56
MOSFET and Front-End Process Integration: Scaling, Challenges, and Potential Solutions Through the End of the Roadmap Tutorial, Hot Chips Conference Stanford University Sunday, August 18, 2002 Morning Session Peter M. Zeitzoff, International SEMATECH, Austin, TX

MOSFET and Front-End Process Integration: Scaling ...osman/EE597/FINFET/finfet7.pdf · International Technology Roadmap for Semiconductors (ITRS) • Industry-wide, fully international

Embed Size (px)

Citation preview

MOSFET and Front-End ProcessIntegration: Scalin g, Challen ges, and

Potential Solutions Throu gh the End ofthe Roadmap

Tutorial, Hot Chips ConferenceStanford UniversitySunday, August 18, 2002Morning Session

Peter M. Zeitzoff,International SEMATECH, Austin, TX

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.2

Outline

• Introduction/ITRS

• MOSFET scaling and its impact

• Front-end approaches and solutions

• Non-classical CMOS

• Conclusions

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.3

Introduction• IC technology: following Moore’s Law by rapidly scaling

into deep submicron regime (currently, 130nm technologygeneration)

– Increased speed– Lower power dissipation per function– Increased transistor and function density– Lower cost/function

• The scaling results in major MOSFET and processintegration issues, including

– Simultaneously maintaining satisfactory Ion (drive current) and Ileak

– High gate leakage current for very thin gate dielectrics– Fabrication and control of very abrupt, shallow, low sheet resistance

S/D extensions– Control of short channel effects for very small transistors– Etc.

• Potential solutions & approaches:– Material and process (front end): high K gate dielectric, metal gate

electrodes,…– Structural: non-classical CMOS device structures

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.4

International Technolo gy Roadmap forSemiconductors (ITRS)• Industry-wide, fully international effort to map IC

technology generations for the next 15 years– For each technology generation

• Projects targets for technology characteristics and requirements

• Assesses key needs and gaps

• Lists potential solutions

– Provides common reference for semiconductor industry: devicemanufacturers, equipment and materials vendors, researchers

• Is not meant to restrict research, pick winners– Focus: stimulating needed R&D

• Useful for planning

– Enabling factor in continuing to follow Moore’s Law

– Most of projections in this talk from 2001 ITRS

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.5

Key Overall Chip Parameters for Hi gh-Performance Lo gic, from 2001 ITRS

2001 2002 2003 2004 2005 2006 2007 2010 2013 2016

DRAM Half PItch nm 130 115 100 90 80 70 65 45 35 22

Physical Gate Length, L g nm 65 53 45 37 32 28 25 18 13 9

Nominal Power Supply Voltage (Vdd) V 1.2 1.1 1.0 1.0 0.9 0.9 0.7 0.6 0.5 0.4

Maximum on-chip local clock frequency GHz 1.7 2.3 3.1 4.0 5.2 5.6 6.7 11.5 19.4 28.8

Allowable maximum power dissipation, with heatsink

W 130 140 150 160 170 180 190 218 215 288

Number of transistors per chipMillions of transistors

276 348 439 553 697 878 1106 2212 4424

Calendar Year

8848

Near Term Long Term

•The DRAM half pitch and L g are drivers of IC technology scaling, including lithography(to be discussed by Prof. Wong)

•Technology generations (in red) defined by DRAM half pitch

•This is a dense feature: drives functional density

–Reduction factor of 0.7X ~ 1/ • 2 between generations (130nm in 2001, 90nm in 2004,65nm in 2007, etc.)h

–Three years between generations

–Gate length (L g) ≤ 0.5 X DRAM half pitch

–These are isolated features

–Rapid scaling of L g is driven by need to improve transistor speed

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.6

2001 vs. 1999 ITRS Projections of Physical GateLength (L g): High Performance Lo gic

0

10

20

30

40

50

60

70

80

90

100

2000 2002 2004 2006 2008 2010 2012 2014 2016

Year

Lg (

nm)

Lg, ’01ITRS

Lg, ’99ITRS

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.7

Outline

• Introduction/ITRS

• MOSFET scaling and its impact

• Front-end approaches and solutions

• Non-classical CMOS

• Conclusions

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.8

Hierarch y of IC Requirements and Choices

Overall Circuit Requirements

and Choices

OverallMOSFET

Requirements and Choices

MOSFETDesign

Choices

ProcessIntegration

Choices

•Chip Power

•Chip Speed

•FunctionalDensity

•Chip Cost

•Architecture

•Etc.

•Vdd

•MOSFETLeakage

•MOSFET Drivecurrent

•Parasitic seriesresistance

•Transistor size

•Vt control

•Reliability

•Etc.

•Tox, Lg, xj, Rs

•Channelengineering

•Oxynitride orHigh K gatedielec.

•Classical PlanarBulk or Non-classical CMOSStructures

•Etc.

•Thermalprocessing

•Overallprocess flow

•Processmodules

•Materialproperties

•Boronpenetration

•Etc.

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.9

Historical Data and ITRS Projections for ChipClock Frequency, Hi gh-Performance Lo gic

1

10

100

1,000

10,000

100,000

1980 1985 1990 1995 2000 2005 2010 2015

Fre

quen

cy (

MH

z)

2X / 4 Years

2X / 2 - 2½ Years

2X / 2½ YearsMPU Clock FrequencyHistorical Trend:

Gate Scaling,TransistorDesigncontributed~ 17-19%/yearArchitectural Designinnovation contributedadditional~ 21-13%/year

Actual ScalingAcceleration , OrEquivalentScalingInnovationNeeded tomaintainhistorical trend

Historical <- > 1999 ITRS 2001 ITRS

Sources: Sematech, 2001 ITRS ORTC

Courtesy:Alan Allan,Intel

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.10

Impact of Key MOSFET Parameters on CircuitPerformance

Out

CL

In

Vdd

• Transistor intrinsic delay, τ– τ ~ C Vdd/(Ion*W)

• Ion units: µA/µm• C = Cs/d + CL

– Gate dominated (local, dense logic)• C ~ CL = Cgate ~ Cox*W*Lg + Cparasitic

• Cox ~ εox/Tox

– Interconnect dominated (long leads): C ~ CL ~ Cmetal

• We won’t consider this case: Mike Thomas will cover it inInterconnect lecture

• Transistor intrinsic switchin g frequency =1/ τ

– Good metric for transistor performance–To maximize 1/ τ, maximize I on

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.11

Frequency scalin g: Transistor Intrinsic(1/τ), Fanout-4 Gate, Chip Clock

1

10

100

1000

10000

2001 2006 2011 2016

Calendar Year

Fre

quen

cy (

GH

z)

Transistor IntrinsicFrequency

Fanout-4 GateFrequency

Chip ClockFrequency

Estimatesfrom 2001ITRS—interconn-ect delaynotincluded

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.12

ITRS Drivers for Different Applications• High performance chips (MPU, for example)

– Driver: maximize chip speedÆmaximizetransistor performance

• Goal of ITRS scaling: 1/τ increases at ~17% per year, historical rate–Must maximize Ion–Consequently, Ileak is relatively high

• Low power chips (mobile applications)– Driver: minimize chip powerÆminimize Ileak (to

conserve battery power)• Goal of ITRS scaling: specific, low level of

Ileak• Consequently, 1/τ is considerably less than

for high-performance logic

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.13

Device Scalin g Approach: 2001 ITRS

• Simple models capturin g essential MOSFETphysics Æembedded in a spreadsheet

– Initial choice of scaled MOSFET parameters ismade

– Using spreadsheet, MOSFET parameters areiteratively varied to meet ITRS targets

• High Performance: 17%/year increase in 1/τ

• Low Power: specific, low level of leakage current

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.14

• Preference: scale V dd down rapidly with tech.generations

– To keep dynamic power dissipation (~Vdd2) within

acceptable bounds– For reliability, control of short channel effects (SCE),

general device scaling

• 1/Isd,leak exp. dependent on V t

• Ion stron gly dependent on gate overdrive, (V dd-Vt)

• Difficult tradeoffs between I on and I sd,leak , Vdd andVt with scalin g

Vdd and V t Device Scalin g Issues

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.15

ITRS Projections of V dd and V t Scalin g

0.0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

2001 2003 2005 2007 2009 2011 2013 2015

Y ear

Vdd

, Vt (

V)

Vdd-Low Power

Vdd-High Perf.

Vt-Low PowerVt-High Perf.

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.16

ITRS Projected Scalin g of 1/τ and I sd,leakfor Hi gh Performance and Low Power

1 0 0

1 0 0 0

1 0 0 0 0

2 0 0 1 2 0 0 3 2 0 0 5 2 0 0 7 2 0 0 9 2 0 1 1 2 0 1 3 2 0 1 5

Year

1/ (

GH

z)

1 .E -0 6

1 .E -0 5

1 .E -0 4

1 .E -0 3

1 .E -0 2

1 .E -0 1

1 .E +0 0

1 .E +0 1

Isd,leak

(µA/µm

)

Isd,leak , High Perf.

Isd,leak , Low Power Driver

1/τ, LowPower

1/τ , High Perf.Driver

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.17

Key MOSFET Scalin g Results• High-performance logic

– Average 17%/yr improvement in 1/ τ is attained

– Isd,leak is very high, particularly for 2007 andbeyond Î chip static power dissipation scalingis an issue

• Assumption: I gate ≤ Isd,leak Î uncomfortably large I gate

• Low-power logic– Very low I sd,leak target is met

• Igate ≤ Isd,leak Î Igate is very low: difficult to meet this

– 1/τ scales considerably slower than for high-performance

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.18

ITRS Projected Scalin g of PowerDissipation per Device

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

2001 2006 2011 2016

Calendar Year

Sta

tic P

ower

Dis

sipa

tion/

devi

ce

(W/d

evic

e)

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

Pow

er-delay product (fJ/device)

Static Pdiss,High-Perf.

Static Pdiss,LowPower

Power-delay product,Low Power

Power-delay product,High-Perf.

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.19

Impact of Key MOSFET Parameters on ChipPower Dissipation• Ptotal = Pdynamic + Pstatic

–Pdynamic = Cactive Vdd2 fclock

• With scaling, Cactive and fclock increase rapidly• To keep P dynamic within tolerable limits,

reduce V dd with scaling• Reduce Vdd for reliability, SCE, general device

scaling reasons, also

–Pstatic = Noff W Ileak Vdd

• With scaling, Noff increases rapidly, but Vdd andW scale down

• To keep P static within tolerable limits,constrain increase of I leak with scaling

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.20

Relative Chip Power Dissipation per ’01 ITRS,High Performance

1.E +00

1 .E +01

1 .E +02

1 .E +03

1 .E +04

20 01 20 03 20 05 20 07 20 09 20 11 20 13 20 15

Ye a r

Rel

ativ

e C

hip

Pow

er D

issi

patio

n N

orm

aliz

ed to

200

1

AllowableTotal ChipPowerDissipation

Chip Dynamic PowerDissipation

Chip Static PowerDissipation

Assumptions:

•Only one type of(high I on, high I leak)transistor, and nopower reductiontechniques.

•Simple scaling

•This is anunrealisticscenario, onlymeant to clearlyillustrate staticpower dissipationissues

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.21

Potential Solutions for Power DissipationProblems, Hi gh-Performance Lo gic

• Increasingly common approach: multipletransistor types on a chip Æmulti-Vt, multi-Tox, etc.

– Only utilize high-performance, high-leakage transistorsin critical paths—lower leakage transistors everywhereelse

– Improves flexibility for SOC

• Electrical or dynamically adjustable Vt devices(future possibility)

• Circuit and architectural techniques: pass gates,power down circuit blocks, etc .

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.22

Summary: MOSFET Scalin g• MOSFET scaling is the “raw material” for designers to

improve chip performance, control power dissipation– MOSFET scaling has historically contributed ~17% per year

in “raw” speed improvement for high-performance logic– Design and architectural innovation has contributed about

as much

• MOSFET scaling goals are critically important– High-performance logic emphasizes speed at the expense of

high leakage and static power dissipation– Low-power logic emphasizes low leakage at the expense of

speed– Dialogue between designers and technologists is essential

• Static power dissipation is a growing problem forhigh-performance logic, and there are numerousapproaches to dealing with it, esp. including design

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.23

Outline

• Introduction/ITRS

• MOSFET scaling and its impact

• Front-end approaches and solutions

• Non-classical CMOS

• Conclusions

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.24

Simplified Cross Section of a Typical PMOSFET andNMOSFET

(Not to scale)

Deep S/D: xj

Source/Drain

Deep Source/

Pre-Metal

p+ Poly Gate

PMOS Transistor

Shallow Trench Isolation (STI)

NMOS Transistor

n+ Poly Gate

P-Well

Salicided

and Poly

N-Well

Dielectric

Contact "Plug"

Drain (P+}

P -Epi

P+ Substitute

Gate OxideSource/DrainExtension (N)

Spacer

P+N+

Lg

Tox

S/D Extension: xj

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.25

Difficult Transistor Scalin g Issues• Previously discussed scaling results involve high-

level, idealized MOSFET physics– Assumption: highly scaled MOSFETs with required

characteristics can be successfully fabricated

• All lateral and vertical MOSFET dimensions (T ox,xj’s, spacer width, etc.) are scaling down rapidlyalong with L g

• With scaling, increasing difficulty in meetingtransistor requirements

– High gate leakage• Direct tunneling increases rapidly as T ox is reduced

– Poly depletion in gate electrode Æincreased effectiveTox, reduced I on

– Scaling S/D extension: x j – ρs-Æhigh R series,s/d , reducedIon

– Etc.

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.26

2001 ITRS Projections Versus Simulations of Direct Tunnelin gGate Leaka ge Current Density for Low Power Lo gic

1 .E -07

1 .E -06

1 .E -05

1 .E -04

1 .E -03

1 .E -02

1 .E -01

1 .E + 00

1 .E + 01

1 .E + 02

2001 2003 2005 2007 2009 2011 2013 2015

Ye a r

Jga

te (

A/c

m2 )

0

0 .5

1

1 .5

2

2 .5

3T

ox (nm)

Simulated J gate,oxynitride

SpecifiedJgate, ITRS

Tox

Beyond this point, oxynitridetoo leaky; high K needed

Implementation of hi gh K will be driven b y Low Power Lo gic in 2005

(Simulations courtesy of C. Osburn,NCSU and ITRS)

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.27

High K Gate Dielectric to Reduce Direct Tunnelin g

• Equivalent Oxide Thickness = EOT = T K * (3.9/K) = Tox, where 3.9 is relativedielectric constant of SiO2 and K is relative dielectric constant of high Kmaterial

– C = Cox = εox/Tox

– To first order, MOSFET characteristics with high-k are same as for SiO2

• Because T K > Tox, direct tunneling leakage much reduced with High K– If energy barrier is high enough

• Candidate materials: LaO 2/HfO2/ (K~15 - 30); Hf, Zr-SiO4 (K~12 - 16); others

Electrode

Si substrate

Tox SiO2

TK

High K Material

Electrode

Si substrate

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.28

High K Issues• Process integration issues

– Thermal stability of high K material• Conventional flow, with S/D anneal, etc., difficult

– “Replacement gate” flow is an option

– Thermal, chemical compatibility with polysilicon, & Bpenetration

• Metal electrode may be required

– Interface with Si substrate• Most form thin SiO2 layer: increases Tox,equiv

• Interface properties: increased surface states,fixed charge density; reduced mobility

• Leakage, reliability

• SCEÎfringe field effects

• New material: major challenge

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.29

Difficult Transistor Scalin g Issues• Previously discussed scaling results involve high-

level, idealized MOSFET physics– Assumption: highly scaled MOSFETs with required

characteristics can be successfully fabricated

• All lateral and vertical MOSFET dimensions (T ox,xj’s, spacer width, etc.) are scaling down rapidlyalong with L g

• With scaling, increasing difficulty in meetingtransistor requirements

– High gate leakage• Direct tunneling increases rapidly as T ox is reduced

– Poly depletion in gate electrode Æincreased effectiveTox, reduced I on

– Scaling S/D extension: x j – ρs-Æhigh R series,s/d , reducedIon

– Etc.

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.30

Polysilicon LimitationsPolysilicon depletion: band bendin g in the

polysilicon– Increases effective electrical ToxÎ reduces Eox, &

hence inversion charge– More of a problem as Tox is scaledÎ Poly doping

must increase with scaling• Ge-Si might help

• PMOSFETs: B penetration throu gh verythin oxides

– Oxy-nitrides & reduction of DT effective now

• Compatibility with hi gh K• Gate resistance of very thin gates (even

with silicide)

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.31

Metal Gate Electrodes• Metal gate electrodes are a potential

solution: probably implemented at 65nm tech. generation (2007) or beyond

–No depletion, very low resistance gate, noboron penetration, compatibility withhigh-k

– Issues• Different work functions needed for PMOS

and NMOS==>2 different metals needed– Process complexity, process integration

problems

• Etching of metal electrodes• New materials: major challenge

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.32

Difficult Transistor Scalin g Issues• Previously discussed scaling results involve high-

level, idealized MOSFET physics– Assumption: highly scaled MOSFETs with required

characteristics can be successfully fabricated

• All lateral and vertical MOSFET dimensions (T ox,xj’s, spacer width, etc.) are scaling down rapidlyalong with L g

• With scaling, increasing difficulty in meetingtransistor requirements

– High gate leakage• Direct tunneling increases rapidly as T ox is reduced

– Poly depletion in gate electrode Æincreased effectiveTox, reduced I on

– Scaling S/D extension: xj – ρs-Æhigh Rseries ,s/d, reducedIon

– Etc.

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.33

S/D Extension Issues• Increasingly abrupt, shallow, heavily doped profiles

required for successively scaled technologies– Needed for optimal devices, esp. to control SCE– Difficult to fabricate, esp. for PMOS (B)

– Tends to increase ρsÎRS/D,series

• Potential solutions– Ultra-low energy implants (< 1 KeV, B)– Rapid Thermal Processing (RTP) and spike anneal: reduces DT & TED– Increase dose as much as possible==>reduced RS/D,series

• 90 nm technology or beyond: novel doping and/orannealing

– Laser thermal annealing, etc.– Plasma or gas phase doping, etc.– Co-implant

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.34

S/D Extension Solutions

100200300

400500

600700

800900

1000

100 200 300 400 500 600 700

Xj (nm)

ρ s (

ohm

/sq.

)

130 nm node

90 nm node

65 nm node

Previous RTA Data

1 2 3 4 5 6 7

1 2

3

4

5

6

7

8

9 1

0

RTA Limits

Current spike anneal Limits

(Courtesy: L. Larson, D. Sing, R. Tichy ofInternational SEMATECH)

10 20 30 5040 60 70

100

500

1000

65 nm node and beyond: may require novel doping andannealing techniques

Tech. node specifications from 2001 ITRS

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.35

S/D Extension Issues• Increasingly abrupt, shallow, heavily doped profiles

required for successively scaled technologies– Needed for optimal devices, esp. to control SCE– Difficult to fabricate, esp. for PMOS (B)

– Tends to increase ρsÎRS/D,series

• Potential solutions– Ultra-low energy implants (< 1 KeV, B)– Rapid Thermal Processing (RTP) and spike anneal: reduces DT & TED– Increase dose as much as possible==>reduced RS/D,series

• 90 nm technology or beyond: novel doping and/orannealing

– Laser thermal annealing, etc.– Plasma or gas phase doping, etc.– Co-implant

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.36

Outline

• Introduction

• Scaling and its impact

• Front end approaches and solutions

• Non-classical CMOS

• Conclusions

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.37

Limits of Scalin g Planar, Bulk MOSFETs• 65 nm tech. generation (2007, L g = 25nm) and beyond:

increased difficulty in meeting all device requirements withclassical planar, bulk CMOS (even with material andprocess solutions: high K, metal electrodes, ….)

– Control of SCE– Impact of quantum effects and statistical variation– Impact of high substrate doping– Control of series S/D resistance (Rseries,s/d)– Need for enhanced mobility, Id,sat

– Others

Alternative device structures ( non-classical CMOS ) may beutilized

– Band engineered transistorsÆimproved transport/mobility– Ultra thin body SOI– Double gate SOI - Including FinFET and Vertical FETs.

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.38

Technology Requirement Projections for High-PerformanceLogic from 2001 ITRS: Mobility Enhancement Issue

Calendar Year 2001 2002 2003 2004 2005 2006 2007 2010 2013 2016

DRAM half p itch nm 130 115 100 90 80 70 65 45 32 22

Ph y sical Gate Len g th , L g nm 65 53 45 37 32 28 25 18 13 9

Eq uivalen t oxide th ickness, T ox nm 1.3-1.6 1.2-1.5 1.1-1.6 0.9-1.4 0.8-1.3 0.7-1.2 0.6-1.1 0.5-0.8 0.4-0.6 0.4-0.5

N ominal Pow er Su pp ly Vo lta g e (Vdd ) V 1.2 1.1 1.0 1.0 0.9 0.9 0.7 0.6 0.5 0.4

N ominal H i g h-Performance N MOS Sub-Thresho ld C urrent, I sd,leak (@ 25C)

uA/um 0.01 0.03 0.07 0.1 0.3 0.7 1 3 7 10

N ominal N MOSFET saturation drive current, I on

uA/um 900 900 900 900 900 900 900 1200 1500 1500

R eq uired Percent C urrent-D rive "Mobilit y /Transconductance Im p rovem ent"

0% 0% 0% 0% 0% 0% 0% 30% 70% 100%

Parasitic Series S /D resistance, R sd,series ohm-um 190 180 180 180 180 170 140 110 90 80

Parasitic Source/D rain R esistance (R sd ) Percent of Ideal C hannel R esistance (Vdd/Idd )

16% 16% 17% 18% 19% 19% 20% 25% 30% 35%

N MOSFET in trinsic transistor sw itch in g fre q uenc y , f i = 1/t i

GH z 610 740 890 1000 1200 1300 1500 2600 4400 6500

Ener gy p er (W /L g ate=3 ) D evice Sw itch in g Transition (C g ate*(3*L g ate )*V^2 )

fJ/D evice 0.347 0.212 0.137 0.099 0.065 0.052 0.032 0.015 0.007 0.002

S tatic Pow er D issi p ation Per (W /L g ate=3 ) D evice

W atts/D evice 5.6E-09 6.7E-09 1.0E-08 1.1E-08 2.6E-08 5.3E-08 5.3E-08 9.7E-08 1.4E-07 1.1E-07

Near Term Long Term

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.39

Band Engineered MOSFETs: Surface-channelStrained-Si MOSFET Structures

Graded Layer 0.05

= x

Drain

p+

n- Si1-yGeyy =

y

n+ Si Substrate

n+ poly

n Strained Si

Source

SiO

p- Si1-yGey Graded Layer y = 0.05

y = x

p+ Si Substrate

n+ poly

p Strained Si

Source DrainSiO2

Gate

n+ n+

high mo bilitychannels

p- Relaxed Si 1-xGex

2

Gate

n- Relaxed Si 1-xGex Strained Si 1-xGex

Courtesy of J. Hoyt - MIT

p+

+ Increased effective mobility, increased I on

- Difficult integration issues: manufacturability

- Compatibility with ultra-thin body SOI

- Cost

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.40

Electron Mobility Enhancement in Strained SiMOSFETs (Rim,et al., IEDM 1998)

Vertical Effective Field, Eeff (MV/cm)

0.00 0.25 0.50 0.75 1.00 1.25

Effe

ctiv

e E

lect

ron

Mob

ility

, µeff

(cm

2 / V s

ec)

0

200

400

600

800

Strained Si onrelaxed Si0.8Ge0.2

Unstrained Si control

Universal Mobility(S. Takagi et. al., TED '94)

Welser et. al., IEDM '94

this work

Room T

Courtesy of J. Hoyt - MIT

• Electron mobility enhancement of ~ 1.8X persists up to high Eeff (~ 1MV/cm)• Strained-Si allows “moving off” of the universal mobility curve

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.41

Strained Si:Ge

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.42

Limits of Scalin g Planar, Bulk MOSFETs• 65 nm tech. generation (2007, L g = 25nm) and beyond:

increased difficulty in meeting all device requirements withclassical planar, bulk CMOS (even with material andprocess solutions: high K, metal electrodes, ….)

– Control of SCE– Impact of quantum effects and statistical variation– Impact of high substrate doping– Control of series S/D resistance (Rseries,s/d)– Need for enhanced mobility, Id,sat

– Others

Alternative device structures (non-classical CMOS) may beutilized

– Band engineered transistorsÆimproved transport/mobility– Ultra thin body SOI– Double gate SOI - Including FinFET and Vertical FETs.

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.43

Transistor Structures

G

Planar Bulk Partially Depleted Fully Depleted SOI SOI

2. Mark Bohr, ECS Meeting PV 2001-2, Spring, 2001

+ Lower junction cap- SCE scaling difficult- Increased S/D resistance- Sensitivity to Sithickness (very thin)- - Wafer cost/availability

G

Substrate

BOX

SD

SD

Substrate

Buried Oxide (BOX)

+ Lower junction cap+ F.B. performanceboost- F.B. history effect- SCE scaling difficult- Wafer cost/availability

SD

G

Substrate

Depletion Region

+ Wafer cost / availability- SCE scaling difficult- High doping effects and Statistical variation- Parasitic junction capacitanceReferences:1. P. Zeitzoff, J. Hutchby and H. Huff, to be pub. in Internat. Jour. Of High Speed Electronics and Systems

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.44

Schematic cross section of planar bulk, UTBSOI, and DG SOI MOSFET

Ultra-thinsilicon film

Double-Gate SOI MOSFET

Si Substrate

BOX

Tsi

Bulk MOSFET

+

+

+ +++-+

--

--

--

InversionLayer

DepletionRegion

+

Si Substrate

Ultra-Thin Body SOI

Ultra-thinsilicon film

BOX

Tsi

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.45

Double Gate TransistorsSingle Gate:

Ultra-thin FD

Ultra-thin FD

S D

G

S D

Top

Bottom

Double-Gate SOI: + Enhanced scalabilit y

+ Lower junction capacitance

+ ~2x drive current

- ~2x gate capacitance - Complex process

Summar y: most advanced,optimal device structure, butdifficult to fabricate

Oxide

SUB

Oxide

SUB

2. Mark Bohr, ECS Meeting PV 2001-2, Spring, 2001

References:1. P. Zeitzoff, J. Hutchby and H. Huff, to be pub. inInternat. Jour. Of High Speed Electronics and Systems

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.46

Schematic cross section of planar bulk, UTBSOI, and DG SOI MOSFET

Ultra-thinsilicon film

Double-Gate SOI MOSFET

Si Substrate

BOX

Tsi

Bulk MOSFET

+

+

+ +++-+

--

--

--

InversionLayer

DepletionRegion

+

Si Substrate

Ultra-Thin Body SOI

Ultra-thinsilicon film

BOX

Tsi

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.47

SiO2

BOXBOX

GateGate

DrainDrainSourceSourceSiOSiO22 SiOSiO22

Simplified Cross Section of FinFET Double-Gate Device

FinFET

Courtesy of T-J. King & C. Hu - UC/Berkeley

Key advantage: relativelyconventional processing, largelycompatible with current techniques

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.48

3-D Transistor Structures

S

G

D

S

G

D

Agere ‘02

c-Si body

source

drain

PSG

gate gate

PSG

HfO2

100 nm

Vertical FET(one type ofdouble-gate

MOSFET)

REF: Mark Bohr, ECS Meeting PV 2001-2, Spring, 2001

Silicon onNothing(SON):

localizedburied oxide

(BOX)

STM ’01

REF: S. Monfray et al., ’01 IEDM, p. 645.

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.49

Non-Classical CMOS Summary• Below L g = 25nm or so, planar bulk CMOS may not

scale effectively– Enhanced mobility will be needed: strained Si on Si-Ge

is a potential solution

– Fully depleted ultra-thin body SOI and (preferably)double-gate ultra-thin body MOSFETs are more optimalthan planar bulk CMOS. Key issues:

• Effectiveness of planar bulk CMOS scaling in this regime

– Working 15nm devices reported in recent literature

• Finding effective solutions to very difficult processing issues

– Ultimate MOSFET (Lg < 10nm) may be double-gate withhigh-k, metal gate electrodes, strained Si, etc.

• Such devices will require metal electrodes with near-midgapwork functions

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.50

Conclusions• MOSFET device scaling is the raw material for meeting projected

overall chip power, performance, and density requirements– Goals/requirements/tradeoffs should be jointly discussed between

designers and technologists– Considerable design innovation and focus will be required, even

with aggressive technology scaling• Scaling goals vary for different applications

– High-performance logic driven by transistor speed requirements.Result: high leakage, static power dissipation issues

– Low-power logic driven by transistor leakage requirements.Result: lower speed than high-performance logic

• Material and process potential solutions include high-k gate dielectric,metal gate electrodes, spike annealing, and eventually, novel S/Dannealing and doping

– High-k needed first for low-power (mobile) chips• Structural potential solutions: non-classical CMOS• Structural solutions and material and process solutions being pursued

in parallel, and may be combined in the ultimate, end-of-Roadmapdevice

– Lg ≤ 10nm MOSFETs expected by the end of the Roadmap in 2016• For example: L g~15 and 20nm experimental devices reported in

literature and simulations indicate 5nm or less is feasible

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.51

Backup Slides

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.52

High-Performance Lo gic: Maximum GateLeakage Spec’s. & Simulations

2

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

2001 2003 2005 2007 2009 2011 2013 2015

Year

J g (

A/C

m)

0

0.5

1

1.5

2E

OT

(nm)

Simulated J g,oxynitride

Specified J g (<Isd,leak /Lgper 2001 ITRS)

EOT

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.53

High-Performance Lo gic Technolo gy Requirements,Data from 2001 ITRS

C a len d a r Ye a r 2 00 1 2 00 2 2 00 3 2 00 4 2 00 5 2 00 6 2 00 7 2 01 0 2 01 3 2 01 6

D R AM h a lf p itc h n m 1 30 1 15 1 00 9 0 8 0 7 0 6 5 4 5 3 2 2 2

P h y s ic a l G a te L e n g th , L g n m 6 5 5 3 4 5 3 7 3 2 2 8 2 5 1 8 1 3 9

E q u iv a len t o x id e th ic kn es s , T o x n m 1 .3 -1 .6 1 .2 -1 .5 1 .1 -1 .6 0 .9 -1 .4 0 .8 -1 .3 0 .7 -1 .2 0 .6 -1 .1 0 .5 -0 .8 0 .4 -0 .6 0 .4 -0 .5

N o m in a l P o w e r S u p p ly V o lta g e (V d d ) V 1 .2 1 .1 1 .0 1 .0 0 .9 0 .9 0 .7 0 .6 0 .5 0 .4

N o m in a l H i g h -P e rfo rm a n c e N M O S S u b -T h re s h o ld C u rren t (@ 2 5C )

u A /u m 0 .01 0 .03 0 .07 0 .1 0 .3 0 .7 1 3 7 1 0

N o m in a l N M O S F E T s a tu ra tio n d riv e c u rre n t, I o n

u A /u m 9 00 9 00 9 00 9 00 9 00 9 00 9 00 1 20 0 1 50 0 1 50 0

R e q u ire d P e rce n t C u rren t-D rive " M o b ilit y /T ra n s co n d u c tan c e Im p ro v em en t"

0 % 0 % 0 % 0 % 0 % 0 % 0 % 3 0% 7 0% 1 00 %

P a ra s itic S e ries S /D res is ta n ce , R s d ,s e r ie s o h m -u m 1 90 1 80 1 80 1 80 1 80 1 70 1 40 1 10 9 0 8 0

P a ra s itic C a p a c ita n ce P e rc e n t o f Id ea l G a te C a p a c ita n ce

1 9% 2 2% 2 4% 2 7% 2 9% 3 2% 2 7% 3 1% 3 6% 4 2%

N M O S F E T in tr in s ic tran s is to r d e la y , τ i p s 1 .65 1 .35 1 .13 0 .99 0 .83 0 .76 0 .68 0 .39 0 .22 0 .15

N M O S F E T in tr in s ic tran s is to r s w itc h in g fre q u e n c y , f i = 1 /τ i

G H z 6 06 7 42 8 88 1 00 7 1 20 5 1 32 0 1 46 3 2 57 0 4 44 5 6 51 4

R e la tiv e D e v ic e P e rfo rm an c e 1 .0 1 .2 1 .5 1 .6 2 .0 2 .1 2 .5 4 .3 7 .2 1 0 .7

E n er g y p e r (W /L g a te =3 ) D ev ic e S w itch in g T ran s itio n (C g a te * (3 *L g a te )*V ^2 )

fJ /D e v ice 0 .34 7 0 .21 2 0 .13 7 0 .09 9 0 .06 5 0 .05 2 0 .03 2 0 .01 5 0 .00 7 0 .00 2

S ta tic P o w e r D iss i p a tio n P e r (W /L g a te =3 ) D e v ic e

W a tts /D e v ic e 5 .6E -0 9 6 .7E -0 9 1 .0E -0 8 1 .1E -0 8 2 .6E -0 8 5 .3E -0 8 5 .3E -0 8 9 .7E -0 8 1 .4E -0 7 1 .1E -0 7

N e a r Te rm L o n g Te rm

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.54

Low-Standby-Power (LSTP) Lo gic Technolo gyRequirements, Data from 2001 ITRS

Calendar Year 2001 2002 2003 2004 2005 2006 2007 2010 2013 2016Technology Node 130nm 90nm 65nm 45nm 32nm 22nmPhysical Gate Length Low-Standby Power (LSTP)

nm 90 80 65 53 45 37 32 22 16 11

Equivalent Physical Oxide Thickness for Low-Standby Power LSTP Tox (EOT)

nm 2.4-2.8 2.2-2.6 2.0-2.4 1.8-2.2 1.6-2.0 1.4-1.8 1.2-1.6 0.9-1.3 0.8-1.2 0.7-1.1

Nominal Low-Standby Power LSTP Power Supply Voltage (Vdd)

V 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1 0.9 0.9

Nominal Low-Standby Power LSTP NMOS Sub-Threshold Current (@25C)

pA/um 1 1 1 1 1 1 1 3 7 10

Nominal Low-Standby Power LSTP NMOS Saturation Current Drive (Idd) (@Vdd, @25C)

uA/um 300 300 300 300 400 400 400 500 600 700

Required Percent Current-Drive "Mobility/Transconductance Improvement"

% 0% 0% 0% 0% 0% 0% 0% 10% 30% 50%

NMOSFET intrinsic transistor switching frequency, f i = 1/τ i

GHz 217 227 253 280 398 432 443 700 1096 1522

Energy per (W/Lgate=3) Device Switching Transition (Cgate*(3*Lgate)*V^2)

fJ/Device 0.448 0.381 0.277 0.204 0.163 0.123 0.095 0.047 0.024 0.014

Static Power Dissipation Per (W/Lgate=3) Device

Watts/Device 3.2E-13 2.9E-13 2.3E-13 1.9E-13 1.6E-13 1.3E-13 1.1E-13 2.0E-13 3.0E-13 3.0E-13

Near Term Long Term

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.55

Simplified Cross-Section of Hi gh KGate Dielectric Stack

Upper interfacialregion

Bulk high- kfilm

Lower interfacialregion

Gate electrode,poly

Substrate

Source Drain

Spacer

High- k GateDielectric Stack

P. Zeitzoff, MOSFET and Front-end Scaling: Hot Chips Tutorial, 8/18/02 -- p.56