12
ПРОЈЕКТОВАЊЕ ТЕХНИЧКИХ СИСТЕМА СА АСПЕКТА ПОУЗДАНОСТИ Миладиновић Слободан 1 1 Висока техничка школа струковних студија из Урошевца , Лепосавић Е_mail: [email protected] Резиме: Поузданост техничког система представља вероватноћу да ће радећи у задатим условима успешно извршавати задату функцију циља у току задатог периода времена.Најједноставније се може одредити поузданост техничког система на основу установљених отказа производа у експлоатацији.Међутим, могуће је већ у фази развоја производа одредити очекивану поузданост. Са одговарајућим анализама поузданости, може да се прогнозира поузданост система и могу да се одреде слаба места конструкције.При анализи поузданости користе се квантитативне или квалитативне методе. Квантитативне методе користе појмове и поступке математичке статистике и теорије вероватноће, а квалитативне методе имају задатак да се систематски истраже последице грешака и отказа. Кључне речи: Технички систем, поузданост, вероватноћа, математчка статистика. УВОД Отказ техничког система је догађај који ма за последицу губитак радне способности. Сваки отказ наступа после извесног временског периода рада када било који параметар функционисања достигне граничну вредност, о чему мора да се води рачуна још у фази пројектовања 1

Miladinovic 2 Komplet

  • Upload
    -

  • View
    246

  • Download
    4

Embed Size (px)

DESCRIPTION

11

Citation preview

,

_mail: [email protected]

: . ., . , . . , .

: , , , .

. , . , , , .

__________________________________

,

, . . . , , . .

, , . , . , , , .

. :

R(t)= 1- = = (1)

:

R(t)= 1- = (2)

(2) t = t (1)

1. R(t) ka F(t)

. F(t) . n, , , F(t) kako je prikazano na slici (2.).

2. F(t).

je F(t)=0. O . , , F(t) = 1.

F(t) , :

F(t) = (3)

(3) f(t)

f(t) = (4)

F(t) pojam ,, ,,. R(t) ( 3).

3. R(t) F(t)

t,

F(t + ) F(t) = - = R(t) R(t+ (5)

, :

(6)

(1.) (6.) :

== (7)

: n(t) t,

n(t+ - ,

N(= n(t+- .

(7)

0 :

= = (8)

, (4.).

4.

, , . , . , (5.)

5.

. . , .

, , , , . . , .

. : , , , . t f(t) (6.) (6.)

6.

:

t = m = = (9)

o :

t = m = (10)

, . . , , ,5

F(t) = = 0,5 (11)

. . , ., , .

( ) . , , , , . , , .

CONCLUSION

Failure of technical system is an event that results in the loss of operating capacity. Each failure occurs after a certain time period of operation when any parameter of functioning reaches a boundary value. System failure can occur due to the destruction of a mechanical part, interruption of some functional connection of the system etc., but it is also considered that failure has occurred due to the exceeding the flux limit of flux, reducing the degree of efficiency below the required value.

Object (technical system) in the reliability theory represents an object to which the reliability refers. When it comes to technical systems, the object of reliability in the design phase can be mechanical part, kinematic part, mechanical assembly, aggregate, machine and group of the machines. In reliability theory is adopted that the element presents the object which reliability is determined independently of its component parts, and that system presents the object which reliability is studied depending on its component parts, as is thoroughly analyzed in this paper.

D.Mili, Pouzdanost mainskih sistema, Univerzitet u Niu, Ni, 2005.

V.Miltenovi, Razvoj proizvoda, Univerzitet u Niu, Ni, 2003.

Z. Savi i dr.,Inenjersko mainski prirunik,Zavod za izdavanje udbenika, Beograd, 1987.

S.Miladinovi, Doktorska disertacija, Univerzitet u Niu, Ni,2010.

N.Vujanovi, Teorija pouzdanosti tehnikih sistema, Vojnoizdavaki i novinski centar, Beograd,1990

S.Miladinovi, Mainski elementi, Visoka tehnika kola strukovnih studija Uroevac sa privremenim seditem u Zveanu, Zvean 2011.

S.Miladinovi, D.Mili,Proraun elemenata mainskog sistema korienjem statistikih metoda raspodele. Statistke metode u upravljanju totalnim kvalitetom-zbornik radova, Ni, 1995., s.105-110

10

1

[

]

3

[

]

4

[

]

5

[

]

6

[

]

7

1

n

t

N

)

(

n

t

N

n

)

(

-

n

t

n

)

(

=

x

t

dt

t

f

).

(

x

t

dt

t

f

).

(

x

=

t

dt

t

f

).

(

dt

t

dF

)

(

t

D

t

D

[

]

)

(

1

t

t

R

D

+

-

[

]

)

(

1

t

R

-

)

t

D

)

(

.

)

(

)

(

)

(

t

R

t

t

t

R

t

R

t

D

D

+

-

=

l

n

t

n

t

n

t

t

n

n

t

n

t

)

(

.

)

(

)

(

)

(

D

D

+

-

=

l

)

(

.

)

(

)

(

t

n

t

t

t

n

t

n

D

D

+

-

)

(

.

)

(

t

n

t

t

N

D

D

)

t

D

t

D

)

t

D

)

t

D

t

D

D

t

)

(

t

l

0

lim

D

t

)

(

.

)

(

)

(

t

R

t

t

t

R

t

R

D

D

+

-

dt

t

R

t

dR

)

(

)

(

.

1

)

(

t

l

1

)

(

t

l

0

)

(

.

dt

t

f

t

0

)

(

dt

t

R

)

(

i

i

i

t

f

t

50

=

5

,

0

)

(

t

dt

t

f

[

]

1

[

]

2