32
No-Clean Flux Activity under Low Standoff Components Bruno Tolla, Ph.D, Jennifer Allen, Kyle Loomis, Denis Jean ~ KESTER Corporation Mike Bixenman, DBA ~ KYZEN Corporation

No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

No-Clean Flux Activity under Low Standoff Components

Bruno Tolla, Ph.D, Jennifer Allen, Kyle Loomis, Denis Jean ~ KESTER Corporation

Mike Bixenman, DBA ~ KYZEN Corporation

Page 2: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Electronic Devices • More complex architectures and larger form factors

• Creates obstacles and challenges for • Partial activation

• Outgassing

https://www.linkedin.com/pulse/high-density-interconnect-printed-circuit-board-pcb-sally-fang

Page 3: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Leadless Components

• Low standoff gaps

• High number of interconnects

• Large solder mass under the component termination

• Poor outgassing channels

• Residues trapped under low standoff components• May not reach proper activation temperatures

• No-clean residue may be active

Page 4: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Research Purpose

• Study the influence of flux activators under low standoff components• 4 Activator types

• Halogen based: Ionic and Covalently bonded• Halogen-free : Two Zero-Halogen Packages

• 2 Reflow conditions• 3 Residue cleaning stages

• Not cleaned / Partially cleaned /Totally cleaned

• 3 component types• BGA 100 (0.8mm pitch)• Resistors 2512, 1210, 0805• QFN44, QFN100

• Customized test board • In-situ SIR measurements under components

Page 5: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

EXPERIMENTAL

©2016 Kester Corp - Kyzen Corp.

Page 6: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

SIR Flux Reliability Test Board• The IPC SIR test method using the open format B24 pattern directs the user to

setup measurement systems to obtain an electrical field strength between the positive and negative traces (gaps) to 5V for 200um of spacing (25V/mm)

• The table below shows a variety of field strengths for the IPC standard boards and the DoE board at different voltage conditions.

Page 7: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

No-Clean Solder Pastes

• No-Clean Fluxes• Chemical residues left inside the assembly

• Reliability depends on• Reactivity of no-clean post-reflow residues

• Environmental stress

ElectrochemicalMigration

Corrosion

Creep Corrosion

Conductive Anodic Filaments (CAF)

T , RH , V

Page 8: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Chemical Complexity of a PCB

AssemblyFlux

Solder Mask

•Developers

Laminate

Conformal

coating

Adhesives MetallurgyProcess Chemicals

•Cleaning

•Plating

•Etching

•Desmearing

Metal Finish

•OSP

•Imm Sn/Ag

•ENIG / ENEPIG

•HASL

Components

•Plastic body

•Wax/Oil Residues

•Packaging

Operator

•Human Perspiration

Page 9: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Fluxes

Solvents

Alcohols

Water

Vehicle

Rosin

Polyglycols

Additives

Activators

Organic acids,Rosin,

Amines, Halogens

High T solvent for fluxing byproductsMetal protection

Thermal conductionSolder Flow

Flux components

Remove surface metal oxidation

Rheological additives, Surfactants, Dispersants,

Corrosion inhibitors

Restores Metallic surface

Promotes

Solder Wetting

Oxidation Barrier

Page 10: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

SIR Test Parameters Test Coupon: Kester Flux Reliability Test BoardBias: 8 voltsTest Voltage: 8 voltsTemperature: 85°CHumidity: 85% RH Measurement Interval: every 20 minutes at conditionTest Duration: 7 Days (168 hours)

Page 11: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Reflow Profiles

• Two different reflow conditions were used with the intent to subject the flux resides to low and high heating conditions

Page 12: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Cleaning Tool Setup

©2016 Kester Corp - Kyzen Corp.

Page 13: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Cleaning Parameters

• Cleaning Conditions• No-Cleaning

• Partial Cleaning• Inline spray-in-air, 2 FPM, 3 min wash

• Total Cleaning• Inline spray-in-air, 0.5 FPM, 10 minute wash

• Wash Temperature: 65°C

• Subset of parts where removed during setup to assure partial and total cleaning effects

©2016 Kester Corp - Kyzen Corp.

Page 14: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

RESULTS AND DISCUSSION

Page 15: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Flux Residue

Partially CleanedNot Cleaned Totally Cleaned

Page 16: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Activator #4

• Halide based solder paste• Ionic form of Halogens (R.HCl)

• Large doping levels (>1,500ppm)

• Worst reliability under components of the four solder pastes tested• Chlorine based residues

• Electrochemical activity independent of reflow conditions

QFN44

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

20 440

860

1,28

01,

700

2,12

02,

540

2,96

03,

380

3,80

04,

220

4,64

05,

060

5,48

05,

900

6,32

06,

740

7,16

07,

580

8,00

08,

420

8,84

09,

260

9,68

0

minutes

19B-QFN44 20B-QFN44 21B-QFN44

22B-QFN44 23B-QFN44 24B-QFN44No Cleaning Partial Clean Fully Cleaned

CuO + 2HCl = CuCl2 + H2O

Cu2O + 2HCl = CuCl2 + Cu + H2O

Page 17: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Reliability fundamentals

• Why do halide generate active residues ?

1. Highly Ionic

2. Environmental interactions Moisture Absorption Hydrolysis Carbonation

3. Corrosion of Metallic compounds Oxidation Complexation

CuCl2 + 2H2O → CuCl2.2H2O → Cu(OH)2 + 2HCl

SnCl2 + 2H2O → Sn(OH)2 +2HCl

PbCl2 + CO2 +H2O→ PbCO3+2HCl

Cu → Cu+ + e- [E0=0.52V]

Cu+ + Cl- → CuCl [pKs=6.7]

Cu + Cl-→ CuCl + e- [E0=0.14V]Strong Cu complexes catalyze

Metal corrosion

Page 18: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Activator #4

• Why do halide generate so active residues ?

Cu + Cl-→ CuCl + e- [E0=0.14V]

Strong Cu complexes catalyze

metal corrosion

Corrosion Electrochemical Migration

CuCl2-, CuCl3

2-, CuCl42-, CuCl3

-,CuCl+

Halides generate a large array of

stable complexes

Page 19: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Activator #4 Processing impacts

Page 20: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Activator #3

• Halogen based solder paste• Halogenated Organic Compounds (R-Br)

• Large doping levels (>1,500ppm)

• Best reliability under components of the four solder pastes tested• Interplay between processing

conditions and end use environments

QFN44

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

20

440

860

1,28

0

1,70

0

2,12

0

2,54

0

2,96

0

3,38

0

3,80

0

4,22

0

4,64

0

5,06

0

5,48

0

5,90

0

6,32

0

6,74

0

7,16

0

7,58

0

8,00

0

8,42

0

8,84

0

9,26

0

9,68

0

minutes

13B-QFN44 14B-QFN44 15B-QFN44

16B-QFN44 17B-QFN44 18B-QFN44No Cleaning Partial Clean Fully Cleaned

CuO + 2HBr → CuBr2 + H2O

Cu2O + 2HBr = CuBr2 + Cu + H2O

Page 21: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Activator #3

• Why did brominated organic components generate safer residues ?• Similar Chemistries and physicochemical properties

• Fundamental differences• Lower ionicity• Halogens are “trapped” in a covalent bond

• Inert species when unreacted

• Brominated organic species have much lower heat stability

CuCl2CuBr2

CuCl2.2H2O

CuBr2.4H2O

Cu(OH)2+2HCl

Cu(OH)2+2HBr

Cu+Cl-→CuCl

Cu+Br-→CuBr

CuO + 2HBr → CuBr2 + H2O

Cu2O + 2HBr = CuBr2 + Cu + H2O

Page 22: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Activator #3 Processing impacts

Page 23: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Activator #2

• Zero-halogen Solder Paste• Substitution of the halogenated

activators by a blend of• Weak organic acids (RCOOH)

• Organic amines (RNH2, RR’NH, RR’R”N)

• This solder paste had the • Worst reliability of the four solder

pastes tested in uncleaned conditions

QFN44

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

20 500

980

1,46

01,

940

2,42

02,

900

3,38

03,

860

4,34

04,

820

5,30

05,

780

6,26

06,

740

7,22

07,

700

8,18

08,

660

9,14

09,

620

minutes

7B-QFN44 8B-QFN44 9B-QFN44

10B-QFN44 11B-QFN44 12B-QFN44No Cleaning Partial Clean Fully

CuO + 2RCOOH = Cu(RCOO)2 + H2OCu2O + 2RCOOH = Cu(RCOO)2 + Cu + H2O

Zero-halogen activator packages

can be a source of

electrochemical migration

Page 24: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Reliability Fundamentals

1. Electrolytic Path formation• Residue hygroscopicity and ionicity

2. Electrodissolution• Flux corrosiveness

3. Ion Transport• Stabilization of charged complexes

4. Electrodeposition• Complex reduction at the cathode

5. Dendritic Growth• Diffusion-driven from complex supply

Cu(RCOO)2 + xH2O + yCO2

= Cu(RCOOH)2-x(OH)y(CO3)z+ xRCOOH

Cu + 2RCOO- → Cu(RCOO)2 + 2e-

3 Basic ingredients : Moisture, Voltage bias, Ions

• Chemical Impacts on Electrochemical Migration – Zero-Halogen

Page 25: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Activator #2NoCleaning Cleaning 2 FPM / 3min Cleaning 0.5 FPM / 10 min

Act

ivat

or

2 R

amp

to

Sp

ike

Act

ivat

or

2 S

oak

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+1320 44

086

01,

280

1,70

02,

120

2,54

02,

960

3,38

03,

800

4,22

04,

640

5,06

05,

480

5,90

06,

320

6,74

07,

160

7,58

08,

000

8,42

08,

840

9,26

09,

680

minutes

7A-QFN100

7B-QFN44

7C-Passives

7D-BGA

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

20 440

860

1,28

01,

700

2,12

02,

540

2,96

03,

380

3,80

04,

220

4,64

05,

060

5,48

05,

900

6,32

06,

740

7,16

07,

580

8,00

08,

420

8,84

09,

260

9,68

0

minutes

8A-QFN100

8B-QFN44

8C-Passives

8D-BGA

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

20 420

820

1,22

0

1,62

0

2,02

0

2,42

0

2,82

0

3,22

0

3,62

0

4,02

0

4,42

0

4,82

0

5,22

0

5,62

0

6,02

0

6,42

0

6,82

0

7,22

0

7,62

0

8,02

0

8,42

0

8,82

0

9,22

0

9,62

0

10,0

20

minutes

9A-QFN100

9B-QFN44

9C-Passives

9D-BGA

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

20 480

940

1,40

0

1,86

02,

320

2,78

0

3,24

0

3,70

04,

160

4,62

0

5,08

05,

540

6,00

0

6,46

0

6,92

0

7,38

07,

840

8,30

0

8,76

0

9,22

0

9,68

0

minutes

10A-QFN100

10B-QFN44

10C-Passives

10D-BGA

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

20 460

900

1,34

01,

780

2,22

02,

660

3,10

03,

540

3,98

04,

420

4,86

05,

300

5,74

06,

180

6,62

07,

060

7,50

07,

940

8,38

08,

820

9,26

09,

700

minutes

11A-QFN100

11B-QFN44

11C-Passives

11D-BGA1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

20 420

820

1,22

0

1,62

0

2,02

0

2,42

0

2,82

0

3,22

0

3,62

0

4,02

0

4,42

0

4,82

0

5,22

0

5,62

0

6,02

0

6,42

0

6,82

0

7,22

0

7,62

0

8,02

0

8,42

0

8,82

0

9,22

0

9,62

0

10,0

20

minutes

12A-QFN100

12B-QFN44

12C-Passives

12D-BGA

Processing impacts

Page 26: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Activator #1

• Zero-Halogen solder paste• Optimized blend of:

• Weak organic acids (RCOOH)• Organic amines (RNH2, RR’NH, RR’R”N)• Corrosion inhibitors / antioxidants

• Significant reliability performance improvement under components compared to Zero-Halogen Activator #2• Interplay between processing conditions

and end use environments

QFN44

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

20 480

940

1,40

01,

860

2,32

02,

780

3,24

03,

700

4,16

04,

620

5,08

05,

540

6,00

06,

460

6,92

07,

380

7,84

08,

300

8,76

09,

220

9,68

0

minutes

1B-QFN44 2B-QFN44 3B-QFN44

4B-QFN44 5B-QFN44 6B-QFN44

No Cleaning Partial Clean Fully Cleaned

CuO + 2RCOOH = Cu(RCOO)2 + H2OCu2O + 2RCOOH = Cu(RCOO)2 + Cu + H2O

Page 27: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Activator #1NoCleaning Cleaning 2 FPM / 3min Cleaning 0.5 FPM / 10 min

Act

ivat

or

1 R

amp

to

Sp

ike

Act

ivat

or

1 S

oak

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

20 480

940

1,40

01,

860

2,32

02,

780

3,24

03,

700

4,16

04,

620

5,08

05,

540

6,00

06,

460

6,92

07,

380

7,84

08,

300

8,76

09,

220

9,68

0minutes

1A-QFN100

1B-QFN44

1C-Passives

1D-BGA

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

20 480

940

1,40

01,

860

2,32

02,

780

3,24

03,

700

4,16

04,

620

5,08

05,

540

6,00

06,

460

6,92

07,

380

7,84

08,

300

8,76

09,

220

9,68

0

minutes

2A-QFN100

2B-QFN44

2C-Passives

2D-BGA

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

20 440

860

1,28

01,

700

2,12

02,

540

2,96

03,

380

3,80

04,

220

4,64

05,

060

5,48

05,

900

6,32

06,

740

7,16

07,

580

8,00

08,

420

8,84

09,

260

9,68

0

minutes

3A-QFN100

3B-QFN44

3C-Passives

3D-BGA

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

20 460

900

1,34

01,

780

2,22

02,

660

3,10

03,

540

3,98

04,

420

4,86

05,

300

5,74

06,

180

6,62

07,

060

7,50

07,

940

8,38

08,

820

9,26

09,

700

minutes

4A-QFN100

4B-QFN44

4C-Passives

4D-BGA

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

20 440

860

1,28

01,

700

2,12

02,

540

2,96

03,

380

3,80

04,

220

4,64

05,

060

5,48

05,

900

6,32

06,

740

7,16

07,

580

8,00

08,

420

8,84

09,

260

9,68

0

minutes

5A-QFN100

5B-QFN44

5C-Passives

5D-BGA

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

20 440

860

1,28

0

1,70

0

2,12

0

2,54

0

2,96

0

3,38

0

3,80

0

4,22

0

4,64

0

5,06

0

5,48

0

5,90

0

6,32

0

6,74

0

7,16

0

7,58

0

8,00

0

8,42

0

8,84

0

9,26

0

9,68

0

minutes

6A-QFN100

6B-QFN44

6C-Passives

6D-BGA

Processing impacts

Page 28: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

CONCLUSIONS

Page 29: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Flux Activators effects

• Activator types can influence the effect on resistance and current leakage• Activator packages are designed to react with metallic oxides but can also

induce corrosion and electrochemical migration

• Safe residues requires• Hydrophobicity ~ do not attract moisture

• The “right” chemistry: metal complexation effects• A zero-halogen activator package is not a guarantee for reliability

• Volatilization or decomposition at peak reflow temperatures • Eliminate as much as possible active residues

Page 30: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Components effects

• Four component types tested• BGAs showed the highest reliability when residue was present

• Higher standoff height allowed flux residue to outgas

• Passive components exhibited some resistivity spikes but for the most part where reliability when residue was present

• QFNs were not reliable when residue was present

• Outgassing channel • A no-clean flux can be active when there is no channel for the flux to outgas

Page 31: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Reflow Profile

• Most believe that a hotter profile is better for outgassing under low standoff components• The data from this study did not show evidence of this effect

• The reflow effect provided interesting findings• Zero-halogen activators appear to be more sensitive to reflow conditions

• Attributed to the thermal instability of activators

• Halogenated activators • Brominated activator showed higher potential to volatilize and outgas

• Chlorine activator showed electrochemical activity for both soak and ramp-to-spike due to their inherent heat stability

Page 32: No-Clean Flux Activity under Low Standoff Components...SIR Flux Reliability Test Board •The IPC SIR test method using the open format B24 pattern directs the user to setup measurement

Cleaning effects

• Partial Cleaning• Residue left under the component can be detrimental

• Some activator types are more problematic than others

• Similar to partial activation of fluxes: Either you or clean well or you don’t

• Total cleaning • Improves resistivity values systematically, regardless of the

components/chemistries

• Totally cleaned parts showed good results independent of the activator package

• Cleaning well can solve the problems of highly active fluxes