominated the commercial use of adsorption:

    activated carbon, zeolites, silica gel, and activatedalumina. Estimates of

    worldwide sales of these sorbents are (Humphreyand Keller, 1997)

    Activated carbon $1 billionZeolites $100 million

    Silica gel $27 millionActivated alumina $26 million

  • 5/21/2018 Porozni materijali

    60/67

    Table 2. Examples of commercial adsorption processes and sorbents

    usedSeparation AdsorbentGas Bulk SeparationsNormal paraffins/isoparaffins, aromatics Zeolite

    N2/O2 Zeolite

    O2/N2 Carbon molecular sieveCO, CH4, CO2, N2, Ar, NH3/H2 Activated carbonfollowed by zeolite (inlayered beds)

    Hydrocarbons/vent streams Activated carbon

    H2O/ethanol Zeolite (3A)Chromatographic analytical separations Wide range of inorgani and polymer resin agen

    Gas Puri f icat ion

  • 5/21/2018 Porozni materijali

    61/67

    H2O/olefin-containing cracked gas,

    natural gas, air, synthesis gas, etc. Silica, alumina, zeolite (3A)

    CO2/C2H4, natural gas, etc. Zeolite, carbon molecularsieve

    Hydrocarbons, halogenated organics,

    solvents/vent streams Activated carbon, silicalite,others

    Sulfur compounds/natural gas, hydrogen,

    liquefied petroleum gas (LPG), etc. Zeolite, activated alumina

    SO2/vent streams Zeolite, activated carbon

    Odors/air Silicalite, others

    Indoor air pollutantsVOCs Activated carbon, silicalite,resins

    Tank-vent emissions/air or nitrogen Activated carbon, silicalite

    Hg/chlor-alkali cell gas effluent Zeolite

  • 5/21/2018 Porozni materijali

    62/67

    Liquid Pur i fications

    H2/organics, oxygenated organics,halogenated organics, etc., dehydration Silica, alumina, zeolite, corn grits

    Organics, halogenated organics,

    oxygenated organics,etc./H2Owater purification Activated carbon, silicalite, resins

    Inorganics (As, Cd, Cr, Cu,

    Se, Pb, F,Cl, radionuclides, etc.)/H2Owaterpurification Activated carbon

    Odor and taste bodies/H2O Activated carbon

    Sulfur compounds/organics Zeolite, alumina, others

    Decolorizing petroleum fractions, syrups,vegetable oils, etc. Activated carbon

    Various fermentation products/fermentor effluent Activated carbon, affinity agents

    Drug detoxification in the body Activated carbon

  • 5/21/2018 Porozni materijali

    63/67

    Liquid Bu lk Separat ions

    Normal paraffins/isoparaffins, aromatics Zeolite

    p-xylene/o-xylene, m-xylene Zeolite

    Detergent-range olefins/paraffins Zeolitep-Diethyl benzene/isomer mixture Zeolite

    Fructose/glucose Zeolite

    Chromatographic analytical separations Wide range of

    inorganic, polymer,and

    affinity agents

    Pore Structures of Zeolites

  • 5/21/2018 Porozni materijali

    64/67

    Pore Structures of Zeolites

    a b

    ZSM-5 Mordenite

  • 5/21/2018 Porozni materijali

    65/67

    Figure 3: Nano-porous materials are generated after etching mesomorphic blockcopolymers selectively.

  • 5/21/2018 Porozni materijali

    66/67

  • 5/21/2018 Porozni materijali

    67/67