25
Paradigmas en Sistemas Eléctricos de Potencia Claudio Fuerte Esquivel César Angeles-Camacho Instituto de Ingeniería, UNAM [email protected] [email protected]

Paradigmas en Sistemas Eléctricos de Potencia

  • Upload
    kumiko

  • View
    53

  • Download
    3

Embed Size (px)

DESCRIPTION

Paradigmas en Sistemas Eléctricos de Potencia. Claudio Fuerte Esquivel César Angeles -Camacho Instituto de Ingeniería, UNAM. [email protected] [email protected]. Power systems: How they work. Hydro. Basics Generation & transmission Substations & transformers - PowerPoint PPT Presentation

Citation preview

Page 1: Paradigmas en Sistemas Eléctricos de Potencia

Paradigmas en Sistemas Eléctricos de Potencia

Claudio Fuerte EsquivelCésar Angeles-Camacho

Instituto de Ingeniería, UNAM

[email protected]@iingen.unam.mx

Page 2: Paradigmas en Sistemas Eléctricos de Potencia

Power systems: How they work

Nuclear

Gas or CC

Hydro

Coal

• Basics• Generation &

transmission• Substations &

transformers• Control centers

Page 3: Paradigmas en Sistemas Eléctricos de Potencia

Red eléctrica Europea

Page 4: Paradigmas en Sistemas Eléctricos de Potencia

Interconnected Mexican System

551MW

MIGUEL(SDG & E)IMPERIAL VALLEY(SCE)MEXICALI853MWSAN LUISRIO COLORADO168MW

CPU

220MW

220MW

CPD

CPT

( 2 )ROSARITO1326MW

CAÑONSN. FELIPE

SN. QUINTIN

TIJUANA559MW

ENSENADA157MW

VILLACONSTITUCION39MW

STO.DOMINGO

AGUSTIN OLACHEA

SANTIAGO

CABO SAN LUCAS II38 MW85 MW

104MW

HERMOSILLO V646MW132MW

AVALOS

FCO. VILLA

135MW

CANANEA

NVO. CASASGRANDES140MW

SANTIAGO58 MW

BLEDALES

LA PAZ I

SAN JOSEDEL CABO

P. PRIETA II

LA PAZ90MW

113MW

LORETO6MW

( 2 )

SASABE

( 2 )

( 2 )

( 2 )

( 2 )

NACOZARI161MW

CD. JUAREZ652MW

( 3 )

( 2 )

( 3 )

( 2 )

STA. CRUZ

GUAYMAS134MW

CAMARGO220MW

1098MWSAMALAYUCA

( PTECI )( PEEECo)

( EPECO)AZCARATE ( EPECO)

P. E. CALLES

MOCTEZUMA

HERCULES POT.

632MW

PTO.LIBERTAD

6 DE ABRIL156MWSANTA ANA25MW

( 2 )

( 2 )

( 2 )

CD. OBREGON275MW

TOPOLOBAMPO360MW( 2 )

( 2 )

GUAMUCHIL128MW

CULIACAN412W

CUAUHTEMOC181MW

( 2 )399MW

LA AMISTAD66MWPIEDRAS NEGRAS190MW

NAVA( 2 )

( 2 )

( 2 )

( 2 )

( 2 )( 2 )

( 2 )

( 2 )( 2 )( 2 )

NVA. ROSITA

RIO ESCONDIDO1200MWCARBON II1400MWLAREDO(CPL)

NVO. LAREDO208MWPRESA FALCON(CPL)

BROWNSVILLE(CPL)

MATAMOROS284MWRIOBRAVO520MW

FALCON24MW

320MW

295MW

G. PALACIO861MW

LERDO

ANDALUCIA

TORREONSUR

LAMPAZOS

V. GARCIA

HUINALA

1075MW

MONTERREY2798MW

REYNOSA376MW

CD. VICTORIA150MW

MATEHUALA70MWZACATECAS342MWTAMPICO

420MW

ALTAMIRA800MW

700MW

SN. L. POTOSI544MW

2100MWTUXPAN

( 2 )

( 2 )

( 2 )

( 2 )

MERIDA361MW

KOPTE33MW

CANCUN251MW102MW

NIZUC88MW

PLAYA DEL CARMEN 79MW COZUMEL34MW52MW

VALLADOLID295MWTICUL33MW

( 2 )

( 2 )

CHAMPOTON

CAMPECHE120MW

CHETUMAL71MW14MW

SABANCUY

ESCARCEGA120MW

CD. CARMEN

VILLAHERMOSA311MW

( 2 )

CARDENAS162MW

ANGOSTURA900MW

CHICOASEN1500MW

PEÑITAS420MW( 2 )

1080MWJUCHITAN175MW

JUILE

( 2)

MINATITLAN

OAXACA149MW

TEMASCAL II187MW354MW

ORIZABA367MW( 2 )

TECALI

MEZCALACARACOL600MW

ACAPULCO 350MW

INFIERNILLO1000MW( 2 )

L. CARDENAS859MW2100MW

LA VILLITA295MW

180MW

LOS MOCHIS220MW

1365MW

HUATULCO55MW

DURANGO

TEPIC149 MW

AGUASCALIENTES497MW

( 2 )

( 2 )

PTO.VALLARTA132MW

( 2 )( 2 )

( 3 )

( 3 )

LEON573MW

IRAPUATO376MW

A. PRIETA240MWCELAYA573MW

GUADALAJARA1645MW

QUERETARO545MW

( 2 )( 2 )

MAZAMITLAMORELIA193MW

SALAMANCA223MW

CD. GUZMAN115MW

COLIMA69MW

MANZANILLO151MW1900MW

( 2 )

( 2 )

CUERNAVACA116MW

( 2 )

117MW

POZA RICA201 MW

220MWMAZATEPECTEZIUTLAN130MWJALAPA129MW

LAGUNA VERDE

VERACRUZ576MW

TLAX. 318MW

PTO. PEÑASCO

SONOYTA

( 2 )

NOGALES97MW

DIABLO

EAGLE PASS(CPL)

( 2 )

ESCOBEDO303MW( 2 )

( 2 )59MWEL FUERTE

BACURATO

92MW( 2 )

( 2 )( 2 )90MW

PLAZA

( 2 )( 2 )

( 2 )

616MW

( 3 )( 2 )

452MW AZUFRES

COATZACOALCOS522 MW

( 3 )

TUXTLA191MW( 2 )

TAPACHULA140MW

14MW

SUBDIRECCIÓN DE PROGRAMACIÓNGERENCIA DE PROGRAMACIÓN DE SISTEMAS ELÉCTRICOS

( 2 )

AGUAMILPA960MW

( 2 ) ( 2 )

( 2 )

EL SAUZ 1044MW

( 2 )

( 2 )

868MW

190MW

( 2 )

CARAPAN226MW

D. GUERRA 529 MW

8

9

7

6

5

2

1

3

4

MAZATLAN228MW

( 2 )

BELICE40MW

( 2 )

( 2 )

( 2 )( 2 )

MALPASO

( 2 )

TEC

EL HABAL

( 2 )

ZAPATA

IXTAPA

MONCLOVA

237MW

63MW

74MW

347MW

814MW

108MW

HUITES422MW( 2 )( 3 )P. NUEVO

A POZA RICA IIA H. CARRANZA

A QUERETARO

TULA

APASCO

TIZAYUCA

A NECAXA

A TUXPAN

TEXCOCO

A SAN LORENZO

AYOTLA

STA. CRUZ

A YAUTEPECA ZAPATA

TOPILEJO

SAN BERNABE

A PITIRERA

DONATOGUERRA

NOPALA

VICTORIA

A LA MANGA

NOCHISTONGO

DETALLE DEL AREA METROPOLITANA

1989MW

(2)

(2)

1087MW(2)

(2)

(2)

(2)(2)

(2)

(2)

(3)

6930 MW

DETALLE

SAN LUIS POTOSI

CAPACIDAD INSTALADA CON DATOS AL 31 DIC. 2003

544MW : DEMANDA MÁXIMACOINCIDENTE DE ZONA 2003( FUENTE: PRONÓSTICODE LA DEMANDA POR SUBESTACIONES 1998 - 2012 NOV. 2003 11 EDICION

V

G

HC

N

VAPOR CONVENCIONAL

NUCLEOELECTRICA

CARBOELECTRICA

HIDROELECTRICA

GEOTERMOELECTRICA

S I M B O L O S

9

8SISTEMA BAJA CALIFORNIA

SISTEMA BAJA CALIFORNIA SUR

SISTEMA INTERCONECTADO NACIONAL

700 MW.

FILE: MAPDKJ2.PRE 12/03/04 V1

ENLACES A 400 kVENLACES A 230 kVENLACES A 115 kVENLACES A 161 kV , 138kV , 69 kV , 34.5 kV ó 13.8 KV

SISTEMA ELÉCTRICO NACIONAL RED PRINCIPAL DEINTERCONEXIÓN

( 2 )ZIMAPANDAÑUQRO.POT

S. CRUZ

105 MWW

NTE.

V. GUERRERO

292MW

A LAZARO CARDENAS

OP.INC. 230kV

( 2 )

OP. INC. 115kV

( 2 )

SALTILLO CC478MW

PUEBLA

AL 1o DE ENERO DE 2004

ACATLAN

KANASIN

MAXCANU

ATEQUIZA

554MW

C.D. LOS CABOS30 MW

( 2 )

( 2 )

( 2 )

MERIDA III

(2)

( 2 )

TULUM

YAUTEPEC

TAPEIXTLES

SAN JERONIMO

ALMOLOYA

METROPOLI

HERMOSILLO III

HERMO SILLO CC

SN. J. DEL RIO 383MW

238MW

CHIHUAHUA369MW618MW

( 2 )

POCHUTLA

( 2 )

MACUSPANA

KM. 20

OP. INC. 230 kV

TESISTAN

( 2 )

COLOMO

URUAPAN85MW

ATLACOMULCO

A ZOCAC

MORELOS

CPC( 2 )100MW

EL TRIUNFO

HERMOSI LLO IV

LOMA

( 2 )

HERCULESLA PAZ

( 2 )

ROAMXI

( 2 )( 2 )

LOMAS

( 2 )

( 2 )( 2 )

( 2 )( 2 )

28MW

10MW

VILLA INSURGENTES

43MW

CABO REALCABO BELLO

( 2 )

( 2 )

248MWANAHUAC495MW

PTO. ALTAMIRA1531MW

( 2 )

FRESNILLO

CAÑADA

POTRERILLOS

SLM II

DELICIAS592MW

CHINAMECAC.C. DOS BOCAS

1478MWTRES ESTRELLAS

JASSO

JOROBAS

VIDRIO

(2)

AGUA PRIETA42 MW

PANTEPEC383 MW

OP.INIC. 161KV

OP. INC. 230 kV

OP. INC. 230 kV

OP. INC. 230 kV

OP. INC. 230 kV

( 2 )

( 2 )

J.LBATES

NOGALES258MW

( 2 )

HUMAYA

REFORMA

TERRANOVA

NAZAS

PRIMERO DE MAYO

( 2 )

OP.INC. 230kV

CALERA II

( 2 )

( 2 )

CAMPECHE C.C.

A TRES ESTRELLAS

TEOTIHUACAN

PANAMERICANA POTENCIA

( 2 ) BALAM

( 2 )

VALLE DE JUAREZ

( 2 )

( 2 )

( 2 )

CIPRES

CTY

( 2 )

PARQUE IND.SAN LUIS

( 2 )( 2 )

CHAMPAYAN( 2 )

RZC

OP.INC. 230kV

(2)

( 2 )

265MW

( 2 )

( 2 )

PASO DEL NORTE

30MW

A ZAPATA

DEPORTIVA

(2)

43MW

COMEDERO100MW

198MW

484MW

150MW

252MW

SISTEMAS AISLADOS

a

TUL

NOPTOPTEX

CERRO DE ORO

MERIDA II

1 AREA CENTRAL

2 AREA OCCIDENTAL

3 AREA ORIENTAL

4 AREA PENINSULAR

5 AREA NORESTE

6 AREA NORTE

7 AREA NOROESTE

31MW

PIE DE LA CUESTAEL QUEMADO

59MW

CCCICLO COMBINADO

55MW

967MW

CHIHUAHUA NORTE

( 2 )

(EL ENCINO)

DIV.DELNORTE

GÜEMEZ

( 2 )

TAMOSANAHUAC

LAJA

OP.INC. 230kV

( 2 )( 2 )

POZA RICA II LERMA

ZAACHILA

Page 5: Paradigmas en Sistemas Eléctricos de Potencia
Page 6: Paradigmas en Sistemas Eléctricos de Potencia

Electric Energy Balance

Unit commitment

Page 7: Paradigmas en Sistemas Eléctricos de Potencia

Nowadays, environmental impact is a major factor in the consideration of any new electrical power scheme.

In Europe, most governments have programmes to support the generation of electricity using primary energy resources which are benign to the environment, such as

Wind Solar - photo-voltaic Micro-hydro Ocean energy Energy from municipal waste Biomass

Integración de energías renovables a SEP

Page 8: Paradigmas en Sistemas Eléctricos de Potencia

Wind Generation Embedded generation plants requires a power electronic systems that is capable of adjusting the generator frequency and voltage to the grid.

Generatorcontroller

Pitchcontroller

Grid sidecontroller

Synchronous or inductiongenerator

IGBT PWMconverters

AC DC AC

Resultant Vector

181 deg - 27%

NORTH

SOUTH

WEST EAST

4%

8%

12%

16%

20%

WIND SPEED (m/s)

>= 23.0

20.0 - 23.0

17.0 - 20.0

14.0 - 17.0

11.0 - 14.0

8.0 - 11.0

5.0 - 8.0

2.0 - 5.0

0.5 - 2.0

Calms: 5.41%

Page 9: Paradigmas en Sistemas Eléctricos de Potencia

Photovoltaic Photovoltaic means electricity from light.

The photovoltaic (PV) process converts free solar energy - the most abundant energy source on the planet - directly into electricity.

Photovoltaic systems use daylight to power ordinary electrical equipment, e.g., household appliances, computers and lighting.

Page 10: Paradigmas en Sistemas Eléctricos de Potencia

Fuel Cells

A fuel cell converts the chemical energy of hydrogen and oxygen directly to produce water, electricity, and heat.

They are therefore inherently clean and efficient and are uniquely able to address the issues of environmental degradation and energy security.

They are also safe, quiet and very reliable.

Fuelled with pure hydrogen, they produce zero emissions of carbon dioxide, oxides of nitrogen or any other pollutant.

Even if fuelled with fossil fuels as a source of hydrogen, noxious emissions are orders of magnitude below those for conventional equipment.

Page 11: Paradigmas en Sistemas Eléctricos de Potencia

Ocean PowerWave and Tidal Power Generation

Page 12: Paradigmas en Sistemas Eléctricos de Potencia

Mexican System’s Control Areas

Page 13: Paradigmas en Sistemas Eléctricos de Potencia

SubstationRemote terminal

unit

SCADA Master Station

Com

mun

icat

ion

link

Energy control center with EMS

EMS alarm displayEMS 1-line diagram

Page 14: Paradigmas en Sistemas Eléctricos de Potencia

State Estimation

Analog MeasurementsPi , Qi, Pf , Qf , V, I, θkm

Circuit Breaker Status

State Estimator

Bad DataProcessor

NetworkObservability

Check

Topology Processor

V, θ

Page 15: Paradigmas en Sistemas Eléctricos de Potencia

• Centralized– Raw measurements processed at the RTO– Very large scale system model and solution– Rely heavily on the system wide communication

• Distributed– Each SC executes its own SE– Exchange and coordination of processed data– Topology / Analog errors are processed locally

State Estimation for RTOs

Page 16: Paradigmas en Sistemas Eléctricos de Potencia

RTO

Control Area 1

Control Area 2

Control Area 3

Boundary MeasurementsEstimated States

GPS

SubstationProcessors

SubstationProcessors

SubstationProcessors

Distributed State Estimation

Page 17: Paradigmas en Sistemas Eléctricos de Potencia

State Estimation of Systems with FACTS devices

• Modified SE formulation– Network model is modified to include FACTS device

models– Estimation is formulated as a constrained optimization

problem to incorporate the FACTS device operation constraints

– FACTS device parameters may be estimated as part of the state vector or they may be assumed to be known

Page 18: Paradigmas en Sistemas Eléctricos de Potencia
Page 19: Paradigmas en Sistemas Eléctricos de Potencia
Page 20: Paradigmas en Sistemas Eléctricos de Potencia

Voltage stability region

0

crit

x0(1)

x0(2)

xcrit

f(x,) = 0

espacio de estado, x

espacio paramétrico,

Page 21: Paradigmas en Sistemas Eléctricos de Potencia

Voltage Stability Region

1000 1100 1200 1300 1400 1500 1600 1700 18001800

2000

2200

2400

2600

2800

3000

P d9 (M

W)

Pd7 (MW)

Stability BoundarySecurity Boundary

3'

1'

1

2' 3

4

2

4' 55'

Page 22: Paradigmas en Sistemas Eléctricos de Potencia

Power Electronics Applications in Electrical Power Systems

Power Electronics

It deals with the processing of electric power

It implies the interaction of three elements: copper (I), Iron (f) and principally Silicón used to control the conversion.

It has revolutionized the way of designing and operate the electrical systems, the final goal is to have intelligent systems.

It is one of the fields with major growth: It estimates that at the end of this century, 90 % of the electric power will be processed before his final use.

Page 23: Paradigmas en Sistemas Eléctricos de Potencia

High-voltage transmission: FACTS

Benefits Increase the capacity of existing transmission networks

Increase the transmission system reliability and availability

Increase dynamic and transient grid stability

Enhancement in the quality of the electric energy delivered to customers

Environmental benefits

Page 24: Paradigmas en Sistemas Eléctricos de Potencia

High-voltage transmission: FACTS

The ability of the transmission system to transmit power becomes impaired by one or more of the following steady-state and dynamic limitation

Angular stability

Voltage magnitude

Thermal limits

Transient stability

Dynamic stability

Page 25: Paradigmas en Sistemas Eléctricos de Potencia

Gracias