12
機器人簡介 ME5118 Chap 4 - 林沛群 1 機器人簡介(ME5118Chap 4 Inverse Manipulator Kinematics 林沛群 國立台灣大學 機械工程學系 機器人簡介 ME5118 Chap 4 - 林沛群 Let’s start here… Forward kinematics of manipulators Inverse kinematics – This chapter 2 = , = 1, … , Given ߠ in , calculate {ܪ} or Given {ܪ} or , calculate ߠ in [ ߠ,…, ߠ ,…, ߠ ]= ( ) = ( ߠ ߠ,…, ߠ,…, ) l l l P X Y W {ܪ}

ME5118 Chap 4 - 國立臺灣大學

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ME5118 Chap 4 - 國立臺灣大學

機器人簡介 ME5118 Chap 4 - 林沛群 11

機器人簡介(ME5118)

Chap 4 Inverse Manipulator Kinematics

林沛群

國立台灣大學

機械工程學系

機器人簡介 ME5118 Chap 4 - 林沛群

Let’s start here…

Forward kinematics of manipulators

Inverse kinematics – This chapter

2

= , = 1,… ,Given in ,calculate { } or

Given { } or ,calculate in

[ , …, ,…, ]= ( )

= ( ,… , , … , )

l

l

l

P

X

Y W

{ }

Page 2: ME5118 Chap 4 - 國立臺灣大學

機器人簡介 ME5118 Chap 4 - 林沛群

Solvability -1

Assuming a robot has 6 DOFs

6 unknown joint angles (or displacements)

Given : 16 values

9 from rotation matrix (6 constraints, only 3 independent equations)

3 from translational displacement (3 independent equations)

4 trivial (4th row: [0 0 0 1])

Thus, 6 equations & 6 unknowns

Nonlinear transcendental equations

3

( , , , , , )

機器人簡介 ME5118 Chap 4 - 林沛群

Solvability -2

Reachable workspace

The volume of space that the robot end-effector can reach in at

least one orientation

Dexterous workspace

The volume of space that the robot end-effector can reach with all

orientations

4

l

l

l

lReachable workspace

Dexterous workspace

> =

Page 3: ME5118 Chap 4 - 國立臺灣大學

機器人簡介 ME5118 Chap 4 - 林沛群

Subspace

Using a 2-DOF RP manipulator as an example

Variables

5

= + 0 +−+ 0 +0 −1 0 00 0 0 1

( , )( , )

機器人簡介 ME5118 Chap 4 - 林沛群

Solvability -3

Number of solutions

Depend on number of joints

Also depends on link parameters

Ex: A manipulator with 6 rotational joints

6

Page 4: ME5118 Chap 4 - 國立臺灣大學

機器人簡介 ME5118 Chap 4 - 林沛群

Solvability -4

Ex: PUMA (6 rotational joints)

8 different solutions

Four by variation of position

structure

Shown here

(For each position structure), two by

variation of orientation structure

Some of them may be inaccessible7

= + 180°= −= + 180°

機器人簡介 ME5118 Chap 4 - 林沛群

Solvability -5

When multiple solutions exist

Solution selection criteria

o Closest solution

o Avoid Obstacles

8

Page 5: ME5118 Chap 4 - 國立臺灣大學

機器人簡介 ME5118 Chap 4 - 林沛群

Solvability -6

Method of solution

Solvable: the joint variables can be determined by an algorithm that

allows one to determine ALL the sets of joint variables associated

with a given position and orientation

o Closed-form solutions – by algebraic method or geometric method

o Numerical solutions

Now virtually all industrial manipulators has a closed-form solution

o Sufficient condition: three neighboring joint axes intersect at a point

9

P is “necessary” for Q: Q can’t be true unless P is true

P is “sufficient” for Q: knowing P to be true is adequate to conclude that Q is true

機器人簡介 ME5118 Chap 4 - 林沛群

Example: A 3-DOF RRR Manipulator -1

Inverse kinematics problem

Forward kinematics

Goal point

10

= − 0.0 +0.0 +0.0 0.0 1.0 0.00 0 0 1= − 0.00.00.0 0.0 1.0 0.00 0 0 1

( , , ) =?

Page 6: ME5118 Chap 4 - 國立臺灣大學

機器人簡介 ME5118 Chap 4 - 林沛群

Example: A 3-DOF RRR Manipulator -2

Geometric solution: Decompose the spatial

geometry into several plane-geometry problems

11

+ = + − 2 cos(180° − )= + − −2= + + −2 +

= 2 , + < 0°2 , − > 0°= − −

( , )0° < < 180°三角形內角

餘弦定理

機器人簡介 ME5118 Chap 4 - 林沛群

Example: A 3-DOF RRR Manipulator -3

Algebraic Solution

Setup equations

Solve

12

=+ = + + 2== += +

= + − −2= ( )> 1 or < 1: too far for the manipulator to reach

within 1: “two solutions”

= − 0.0 +0.0 +0.0 0.0 1.0 0.00 0 0 1= − 0.00.00.0 0.0 1.0 0.00 0 0 1

Page 7: ME5118 Chap 4 - 國立臺灣大學

機器人簡介 ME5118 Chap 4 - 林沛群

Put back to the equations

Change variables

Example: A 3-DOF RRR Manipulator -4

13

= + += + + (− ) ≜ −= + + ≜ +

= 2( , ) = cos= sindefine then

= cos cos − sin sin = cos( + )= cos sin + sin cos = sin( + )And then

機器人簡介 ME5118 Chap 4 - 林沛群

Example: A 3-DOF RRR Manipulator -5

Solve

Solve

14

+ = 2 , = 2( , )

+ + = 2 , == 2 , − 2( , )

= − −當 選不同解, 2和 2變動, 和 變動, 也跟者變動 ( , )

Page 8: ME5118 Chap 4 - 國立臺灣大學

機器人簡介 ME5118 Chap 4 - 林沛群

Solution by Reduction to Polynomial -1

Transcendental equations (nonlinear)

Ex: How to solve of the following this equation?

Method: Change to polynomials

Polynomials closed-form-solvable – up to 4 degree

15

tan 2 = , cos = 1 −1 + , sin = 21 +

機器人簡介 ME5118 Chap 4 - 林沛群

Solution by Reduction to Polynomial -2

Solution:

16

1 −1 + + b 2u1 + =( + ) −2 + − = 0

= b ± + −a + c= 2 tan (b ± + −a + c )

a, b, c大小有限制, 不一定有解

+ bsin =

If + = 0 = 180°

Page 9: ME5118 Chap 4 - 國立臺灣大學

機器人簡介 ME5118 Chap 4 - 林沛群

PUMA 560, image from www.iisartonline.org

Pieper’s Solution -1

17

A 6-DOF manipulator which has three

consecutive axes intersect at a point

has a closed-form solution

Usually,

the last three joints intersect

First 3 DOFs – positioning

Last 3 DOFs – orientation

Here, RRRRRR as an example

=

機器人簡介 ME5118 Chap 4 - 林沛群

Pieper’s Solution -2

Positioning structure

法則:讓 , , 層層分離

18

1 = = Note: = − 0− −0 0 0 1

4th column of

= − 1 = ( )( )( )1( )( )( )1 = − 1 ( ) = + +( ) = − − −( ) = − + +

so讓 , , 層層分離, 為 函數

Page 10: ME5118 Chap 4 - 國立臺灣大學

機器人簡介 ME5118 Chap 4 - 林沛群

Pieper’s Solution -3

Next

19

= 1 = ( )( )( )1 = ( )( )( )1 = −+1( , ) = − +( , ) = + − −( , ) = + + +

讓 , , 層層分離, 為 , 函數

= + + = + += + + + + + 2 + 2 −= + 2 +( ) =( ) = −( ) = + + + + + 2

僅為 , 函數

機器人簡介 ME5118 Chap 4 - 林沛群

Pieper’s Solution -4

In addition

Consider and together

o If = 0, = ( ) = + + + + + 2o If = 0, = = +o Else

20

= = − + =( ) = −( ) = +僅為 , 函數

= + 2 += − +

Solve of all three cases by using " = tan "−4 + − = +

Page 11: ME5118 Chap 4 - 國立臺灣大學

機器人簡介 ME5118 Chap 4 - 林沛群

Pieper’s Solution -5

Finally

Using = + 2 + to solve

Using = , − , to solve

Orientation

, , are known

Using Z-Y-Z Euler angle to solve , ,

21

=

機器人簡介 ME5118 Chap 4 - 林沛群

Base, wrist, tool, station, and goal frames

The Standard Frames

22

{ }{ } { }

{ }{ }

Page 12: ME5118 Chap 4 - 國立臺灣大學

機器人簡介 ME5118 Chap 4 - 林沛群

Technical terms

Resolution (Repeatability)

How precise a manipulator can return to a given point

Accuracy

The precision with which a computed point can be attained

23

機器人簡介 ME5118 Chap 4 - 林沛群 24

Questions?