59
Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal) PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement CALC BY: MA, LAB DATE: 03/21/2014 CHECK BY: MI, MAI DATE: 03/28/2014 SHEET: 1 OF 59 PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th Terminal Improvement T ypical SE Wall Without Canopy Column Pedestal 1. Obtain Design Criteria The analysis and design procedures for the retaining wall will be those outlined in the 2012 IDOT Bridge Manual English, AASHTO 2012 LRFD Bridge Design Specifications (Sixth Edition) through 2013 Interims . Seismic Performance Zone (SPZ) = 1 Design Spectral Acceleration at 1.0s (SD1) = 0.086g Design Spectral Acceleration at 0.2s (SDS) = 0.144g Soil Site Class = D 1.1 Material Properties γ conc 150pcf Concrete unit weight f' c 5000psi Concrete strength at 28 days age Correction factor for source of aggregate (to be taken as 1.0 unless determined by physical test and as approved by the authority of jurisdiction) (AASHTO LRFD Article 5.4.2.4) K 1 1.0 a g 0.75in coarse aggregate size Concrete elastic modulus (AASHTO LRFD Eqn. 5.4.2.4-1) E c 33000 K 1 γ conc 1000pcf 1.5 f' c ksi 4.29 10 3 ksi β 1 0.85 f' c 4.0ksi if 0.85 0.05 ksi f' c 4ksi 4ksi f' c 8ksi if 0.65 otherwise Ratio of the depth of equivalent uniformly stressed compression zone assumed in the strength limit state to the depth of the actual compression zone (LRFD 5.7.2.2) β 1 0.8 f y 60000psi Steel yield stress E s 29000ksi Steel elastic modulus (AASHTO LRFD Article 5.4.3.2)

Mathcad - Final Version_Vertical Cantilever Retaining Wall _CTA 95th Street_Typical SE_Without Column Canopy Pedestal

Embed Size (px)

DESCRIPTION

ejemplo canto libre

Citation preview

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 1 OF 59

    PROJECT NUMBER: HBM1301-568PROJECT NAME: CTA-95th Terminal Improvement

    T ypical SE Wall Without Canopy Column Pedestal

    1. Obtain Design CriteriaThe analysis and design procedures for the retaining wall will be those outlined in the 2012 IDOT BridgeManual English, AASHTO 2012 LRFD Bridge Design Specifications (Sixth Edition) through 2013 Interims.Seismic Performance Zone (SPZ) = 1Design Spectral Acceleration at 1.0s (SD1) = 0.086gDesign Spectral Acceleration at 0.2s (SDS) = 0.144gSoil Site Class = D

    1.1 Material Properties

    conc 150pcf Concrete unit weight

    f'c 5000psi Concrete strength at 28 days ageCorrection factor for source of aggregate(to be taken as 1.0 unless determined byphysical test and as approved by theauthority of jurisdiction)(AASHTO LRFD Article 5.4.2.4)

    K1 1.0

    ag 0.75in coarse aggregate size

    Concrete elastic modulus(AASHTO LRFD Eqn. 5.4.2.4-1)Ec 33000 K1

    conc1000pcf

    1.5

    f'c ksi 4.29 103 ksi

    1 0.85 f'c 4.0ksiif

    0.850.05ksi

    f'c 4ksi 4ksi f'c 8ksiif0.65 otherwise

    Ratio of the depth of equivalent uniformlystressed compression zone assumed inthe strength limit state to the depth of theactual compression zone (LRFD 5.7.2.2)

    1 0.8fy 60000psi Steel yield stress

    Es 29000ksi Steel elastic modulus (AASHTO LRFDArticle 5.4.3.2)

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 2 OF 59

    1.2 Reinforcement Steel Cover Requirements

    Covers 2in Stem back cover

    Coverft 2in Footing top cover

    Coverfb 3in Footing bottom cover 1.3 Soil Properties

    Water 62.4pcf Unit weight of water

    Soil unit weight (use average of loose andcompacted gravel)Soil 120pcf

    SoilLS 125pcf Soil unit weight of Live load surcharge

    Obtained from geotechnical informationand in accordance with IDOT BridgeManual Article 3.11.2.2 for "T-type" walls,using an angle of internal friction of 30degrees.

    Ka 0.53

    1.4 Footing Bed Properties (Clay)

    Su 6ksf Undrained shear strength

    Kp 0 Passive pressure coefficient

    qall 10ksf Allowable bearing capacityquall 15ksf Ultimate bearing capacity 2. Retaining Wall Dimensions 2.1 Retaining Wall Stem Dimensions

    Hstem 21.75ft Stem wall height

    Tstem_bot 2.50ft Stem wall thickness at foundation

    Tstem_top 1ft 3in 1.25 ft Stem wall thickness at top

    Tformliner 0in Formliner thickness

    Hkey 0ft Shear key height

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 3 OF 59

    2.2 Footing Dimensions

    Wpcap 19.75ft Footing width

    Dpcap 4ft Footing depth

    Wpctoe 2ft Footing toe width

    Wpcheel Wpcap Tstem_bot Wpctoe 15.25 ft Footing heel width

    2.3 Sidewalk, Approach Slab, Parapet and Railing Loads

    Tappslab 15in Approach slab thickness

    Lappslab 30ft Approach slab lengthweight of approach slab transferred to thewall stem per footDCappslab Tappslab conc

    Lappslab2

    2.81 kipft

    Tsidewalk 8in Sidewalk thickness

    Lsidewalk 8ft Sidewalk width

    DCsidewalk Tsidewalk conc Lsidewalk 0.8kipft

    Weight of sidewalk per foot

    Weight of New Jersey parapet per footDCNJparap 0.413

    kipft

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 4 OF 59

    Figure 1. Retaining Wall Dimensions

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 5 OF 59

    3. Applied Loads CalculationsDC1: Self-weight of sidewalk, moment slab, parapet and railingDC2: Self-weight of rectangular portion of wall stemDC3: Self-weight of triangular portion of wall stemDC4: Self-weight of base footingEV1: Vertical earth pressure on the base heelEV2: Vertical earth pressure above the truncated wall stemEV3: Vertical earth pressure on the base toeESv: Vertical surcharge load due to moment slab at time of construction (before concrete cures)LSv: Vertical live load surchargeLLped: Pedestrian live load

    EH: Horizontal earth pressureESh: Horizontal surcharge load due to moment slab at time of construction (before concrete cures)LSh: Horizontal live load surcharge

    DC2

    DC3

    DC4

    EV2

    EV1

    EV3

    DC1

    EHfoot EShfoot LShfootA

    B

    C

    HR

    W/3

    Wpcap/2

    ESvLSv

    Heel

    LLped

    Toe

    Leffqu_Bearing

    R eR: Resultant of vertical loadse: eccentricity of resultant

    EHstem EShstem LShstem

    (Tstem_bot-Tstem_top)/3

    WpcheelTstem_top/2

    Tstem_top/2

    Wpctoe/2

    (Tstem_bot-Tstem_top)/3

    HR

    W/2

    qu_Bearing: equivalent bearing pressure from R distributed over effective Base Area

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 6 OF 59

    3.1 Retaining Wall Dead Loads [DC] (Per 1 Foot Linear Strip of Wall):3.1.1 Sidewalk, Moment Slab, Parapet and Railing Dead Load [DC1]:

    Dead load due to approach slab, sidewalk,parapet and railing [DC1]DCtotslab DCappslab DCsidewalk DCNJparap 4.03

    kipft

    3.1.2 Retaining Wall Stem Dead Load

    Rectangular Portion of Retaining Wall Stem Dead Load [DC2]:

    Rectangular portion of retaining wall stemvertical [DC2] dead loadDCstemrect Hstem Tstem_top conc 4.08

    kipft

    Triangular Portion of Retaining Wall Stem Dead Load [DC3]:

    Triangular portion of retaining wall stemvertical [DC3] dead loadDCstemtriang Hstem

    Tstem_bot Tstem_top2

    conc 2.04kipft

    3.1.3 Footing Dead Load [DC4]:

    DCpcap Wpcap Dpcap conc 11.85kipft

    Footing vertical [DC4] dead load

    3.2 Earth Loads 3.2.1 Vertical Earth Loads

    3.2.1.1 Soil Pressure above Heel [EV]

    Rectangular Portion of Soil Above Heel Dead Load [EV1]

    HSoilheel Hstem 21.75 ft Soil height above footing heel

    EVSoilheelrect Wpcheel HSoilheel Soil 39.8kipft

    Rectangular portion of soil above heelvertical dead load [EV]

    Triangular Portion of Soil Above Heel Dead Load [EV2]

    Triangular portion of soil above heel verticaldead load [EV2] due to wall batterEVSoilheeltriang

    12

    HSoilheel Tstem_botTstem_top

    Soil 1.63kipft

    3.2.1.2 Soil Pressure above Toe [EV3]:

    HSoiltoe 2.ft Soil height above footing toe

    EVSoiltoe Wpctoe HSoiltoe Soil 0.48kipft

    Soil above toe vertical dead load

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 7 OF 59

    3.2.2 Horizontal Earth Loads [EH]

    3.2.2.1 Horizontal Earth Load at bottom of Stem [EHstem]

    PStem Ka Soil HSoilheel 1.38 ksf Lateral earth pressure at bottom of stem

    The lateral load effects due to soil above the wall footing applied to the stem is:

    Lateral load due to earth pressure behindstem with soil backfill [EH]REHstem

    12

    PStem HSoilheel 15.04

    kipft

    3.2.2.2 Horizontal Earth Load at bottom of Footing [EHfoot]

    HRW Hstem Dpcap 25.75 ft Total height of retaining wall

    Ppc Ka Soil HRW 1.64 ksf Lateral earth pressure at bottom of footingThe lateral load effects due to soil above the bott. of wall footing and applied to the wall footing is:

    Lateral load due to earth pressure behindstem and footing with soil backfill [EH] atHRW/3 from the bottom

    REHpc12

    Ppc HRW 21.09

    kipft

    3.2.2.3 Horizontal Surcharge Loads due to Sidewalk and Moment Slab [ES]

    ES conc Tappslab 0.19 ksf Uniform surcharge load due to momentslab

    Note: Two load cases will be considered regarding the moment slab effect on the retaining wall. Case 1: before the concrete cures, includes surcharges for the slab and live loads. Case 2: after the concrete cures, assumes that dead and live loads are applied from the moment slab to thetop of the wall, so no surcharges are included.

    3.2.2.3.1 Uniform Vertical Surcharge at bottom of Stem [ESv]

    Vertical load due to uniform surchargefrom moment slab applied per linear footof wall [ESv]

    ESvert ES Tstem_bot Tstem_top Wpcheel 3.09 kipft3.2.2.3.2 Uniform Horizontal Surcharge at bottom of Stem [EShstem]

    pES Ka ES 0.1 ksf Maximum lateral surcharge load due to1'-thick RC pavement (AASHTO 3.11.6.1)

    RESstem pES HSoilheel 2.16kipft

    Lateral load due to uniform surcharge atbottom of stem [EH]

    3.2.2.3.3 Uniform Horizontal Surcharge at bottom of Footing [EShfoot]

    Lateral load due to uniform surcharge atbottom of footing [EH]RESpc pES HRW 2.56

    kipft

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 8 OF 59

    3.3 Live Loads3.3.1 Pedestrian Live Load [LLped]

    According to Article 3.6.1.6 A pedestrian load of 0.075 ksf shall be applied to all sidewalks wider than 2.0 ftand considered simultaneously with the vehicular design live load in the vehicle lane. Where vehicles canmount the sidewalk, sidewalk pedestrian load shall not be considered concurrently. If a sidewalk may beremoved in the future, the vehicular live loads shall be applied at 1 ft from edge-of-deck for design of theoverhang, and 2 ft from edge-of-deck for design of all other components. The pedestrian load shall not beconsidered to act concurrently with vehicles. The dynamic load allowance need not be considered forvehicles.Bridges intended for only pedestrian, equestrian, light maintenance vehicle, and/or bicycle traffic should bedesigned in accordance with AASHTO's LRFD Guide Specifications for the Design of Pedestrian Bridges.

    LLped 0.075ksf Wpcheel 1.14kipft

    Pedestrian live load (conservative)

    3.3.2 Live Load Surcharge [LSv]

    heqLS 4ft Hstem 5ftif

    3ft10ft Hstem

    5 5ft Hstem 10ftif

    2ft20ft Hstem

    10 10ft Hstem 20ftif

    2ft otherwise

    Equivalent height of soil for vehicularloading based on AASHTO LRFD Table3.11.6.4-2

    heqLS 2 ftAccording to Article 3.11.6.5 If the vehicular loading is transmitted through a structural slab, which is alsosupported by means other than earth, a corresponding reduction in the surcharge loads may be permitted.

    3.3.2.1 Vertical Live Load Surcharge [LSv]

    LSvert SoilLS heqLS Tstem_bot Tstem_top Wpcheel 4.13 kipft Vertical component of live loadsurcharge [LSv]3.3.2.1 Horizontal Live Load Surcharge at bottom of Stem [LShstem]

    pStem Ka SoilLS heqLS 0.13 ksf Horizontal pressure increase due to liveload surcharge at bottom of stem

    Lateral load due to Live Load surcharge atbottom of stem [LShstem] applied atHsoilheel/2

    RLSstem pStem HSoilheel 2.88kipft

    3.3.2.2 Horizontal Live Load Surcharge at bottom of Footing [LShfoot]

    ppc Ka SoilLS heqLS 0.13 ksf Horizontal pressure increase due to liveload surcharge at bottom of footingLateral load due to Live Load surcharge atbottom of footing [LShfoot] applied at HRW/2RLSpc ppc HRW 3.41

    kipft

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 9 OF 59

    4. Limit States Design Method 4.1 Resistance and Load Modification FactorsThe resistance factors, , for reinforced concrete Retaining walls for the Strength Limit State perAASHTO LRFD Article 5.5.4.2 are as shown below:

    f 0.9 Resistance factor for flexure

    v 0.9 Resistance factor for shear

    4.2 Load FactorsIn accordance with LRFD (Table 3.4.1-1) the following Strength I load factors shall be used for retainingwall design

    DCstrmax 1.25 DCstrmin 0.9 Strength I Load factor for DC load case

    LLstrmax 1.75 LLstrmin 1.75 Strength I Load factor for LL + IM loadcase

    LSstrmax 1.75 LSstrmin 1.75 Strength I Load factor for live loadsurcharge

    EVstrmax 1.35 EVstrmin 1.0 Strength I Load factor for vertical earthpressure

    EHstrmax 1.50 EHstrmin 0.9 Strength I Load factor for horizontal earthpressure (active)

    ESstrmax 1.50 ESstrmin 0.75 Strength I Load factor for earth surcharge

    In accordance with LRFD (Table 3.4.1-2) the following Service I load factors shall be used for retaining walldesign

    DCsv 1.0 Service I Load factor for DC load case

    LLsv 1.0 Service I Load factor for LL + IM load case

    LSsv 1.0 Service I Load factor for live load surcharge

    EVsv 1.0 Service I Load factor for vertical earthpressure

    EHsv 1.0 Service I Load factor for horizontal earthpressure

    ESsv 1.0 Service I Load factor for earth surcharge

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 10 OF 59

    5. Stability Analysis for Retaining Wall 5.1 Moment Arms CalculationsNote: Moment arms are calculated from the toe at the bottom of the footing

    DCtotslab 4.03kipft

    H1 WpctoeTstem_top

    2 2.63 ft

    DCstemrect 4.08kipft

    H5 WpctoeTstem_top

    2 2.63 ft

    DCstemtriang 2.04kipft

    H6 Wpctoe Tstem_topTstem_bot Tstem_top

    3 3.67 ft

    DCpcap 11.85kipft

    H7Wpcap

    29.88 ft

    EVSoilheelrect 39.8kipft

    H8 Wpctoe Tstem_botWpcheel

    2 12.12 ft

    EVSoilheeltriang 1.63kipft

    H9 Wpctoe Tstem_top23

    Tstem_bot Tstem_top 4.08 ft

    EVSoiltoe 0.48kipft

    H10Wpctoe

    21 ft

    LLped 1.14kipft

    H11 WpctoeTstem_top

    2 2.63 ft

    LSvert 4.131ft

    kip H12 Wpctoe Tstem_botWpcheel

    2 12.12 ft

    ESvert 3.09kipft

    H13 Wpctoe Tstem_botWpcheel

    2 12.12 ft

    REHpc 21.09kipft

    d1HSoilheel Dpcap

    38.58 ft

    RESpc 2.56kipft

    d2HRW

    212.88 ft

    RLSpc 3.41kipft

    d3HRW

    212.88 ft

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 11 OF 59

    5.3 Stability Checks and Bearing Capacity under Service I Limit State per Article 11.6.2 Four Loads Cases are Considered:Case 1: Includes vertical and horizontal surcharge due to approach slab and horizontal live load surchargeCase 2: Includes horizontal surcharge due to live loadCase 3: Includes vertical and horizontal live load surcharge and surcharge due to approach SlabCase 4: Includes vertical and horizontal live load surcharge and weight of approach slab and sidewalk

    Table 1: Load Cases Required for Check for Stability and Bearing Capacity at Service Limit State

    Case 1 Case 2 Case 3 Case 4

    DC1moment slab, sidewalk, parapet and railing 4.03 2.63 10.57 1.0

    DC2 Rectangular portion of wall stem 4.08 2.63 10.71 1.0 1.0 1.0 1.0

    DC3Triangular portion of wall stem DC dead load 2.04 3.67 7.48 1.0 1.0 1.0 1.0

    DC4 Footing weight 11.85 9.88 117.02 1.0 1.0 1.0 1.0

    EV1Rectangular portion of soil above heel 39.80 12.13 482.61 1.0 1.0 1.0 1.0

    EV2Triangular portion of soil above heel 1.63 4.08 6.66 1.0 1.0 1.0 1.0

    EV3 Soil above toe 0.48 1.00 0.48 1.0 1.0 1.0 1.0

    EHstemHorizontal earth pressure at bottom of stem 15.04 1.0

    EHfootHorizontal earth pressure at bottom of footing 21.09 -8.58 -180.98 1.0 1.0 1.0 1.0

    ESvVertical surcharge due to moment slab and sidewalk 3.09 12.13 37.51 1.0 1.0

    EShstemHoriz. surch. at bot. of stem due to moment slab & sidewalk 2.16

    EShfootHoriz. surch. at bot. of footing due to moment slab & sidewalk 2.56 -12.88 -32.95 1.0 1.0

    LSv Vertical surcharge live load 4.13 12.13 50.02 1.0 1.0

    LShstemHorizontal live load surcharge at bottom of footing 2.88

    LShfootHorizontal live load surcharge at bottom of stem 3.41 -12.88 -43.93 1.0 1.0 1.0 1.0

    LLped Pedestrian Live Load 1.14 2.63 3.00 1.0

    1.20 2.63 3.15 404.6 400.0 454.6 463.61.20 2.63 3.15 63.0 59.9 67.1 69.2

    Load typeVert.

    Loads, Kips

    Horiz. Loads, Kips

    Arm, ft

    Moment at the Toe, Kip-ft

    MaximumVertical Load, Kip

    Service I FactorsStability Bearing

    Net Moment Capacity, Kip-ft

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 12 OF 59

    5.3.1 Stability Checks against Overturning, Sliding, and Eccentricity

    DC2

    DC3

    DC3

    EV2

    EV1

    EV3

    HR

    W/2

    Wpcap/2

    HR

    W/3

    EHfoot

    A

    Wpctoe/2

    Tstem_top/2

    (Tstem_bot-Tstem_top)/3

    (Tstem_bot-Tstem_top)/3

    Wpcheel

    Tstem_top/2

    Heel

    Toe

    ESv LSv

    EShfootLShfoot

    Case 1

    DC2

    DC3

    DC3

    EV2

    EV1

    EV3

    EHfoot LShfoot

    A

    Heel

    Toe

    Wpctoe/2

    Tstem_top/2

    (Tstem_bot-Tstem_top)/3

    (Tstem_bot-Tstem_top)/3

    Wpcheel

    Tstem_top/2

    HR

    W/3

    Wpcap/2

    Case 2

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 13 OF 59

    5.3.1.1 Factor of Safety Against Overturning (Service I)

    5.3.1.1.1 Case 1: Includes vertical and horizontal surcharge due to approach slab and horizontal live loadsurcharge

    Mresist1 DCsv DCstemrect H5DCstemtriang H6 DCpcap H7

    EVsv EVSoilheelrect H8 EVSoilheeltriang H9EVSoiltoe H10

    ESsv ESvert H13

    Resisting Moment arms are calculatedfrom the toe (Point A) at the bottom of thefooting.

    Mresist1 662.46kip ft

    ft Resisting Moment due to Vertical Loads

    Movert1 EHsv REHpc d1 ESsv RESpc d2 LSsv RLSpc d3 Overturning Moment due to HorizontalLoads

    Movert1 257.86kip ft

    ft

    FSovert1Mresist1Movert1

    Overturning Factor of Safety

    FSovert1 2.57CheckFSovert if FSovert1 2 "OK" "N.G." CheckFSovert "OK" Check Overturning5.3.1.1.2 Case 2: Includes horizontal surcharge due to live load

    Mresist2 DCsv DCstemrect H5DCstemtriang H6 DCpcap H7

    EVsv EVSoilheelrect H8 EVSoilheeltriang H9EVSoiltoe H10

    Resisting Moment arms are calculatedfrom the toe (Point A) at the bottom of thefooting.

    Mresist2 624.95kip ft

    ft Resisting Moment due to Vertical Loads

    Movert2 EHsv REHpc d1 LSsv RLSpc d3 Overturning Moment due to HorizontalLoads

    Movert2 224.91kip ft

    ft

    Overturning Factor of SafetyFSovert2

    Mresist2Movert2

    FSovert2 2.78CheckFSovert if FSovert2 2 "OK" "N.G." CheckFSovert "OK" Check Overturning

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 14 OF 59

    5.3.1.2 Factor of Safety Against Sliding (Service I) per Article 10.6.3.4 (Case 2)

    As per IDOT Bridge Manual, Article 3.10.3.2 Sliding resistance is determined differently depending onwhether the spread footing is setting on granular soil, cohesive soil, or rock. For granular soils, the slidingresistance is calculated as the vertical resultant, P, times the tangent of the friction angle for footings cast onin-place aggregate. Shear keys are not recommended for granular soils due to constructability concerns. Forcohesive soils, sliding resistance is calculated as cohesion times the effective footing width B. Lower strengthclays require special attention to ensure adequate sliding resistance and, in some cases, have successfullyutilized shear keys.

    Su 6 ksf Undrained shear strength

    Kp 0 Passive pressure coefficient

    Pp Kp Soil Hkey 0 ksf Passive pressure due to shear key

    Lateral Load due to passive pressure onshear keyRp

    12

    Pp Hkey 0kipft

    5.3.1.2.1 Case 1: Includes vertical and horizontal surcharge due to approach slab and horizontal live loadsurchargeDLvert1 DCsv DCstemrect DCstemtriang DCpcap

    EVsv EVSoilheelrect EVSoilheeltriang EVSoiltoe

    ESsv ESvert

    Total Vertical Load

    DLvert1 62.97kipft

    Assume 50Y for replacing compact soil in front of footing

    v1DLvert1Wpcap

    3.19 ksf Vertical effective stress

    qsmin1 min Su 0.5 v1 1.59 ksf Shear resistance (LRFD 10.6.3.4) Assume qs1 Su 6 ksf

    Fresist_fric1 qs1 Wpcap Rp 118.5kipft

    Friction force resisting sliding

    Fsliding1 EHsv REHpc ESsv RESpc LSsv RLSpc 27.06kipft

    Force causing sliding

    FSsliding1Fresist_fric1

    Fsliding14.38 Sliding Factor of Safety

    CheckFSsliding1 if FSsliding1 1.5 "OK" "N.G." CheckFSsliding1 "OK"

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 15 OF 59

    5.3.1.2.2 Case 2: Includes horizontal surcharge due to live load

    DLvert2 DCsv DCstemrect DCstemtriang DCpcap EVsv EVSoilheelrect EVSoilheeltriang EVSoiltoe

    Total Vertical Load not Including LLped

    DLvert2 59.88kipft

    v2DLvert2Wpcap

    3.03 ksf Vertical effective stress

    qsmin2 min Su 0.5 v2 1.52 ksf Shear resistance (LRFD 10.6.3.4) Assume qs2 Su 6 ksf

    Fresist_fric2 qs2 Wpcap Rp 118.5kipft

    Friction force resisting sliding

    Fsliding2 EHsv REHpc LSsv RLSpc 24.5kipft

    Force causing sliding

    FSsliding2Fresist_fric2

    Fsliding24.84 Sliding Factor of Safety

    CheckFSsliding2 if FSsliding2 1.5 "OK" "N.G." CheckFSsliding2 "OK"

    5.3.1.3 Check Eccentricity

    AASHTO LRFD 11.6.3.3-Eccentricity LimitsFor foundations on soil, the location of the resultant of the reaction forces shall be within the middle two thirdsof the base width.

    Net moment at bottom of toefor Case 1 loadingMnet1 Mresist1 Movert1 404.6

    kip ftft

    Vvert1 DLvert1 62.97kipft

    Total Vertical Load for Case 1 loadingNet moment at bottom of toefor Case 2 loadingMnet2 Mresist2 Movert2 400.04

    kip ftft

    Vvert2 DLvert2 59.88kipft

    Total Vertical Load for Case 2 loadingHence the maximum eccentricity due to either Case 1 or Case 2 load configuration is:

    eccWpcap

    2min

    Mnet1Vvert1

    Mnet2Vvert2

    3.45 ft Maximum eccentricity from the centerlineof the base

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 16 OF 59

    Checkuplift if eccWpcap

    3 "OK" "N.G."

    Checkuplift "OK"Wpcap

    36.58 ft

    5.3.2 Factor of Safety Against Bearing Capacity Failure (Service I)

    EShfootLShfootA

    Wpctoe/2

    Tstem_top/2

    (Tstem_bot-Tstem_top)/3

    (Tstem_bot-Tstem_top)/3

    Wpcheel

    Tstem_top/2

    HR

    W/3

    HR

    W/2

    Wpcap/2

    Heel

    ToeC

    ESv

    DC2

    DC3

    DC3

    EV2

    EV1

    EV3

    EHfoot

    Leffqu_Bearing

    R eR: Resultant of vertical loadse: eccentricity of resultant

    qu_Bearing: equivalent bearing pressure from R distributed over effective Base Area

    Case 3

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 17 OF 59

    DC2

    DC3

    DC3

    EV2

    EV1

    EV3

    Leffqu_Bearing

    R eR: Resultant of vertical loads

    qu_Bearing: equivalent bearing pressure from R distributed over effective Base Area

    EHfootLShfoot

    A

    Wpctoe/2

    Tstem_top/2

    (Tstem_bot-Tstem_top)/3

    (Tstem_bot-Tstem_top)/3

    Wpcheel

    Tstem_top/2

    HR

    W/3

    HR

    W/2

    Wpcap/2

    Heel

    ToeC

    LSv

    DC1

    Case 4

    qall 10 ksf Allowable bearing capacity5.3.2.1 Case 3: Includes vertical and horizontal live load surcharge and surcharge dueto approach Slab

    Mresist3 DCsv DCstemrect H5 DCstemtriang H6 DCpcap H7 EVsv EVSoilheelrect H8 EVSoilheeltriang H9 EVSoiltoe H10

    ESsv ESvert H13 LSsv LSvert H12

    Mresist3 712.47 kipftft

    Movert3 EHsv REHpc d1 ESsv RESpc d2 LSsv RLSpc d3

    Mnet3 Mresist3 Movert3 454.62kip ft

    ft

    Net moment at bottom of toe

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 18 OF 59

    Vvert3 DCsv DCstemrect DCstemtriang DCpcap EVsv EVSoilheelrect EVSoilheeltriang EVSoiltoe

    ESsv ESvert LSsv LSvert

    Total Vertical Load

    Vvert3 67.1kipft

    Hence the eccentricity of the resultant, R, may be expressed as:

    ecc3Wpcap

    2

    Mnet3Vvert3

    3.1 ft Eccentricity from the centerline of the base

    Find effective stress on the bottom of the base due to the applied vertical loads

    Per AASHTO LRFD 11.6.3.2, where the wall is supported by a soil foundation, the vertical stress shall becalculated assuming a uniformly distributed pressure over an effective base length of (B - 2e) where e =distance from resultant to center of base

    qeff3Vvert3

    Wpcap 2 ecc34.95 ksf vertical stress on bottom of base per LRFD

    Eq. 11.6.3.2-1

    qtoe3Vvert3Wpcap

    16 ecc3Wpcap

    6.6 ksf Applied bearing pressure at toe due toCase 3 loading

    qheel3Vvert3Wpcap

    16 ecc3Wpcap

    0.2 ksf Applied bearing pressure at heel due toCase 3 loading

    5.3.2.2 Case 4: Includes vertical and horizontal live load surcharge and weight of approach slab andsidewalk transferred to the wall stem

    Mresist4 DCsv DCtotslab H1 DCstemrect H5 DCstemtriang H6 DCpcap H7 EVsv EVSoilheelrect H8 EVSoilheeltriang H9 EVSoiltoe H10

    LLsv LLped H11 LSsv LSvert H12

    Mresist4 688.53kip ft

    ft

    Movert4 EHsv REHpc d1 LSsv RLSpc d3

    Mnet4 Mresist4 Movert4 463.62kip ft

    ft Net moment at bottom of toe

    Vvert4 DCsv DCtotslab DCstemrect DCstemtriang DCpcap EVsv EVSoilheelrect EVSoilheeltriang EVSoiltoe

    LLsv LLped LSsv LSvert

    Total Vertical Load

    Vvert4 69.18kipft

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 19 OF 59

    Hence the eccentricity of the resultant, R, may be expressed as:

    ecc4Wpcap

    2

    Mnet4Vvert4

    3.17 ft Eccentricity from the centerline of the base

    Find effective stress on the bottom of the base due to the applied vertical loads

    Per AASHTO LRFD 11.6.3.2, where the wall is supported by a soil foundation, the vertical stress shall becalculated assuming a uniformly distributed pressure over an effective base length of (B - 2e) where e =distance from resultant to center of base

    qeff4Vvert4

    Wpcap 2 ecc45.16 ksf vertical stress on bottom of base per LRFD

    Eq. 11.6.3.2-1

    qtoe4Vvert4Wpcap

    16 ecc4Wpcap

    6.88 ksf Applied bearing pressure at toe due toCase 4 loading

    qheel4Vvert4Wpcap

    16 ecc4Wpcap

    0.13 ksf Applied bearing pressure at heel due toCase 4 loading

    qmax max qtoe4 qheel4 6.88 ksf Maximum applied bearing pressure5.3.2.3 Check against Bearing Capacity

    qeff max qeff3 qeff4 5.16 ksf Maximum vertical stressCheckqall if qall qeff "OK" "N.G." Check bearing capacityCheckqall "OK"qtoe qtoe3 qeff3 qeff4if

    qtoe4 otherwise

    6.88 ksf Applied bearing pressure at toe

    qheel qheel3 qeff3 qeff4ifqheel4 otherwise

    0.13 ksf Applied bearing pressure at heel

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 20 OF 59

    5.5 Stability Checks under Strength Limit StateFour Loads Cases are Considered:Case 1: Includes vertical and horizontal surcharge due to approach slab and horizontal live load surchargeCase 2: Includes horizontal surcharge due to live loadCase 3: Includes vertical and horizontal live load surcharge and surcharge due to approach SlabCase 4: Includes vertical and horizontal live load surcharge and weight of approach slab and sidewalktransferred to the wall stem

    Table 2: Load Cases Required for Check for Stability and Bearing Capacity at Strength Limit State

    Case 1 Case 2 Case 3 Case 4

    DC1moment slab, sidewalk, parapet and railing 4.03 2.63 10.57 1.25

    DC2 Rectangular portion of wall stem 4.08 2.63 10.71 0.90 0.90 1.25 1.25

    DC3Triangular portion of wall stem DC dead load 2.04 3.67 7.48 0.90 0.90 1.25 1.25

    DC4 Footing weight 11.85 9.88 117.02 0.90 0.90 1.25 1.25

    EV1Rectangular portion of soil above heel 39.80 12.13 482.61 1.00 1.00 1.35 1.35

    EV2Triangular portion of soil above heel 1.63 4.08 6.66 1.00 1.00 1.35 1.35

    EV3 Soil above toe 0.48 1.00 0.48 1.00 1.00 1.35 1.35

    EHstemHorizontal earth pressure at bottom of stem 15.04

    EHfootHorizontal earth pressure at bottom of footing 21.09 -8.58 -180.98 1.50 1.50 1.50 1.50

    ESvVertical surcharge due to moment slab and sidewalk 3.09 12.13 37.51 0.75 1.50

    EShstemHoriz. surch. at bot. of stem due to moment slab & sidewalk 2.16

    EShfootHoriz. surch. at bot. of footing due to moment slab & sidewalk 2.56 -12.88 -32.95 1.50 1.50

    LSv Vertical surcharge live load 4.13 12.13 50.02 1.75 1.75

    LShstemHorizontal live load surcharge at bottom of footing 2.88

    LShfootHorizontal live load surcharge at bottom of stem 3.41 -12.88 -43.93 1.75 1.75 1.75 1.75

    LLped Pedestrian Live Load 1.14 2.63 3.00 1.75

    1.20 2.63 3.15 241.8 263.1 576.2 587.81.20 2.63 3.15 60.4 58.1 90.9 93.3

    Net Moment Capacity, Kip-ft

    MaximumVertical Load, Kips

    Strength I FactorsStability BearingApplied Loads

    Vert. Loads, Kips

    Horiz. Loads, Kips

    Arm, ft

    Moment at the Toe, Kip-ft

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 21 OF 59

    5.5.1 Check Eccentricity at Strength Limit State per AASHTO LRFD 11.6.3.3

    5.5.1.1 Case 1: Includes vertical and horizontal surcharge due to approach slab and horizontal liveload surchargePu_ecc1 DCstrmin DCstemrect DCstemtriang DCpcap

    EVstrmin EVSoilheelrect EVSoilheeltriang EVSoiltoe ESstrmin ESvert

    Pu_ecc1 60.4kipft

    Factored vertical load for eccentricity

    Muresist_ecc1 DCstrmin DCstemrect H5 DCstemtriang H6 DCpcap H7 EVstrmin EVSoilheelrect H8 EVSoilheeltriang H9 EVSoiltoe H10

    ESstrmin ESvert H13

    Muresist_ecc1 639.56kip ft

    ft

    Muovert_ecc1 EHstrmax REHpc d1 ESstrmax RESpc d2 LSstrmax RLSpc d2 397.77kip ft

    ft

    Munet_ecc1 Muresist_ecc1 Muovert_ecc1 241.79kip ft

    ft Factored moment for eccentricity

    5.5.1.2 Case 2: Includes horizontal surcharge due to live load

    Pu_ecc2 DCstrmin DCstemrect DCstemtriang DCpcap EVstrmin EVSoilheelrect EVSoilheeltriang EVSoiltoe

    Pu_ecc2 58.08kipft

    Factored vertical load for eccentricity

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 22 OF 59

    Muresist_ecc2 DCstrmin DCstemrect H5 DCstemtriang H6 DCpcap H7 EVstrmin EVSoilheelrect H8 EVSoilheeltriang H9 EVSoiltoe H10

    Muresist_ecc2 611.43kip ft

    ft

    Muovert_ecc2 EHstrmax REHpc d1 LSstrmax RLSpc d3 348.35kip ft

    ft

    Munet_ecc2 Muresist_ecc2 Muovert_ecc2 263.08kip ft

    ft Factored moment for eccentricity

    5.5.1.3 Check for Eccentricity

    ecceccWpcap

    2min

    Munet_ecc1Pu_ecc1

    Munet_ecc2Pu_ecc2

    5.87 ft Eccentricity

    Checkuplift if ecceccWpcap

    3 "OK" "N.G."

    Check eccentricity per AASHTO LRFD11.6.3.3Checkuplift "OK"

    5.5.2 Factor of Safety Against Sliding at Strength Limit State per Article 11.6.3.6

    Su 6 ksf Undrained shear strength

    Kp 0 Passive pressure coefficient

    Pp Kp Soil Hkey 0 ksf Passive pressure due to shear key

    Lateral Load due to passive pressure onshear keyRp

    12

    Pp Hkey 0kipft

    5.5.2.1 Case 1: Includes vertical and horizontal surcharge due to approach slab and horizontal liveload surcharge

    Pu_s1 Pu_ecc1 60.4kipft

    Factored vertical load for sliding

    v1Pu_s1Wpcap

    3.06 ksf Vertical effective stress

    qsmin1 min Su 0.5 v1 1.53 ksf Shear resistance (LRFD 10.6.3.4) Assume qs1 Su 6 ksf

    Fresist_fric1 qs1 Wpcap Rp 118.5kipft

    Friction force resisting sliding

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 23 OF 59

    Fsliding1 EHstrmax REHpc ESstrmax RESpc LSstrmax RLSpc 41.44kipft

    Force causing sliding

    FSsliding1Fresist_fric1

    Fsliding12.86 Sliding Factor of Safety

    CheckFSsliding1 if FSsliding1 1.5 "OK" "N.G." CheckFSsliding1 "OK"5.5.2.2 Case 2: Includes horizontal surcharge due to live load

    Pu_s2 Pu_ecc2 58.08kipft

    Factored vertical load for sliding

    v2Pu_s2Wpcap

    2.94 ksf Vertical effective stress

    qsmin2 min Su 0.5 v2 1.47 ksf Shear resistance (LRFD 10.6.3.4) Assume qs2 Su 6 ksf

    Fresist_fric2 qs2 Wpcap Rp 118.5kipft

    Friction force resisting sliding

    Fsliding2 EHstrmax REHpc LSstrmax RLSpc 37.6kipft

    Force causing sliding

    FSsliding2Fresist_fric2

    Fsliding23.15 Sliding Factor of Safety

    CheckFSsliding2 if FSsliding2 1.5 "OK" "N.G." CheckFSsliding2 "OK"

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 24 OF 59

    5.5.3 Factor of Safety Against Bearing Capacity Failure at Strength Limit State per AASHTO LRFD11.6.3.2quall 15 ksf

    5.5.3.1 Case 3: Includes vertical and horizontal live load surcharge and surcharge due to approachSlabPu_b3 DCstrmax DCstemrect DCstemtriang DCpcap

    EVstrmax EVSoilheelrect EVSoilheeltriang EVSoiltoe

    ESstrmax ESvert LSstrmax LSvert

    Pu_b3 90.9kipft

    Factored vertical load for bearingresistance

    Muresist_b3 DCstrmax DCstemrect H5 DCstemtriang H6 DCpcap H7 EVstrmax EVSoilheelrect H8 EVSoilheeltriang H9 EVSoiltoe H10

    ESstrmax ESvert H13 LSstrmax LSvert H12

    Muresist_b3 973.95kip ft

    ft

    Muovert_b3 EHstrmax REHpc d1 ESstrmax RESpc d2 LSstrmax RLSpc d3 397.77kip ft

    ft

    Munet_b3 Muresist_b3 Muovert_b3 576.19kip ft

    ft Factored net moment for bearing

    resistance

    eccb3Wpcap

    2

    Munet_b3Pu_b3

    3.54 ft Eccentricity

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 25 OF 59

    Find effective stress on the bottom of the base due to the applied vertical loads

    Per AASHTO LRFD 11.6.3.2, where the wall is supported by a soil foundation, the vertical stress shall becalculated assuming a uniformly distributed pressure over an effective base length of (B - 2e) where e =distance from resultant to center of base

    queff3Pu_b3

    Wpcap 2 eccb37.17 ksf vertical stress on bottom of base per LRFD

    Eq. 11.6.3.2-1

    qutoe3Pu_b3Wpcap

    16 eccb3Wpcap

    9.55 ksf Maximum factored soil pressure at toe forCase 2 loading

    quheel3Pu_b3Wpcap

    16 eccb3Wpcap

    0.34 ksf Minimum factored soil pressure at toe forCase 2 loading

    5.5.3.2 Case 4: Includes vertical and horizontal live load surcharge and weight of approach slab andsidewalk transferred to the wall stemPu_b4 DCstrmax DCtotslab DCstemrect DCstemtriang DCpcap

    EVstrmax EVSoilheelrect EVSoilheeltriang EVSoiltoe

    LSstrmax LSvert LLstrmax LLped

    Pu_b4 93.29kipft

    Factored vertical load for bearingresistance

    Muresist_b4 DCstrmax DCtotslab H1 DCstemrect H5 DCstemtriang H6 DCpcap H7 EVstrmax EVSoilheelrect H8 EVSoilheeltriang H9 EVSoiltoe H10

    LSstrmax LSvert H12 LLstrmax LLped H11

    Muresist_b4 936.15kip ft

    ft

    Muovert_b4 EHstrmax REHpc d1 LSstrmax RLSpc d3 348.35kip ft

    ft

    Munet_b4 Muresist_b4 Muovert_b4 587.8kip ft

    ft Factored net moment for bearing

    resistance

    eccb4Wpcap

    2

    Munet_b4Pu_b4

    3.57 ft Eccentricity

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 26 OF 59

    Find effective stress on the bottom of the base due to the applied vertical loads

    Per AASHTO LRFD 11.6.3.2, where the wall is supported by a soil foundation, the vertical stress shall becalculated assuming a uniformly distributed pressure over an effective base length of (B - 2e) where e =distance from resultant to center of base

    queff4Pu_b4

    Wpcap 2 eccb47.4 ksf vertical stress on bottom of base per LRFD

    Eq. 11.6.3.2-1

    qutoe4Pu_b4Wpcap

    16 eccb4Wpcap

    9.85 ksf Maximum factored soil pressure at toe forCase 2 loading

    quheel4Pu_b4Wpcap

    16 eccb4Wpcap

    0.41 ksf Minimum factored soil pressure at toe forCase 2 loading

    5.5.3.3 Check against Bearing Capacity

    queff max queff3 queff4 7.4 ksf Maximum vertical stressCheckqall if qall queff "OK" "N.G." Check bearing capacityCheckqall "OK"qutoe qutoe3 queff3 queff4if

    qutoe4 otherwise

    9.85 ksf Applied bearing pressure at toe

    quheel quheel3 queff3 queff4ifquheel4 otherwise

    0.41 ksf Applied bearing pressure at heel

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 27 OF 59

    6. Design of Retaining Wall StemThe service and ultimate factored moment calculations for the Wall stem are taken at the bottom at point B,at the center of gravity of the Wall Stem in the horizontal direction

    A

    HeelB

    TruncatedWall Stem

    6.1 Combination Factors for Forces applied on the Bottom of Wall StemThe stem loads that are required include:Horizontal distances "H" are measured from the c.g. of the stem at the bottom

    The c.g. of the stem from its exterior face is:

    xcstemTstem_top

    2 Tstem_top Tstem_bot Tstem_bot23 Tstem_top Tstem_bot

    Center of gravity of the truncated wall stemfrom the exterior face of the wallxcstem 0.97 ft

    DCtotslab 4.03kipft

    H1 xcstemTstem_top

    2 0.35 ft

    DCstemrect 4.08kipft

    H5 xcstemTstem_top

    2 0.35 ft

    DCstemtriang 2.04kipft

    H6 xcstem Tstem_topTstem_bot Tstem_top

    3

    0.69 ft

    LLped 1.14kipft

    H11 xcstemTstem_top

    2 0.35 ft

    ESvert 3.09kipft

    H12 Tstem_topTstem_bot Wpcheel Tstem_top

    2 xcstem 8.53 ft

    LSvert 4.13kipft

    H13 H12 8.53 ft

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 28 OF 59

    REHstem 15.04kipft

    d1HSoilheel

    37.25 ft

    RESstem 2.16kipft

    d2HSoilheel

    210.88 ft

    RLSstem 2.88kipft

    d3HSoilheel

    210.88 ft

    6.1.1 Retaining Wall Stem Strength I Force Effects

    The factored longitudinal shear force at the critical section of the stem is:

    VustemstrI EHstrmax REHstem ESstrmax RESstem LSstrmax RLSstemFactored shear at bottom of wall stem(Strength I)VustemstrI 30.85

    kipft

    The factored moment at the base of the stem is:

    MustemstrI DCstrmax DCstemrect H5 DCstemtriang H6 EHstrmax REHstem d1 ESstrmax RESstem d2 LSstrmax RLSstem d3

    MustemstrI 253.7kip ft

    ft Factored Moment at bottom of wall stem

    (Strength I)

    6.1.2 Retaining Wall Stem Extreme Event II Force Effects

    The following load factors will be used to calculate the force effects for Extreme Event II (AASHTO LRFDTables 3.4.1-1 and 3.4.1-2):

    DCEEII 1.25 EHEEII 1.50 ESEEII 1.50 LSEEII 0.5 CTEEII 1.00The factored longitudinal shear force at the base of the stem is (maximum of Case 1 and Case 2):

    VustemEEII EHEEII REHstem ESEEII RESstem LSEEII RLSstem

    VustemEEII 27.25kipft

    The factored moment at the base of the stem is (Case 1):

    MustemEEII DCEEII DCstemrect H5 DCstemtriang H6 EHEEII REHstem d1 ESEEII RESstem d2 LSEEII RLSstem d3

    MustemEEII 214.52kip ft

    ft

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 29 OF 59

    6.1.3 Retaining Wall Stem Service I Force Effects

    The service longitudinal shear force at the base of the stem is:

    VustemservI EHsv REHstem ESsv RESstem LSsv RLSstem

    VustemservI 20.09kipft

    The service moment at the base of the stem is:

    Mustem_servI DCsv DCstemrect H5 DCstemtriang H6 EHsv REHstem d1 ESsv RESstem d2 LSsv RLSstem d2

    Mustem_servI 163.91kip ft

    ft

    6.1.4 Maximum Force Effects

    The maximum factored stem shear force and moment are:

    Vustem_max max VustemstrI VustemEEII Maximum factored stem shear forceVustem_max 30.85

    kipft

    Mustem_max max MustemstrI MustemEEII Maximum factored stem momentMustem_max 253.7

    kip ftft

    6.2 Design the Reinforcement for Retaining Wall Stem6.2.1 Applied Loads:

    Applied Service limit state factoredmomentMustem_servI Mustem_servI 1 ft 163.91 ft kipApplied maximum Strength limit statefactored momentMustem_max Mustem_max 1 ft 253.7 kip ftApplied maximum Strength limit statefactored shearVustem_max Vustem_max 1 ft 30.85 kip

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 30 OF 59

    6.2.2 Design for Flexure

    6.2.2.1 Primary Flexural ReinforcementNote: The use of epoxy coated reinforcement is requiredAccording to AASHTO 5.7.3.3.2 unless otherwise specified, at any section of a flexural component, theamount of flexural reinforcement shall be adequate to develop a factored flexural resistance, Mr, at least equalto the lesser of:

    The cracking moment (Mcr) determined from Equation 5.7.3.3.2-11.33 times the factored moment required by the applicable strength load combinations specified inAASHTO Table 3.4.1-1

    Mustem_max 253.7 kip ft Applied maximum Strength limit statefactored moment at wall stem per foot

    b 12in Width of concrete strip

    Igb Tstem_bot Tformliner 3

    12 Ig 27000 in4 Moment of inertia

    ytTstem_bot Tformliner

    2 yt 15 in Depth at mid-section

    Section modulus for the extreme fiber ofthe composite section where tensile stressis caused by externally applied loads(AASHTO 5.7.3.3.2)

    ScIgyt

    1.8 103 in3

    Flexural cracking variability factor(AASHTO 5.7.3.3.2)1 1.6Modulus of rupture for cracking momentcalculations (AASHTO 5.4.2.6)fr 0.24 f'c ksi 0.54 ksiRatio of specified minimum yield strengthto ultimate tensile strength for A615 Grade60 reinforcement (AASHTO 5.7.3.3.2)

    3 0.75

    Cracking moment (simplified equation -neglects prestressing and noncompositeterms) (AASHTO LRFD Eqn. 5.7.3.3.2-1)

    Mcr 3 1 fr Sc 96.6 kip ftMustem_des Mcr Mustem_max Mcrif

    Mustem_max otherwise

    Mustem_des 253.7 kip ft Minimum design momentDepth to tensile steel reinforcementmeasured from extreme compression fiberof structural wall. For the calculation ofeffective depth, d, assume #10 bar.

    dws Tstem_bot12

    1.27in Tformliner Covers dws 27.37 in

    RnMustem_des

    0.9 b dws20.38 ksi Coefficient of resistance

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 31 OF 59

    Calculated ratio of steel for the ultimatemoment in the wall stem 0.85

    f'cfy

    1 12Rn

    0.85f'c

    0.0066

    Calculated amount of steel for the ultimatemoment in the wall stemAs b dws 2.16 in

    2

    bal 0.851 f'c

    fy 87 ksi

    87 ksi fy

    0.0335 Balanced ratio of steel reinforcement

    max 0.75 bal 0.0252 Maximum ratio of steelFor practical purposes a steel ratio up to1/2max = 1/2x0.75xbal = 0.375bal canalso be used

    pract12max 0.0126

    Standard reinforcing bar number providedfrom AASHTO Appendix B, Table B.4,selected for the wall stem

    Barws 10

    Bar# Dia(in) Area(in2)3 0.375 0.114 0.5 0.205 0.625 0.316 0.75 0.447 0.875 0.68 1.00 0.799 1.128 1.0010 1.27 1.2711 1.41 1.56

    dbws db1 in 1.27 in Diameter of primary reinforcement

    Abws Ab1 in2 1.27 in2 Area of primary reinforcement

    Calculated spacing of momentreinforcementSws 12

    AbwsAs

    in 7.05 in

    Sws 6in Selected spacing of moment reinforcement

    AswsAbwsSws

    12 in 2.54 in2 Area of primary reinforcement

    Approximate depth of compression blockaws

    Asws fy0.85 f'c b

    2.99 inEquivalent rectangular stress blockreduction factor = 0.85 for f`c

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 32 OF 59

    6.2.2.2 Check Moment StrengthTensile strain in concrete section at tensilesteel reinforcement where a strain of 0.005is the limiting strain to ensure the concretemember in flexure will be tensioncontrolled (AASHTO Figure C5.5.4.2.1-1)

    t 0.003dws cws

    cws

    0.019

    checkstrain "Tension Controlled" t 0.005if"Not Tension Controlled" otherwise

    checkstrain "Tension Controlled"

    f 0.90 t 0.005if

    0.65 0.15dwscws

    1

    0.002 t 0.005if

    0.75 otherwise

    LRFD reduction factor for bending fornon-prestressed members (AASHTO Eqn.5.5.4.2.1-2)

    f 0.9Flexural resistance for an equivalent 1ftwidth of deck (AASHTO 5.7.3.2)Mnstem f Asws fy dws

    aws2

    295.7 kip ft

    Mustem_des 253.7 kip ft Minimum design moment

    checkflexure "O.K." Mnstem Mustem_desif"N.G." otherwise

    checkflexure "O.K."

    6.2.2.3 Check for Minimum Reinforcement

    Mustem_max 253.7 kip ft Total Factored moment at Toe per FootCracking moment (simplified equation -neglects prestressing and noncompositeterms) (AASHTO LRFD Eqn. 5.7.3.3.2-1)

    Mcr 96.6 kip ft

    checkminflexure "O.K." Mnstem min 1.33Mustem_max Mcr if"N.G." otherwise

    checkminflexure "O.K."

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 33 OF 59

    6.2.2.4 Crack Control

    6.2.2.4.1 Stress at Tensile ReinforcementThe control of cracking by distribution of reinforcement must be checked. According to AASHTOLRFD Article 5.7.3.4, crack control reinforcement is required where tension in the cross-sectionexceeds 80% of the modulus of rupture.

    Applied Service limit state factoredmomentMustem_servI 163.91 kip ftModular ratio of steel to concrete moduli ofelasticityn

    EsEc

    6.76

    Depth to tension steel measured fromextreme compressive fiber of the concretesection

    dws 27.37 in

    Area of steel in compression. Assume #6at 12 in spacing CTCAsneg 0.44in

    2 Barshtempvert 6Depth to compressive reinforcing steelmeasured from extreme compressive fiberof the concrete section

    d' Covers12

    0.75 in 2.38 in Sshtempvert 12in

    Sum of the statical momentsabout the neutral axisf c( )

    b c22

    n Asws n 1( ) Asneg c n Asws dws n 1( ) Asneg d'Depth to the neutral axis from extremecompressive fiber of structural slabc root f c( ) c 0in Tstem_bot Tformliner 7.42 in

    Moment of inertia of the doublyreinforced transformed cracked sectionIcr

    b c33

    n Asneg d' c( )2 n Asws dws c 2 8.55 103 in4Distance from neutral axis to tensile steelreinforcementyws dws c 19.95 in

    Tensile stress at tensile steelreinforcements n

    Mustem_servI ywsIcr

    31.06 ksi

    6.2.2.4.2 Required Spacing for Crack Control

    Maximum Spacing per LRFD 5.7.3.4

    Note: AASHTO LRFD 5.7.3.4 states that when tension in the cross-section exceeds 80% of the modulus of rupture, specified in Article 5.4.2.6, at applicable service limit state load combination, the concrete deck slab main reinforcement must meet the following spacing limitations.

    Equivalent deck section modulus atmidspanS Sc 1.8 10

    3 in3

    Tensile stress at extreme deck due toService I Load combinationsfMserv

    Mustem_servIS

    1.09 ksi

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 34 OF 59

    Checkvalidity "LRFD 5.7.3.4 is Valid" fMserv 0.8 0.24 f'c ksi if"LRFD 5.7.3.4 is Not Valid" otherwise

    Checkvalidity "LRFD 5.7.3.4 is Valid"

    Thickness of concrete cover measuredfrom extreme tension fiber to center of theflexural reinforcement located closestthereto (AASHTO 5.7.3.4)

    dc Coversdbws

    2 2.64 in

    Class 2 exposure factor for decks andsubstructures exposed to water (AASHTO5.7.3.4)

    cf 0.75

    s 1dc

    0.7 Tstem_bot Tformliner dc 1.14Maximum spacing of tensile reinforcingbars allowed to control flexural cracking ofconcrete for service loads (AASHTO Eq.5.7.3.4-1)

    Smax1700 cf

    ssksi

    2

    dcin

    in 9.59 in

    Maximum Spacing per LRFD 5.10.3.2

    Note: AASHTO LRFD 5.10.3.2 states that the spacing of the reinforcement in walls and slabs shall notexceed 1.5 times the thickness of the member or 18 in.

    Smax2 min Tstem_bot Tformliner 18in 18 in Maximum spacing of steel reinforcing barsallowed per AASHTO LRFD 5.10.3.2

    Smax min Smax1 Smax2 9.59 in Maximum allowable spacing of steelreinforcing bars

    Check that the provided spacing is less than the maximum allowable spacing:

    checklim "OK" Sws Smaxif"NG" otherwise

    checklim "OK"

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 35 OF 59

    6.2.3 Shrinkage and Temperature Reinforcement per AASHTO LRFD Article 5.10.8

    b Tstem_bot Tformliner 30 in thickness of stem wall at bottom

    h Hstem 261 in total height of stem wall Amount of steel reinforcement required fortemperature and shrinkage located at bothsides of the stem

    As_shtemp max 0.11in2 min

    1.3 b h2 b h( ) fy

    kipin

    0.6in2

    0.291 in2

    Barshtempws 5 Selected steel bar size for temperatureand shrinkage reinforcement

    Bar# Dia(in) Area(in2)3 0.375 0.114 0.5 0.205 0.625 0.316 0.75 0.447 0.875 0.68 1.00 0.799 1.128 1.0010 1.27 1.27

    Abshtempws Ab1 in2 0.31 in2 Area of single reinforcement

    Maximum spacing fortemperature and shrinkagereinforcement in the stem

    Sshtempws min 18in 3 Tstem_top Tformliner 12in AbshtempwsAs_shtemp

    12.76 in

    Selected spacing for temperature andshrinkage reinforcement at both sides ofthe stem

    Sshtempws 12in

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 36 OF 59

    6.3 Design for Shear:The critical section for shear is located at the bottom of the wall stem (top face of footing) but not at distancedv since the primary flexural reinforcement are located in the face of the stem wall where the load is applied

    6.3.1 Simplified procedure for nonprestressed sections according to AASHTO LRFD 5.8.3.4.1

    tv Tstem_bot Tformliner Thickness of the wall stem value for sections less than 16" inthickness LRFD [5.8.3.4.1] 2.0

    tv 30 in if tv less than 16 in, then 45deg value for sections less than 16" in

    thickness LRFD [5.8.3.4.1]

    bv 12in width of concrete stripEffective shear depth (AASHTO LRFDArticle 5.8.2.9)dvstem max dws

    aws2

    0.9dws 0.72 tv

    25.87 in

    Nominal shear resistance (1) (AASHTOLRFD Eqns. 5.8.3.3-3 and 5.8.3.3-1)Vn1 0.0316 f'c ksi bv dvstem Vn1 43.87 kip

    Vn2 0.25 f'c bv dvstem Vn2 388.06 kip Nominal shear resistance (2) (AASHTOLRFD Eqn. 5.8.3.3-2)

    The nominal shear resistance is the lesser of:

    Nominal shear resistance (AASHTO LRFDArticle 5.8.3.3)Vn min Vn1 Vn2 Vn 43.87 kipResistance factor for shear (AASHTOLRFD Article 5.5.4.2.1)v 0.9Factored shear resistance (AASHTOLRFD Eqn. 5.8.2.1-2)Vr v Vn Vr 39.49 kip

    Factored shear at critical section of wallstem (Strength I)Vustem_max 30.85 ft

    kipft

    checklim "OK" Vr Vustem_maxif"N.G." otherwise

    checklim "OK"

    Note:If the Nominal shear resistance is not adequate using =2 and =45 deg, or the concrete section does notmeet the requirements for simplified procedure, use the General procedure of AASHTO LRFD Article 5.8.3.4.2

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 37 OF 59

    6.3.2 General Procedure according to AASHTO LRFD 5.8.3.4.2

    As Asws 2.54 in2 Area of nonprestressed steel on the

    flexural tension side of the memberNu 0 Factored axial load taken as positive if

    tensile and negative if compressive (kip)

    Vu Vustem_max 30.85 kip Factored shear at critical section of wallstem (kip)

    See LRFD Figure 5.8.3.4.2-3: Definition ofcrack spacing parametersx dvstem 25.87 in

    Mucs Mustem_maxAbsolute value of factored moment atcritical section for shearMucs 253.7 kip ft

    Mu max Mucs Vu dvstem 253.7 kip ftNet longitudinal tensile strain in thesection at the centroid of tensionreinforcement per LRFD Eq. 5.8.3.4.2-4ss

    Mudvstem

    0.5Nu Vu

    Es As2.02 10 3

    If the value of s calculated from Eq.5.8.3.4.2-4 is negative, it should be takenas zero or the value should be recalculatedwith the denominator of Eq. 5.8.3.4.2-4replaced by (EAs + EpAps + EoAc,).However, s should not be taken as lessthan -0.40 x 10-3.

    s 0 ss 0ifss otherwise

    2.02 10 3

    sxe max 12in min sx1.38

    agin

    0.63 80in

    25.87 in crack spacing parameter per LRFD Eq.

    5.8.3.4.2-5

    29 3500s 36.06

    4.8

    1 750 s 51

    39sxein

    1.5 for sections not containing at least theminimum amount of transversereinforcement (LRFD Eq. 5.8.3.4.2-2)

    Vn1 0.0316 f'c ksi bv dvstem 32.95 kip Nominal shear resistance of a concretemember LRFD [5.8.3.3]

    Vn2 0.25 f'c bv dvstem 388.06 kip

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 38 OF 59

    The nominal shear resistance is the lesser of:

    Vn min Vn1 Vn2 Vn 32.95 kipVr v Vn Vr 29.66 kip Factored shear resistance

    Vustem_max 30.85 kip Factored shear resistance (AASHTOLRFD Eqn. 5.8.2.1-2)

    checklim "OK" Vr Vustem_maxif"N.G." otherwise

    checklim "N.G."

    Designer note: V of 29.66 is approximately equal to V of 30.85 kip. By inspection, it is OK.

    7. Design of Retaining Wall FootingThe flexural reinforcement must be designed at two critical sections for retaining wall footing. The twosections include the back and front faces of the stem (AASHTO LRFD Article 5.13.3.4).The service and ultimate factored shear and moment of the Heel and Toe are calculated at the rear and frontface of the Wall Stem, respectively.

    Neglect abovesoil pressure

    Toe Heel

    wtoe1qmin

    qmaxqheel 0.13 ksfquheel 0.41 ksf

    qtoe 6.88 ksfqutoe 9.85 ksf

    7.1 Heel Design for Flexure:7.1.1 Applied Moment at Heel

    The applied vertical loads on the heel of the footing are::

    Rectangular portion of soil above heelvertical dead load [EV]EVSoilheelrect 39.8

    kipft

    Vertical load due to uniform surchargefrom moment slab applied per linear foot ofwall [ESv]

    ESvert 3.09kipft

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 39 OF 59

    LSvert 4.13kipft

    Vertical component of live load surcharge[LSv]

    The bearing pressure at the back face of the stem is calculated as:

    qbfwall qheelqtoe qheel

    WpcapWpcheel Bearing pressure in the heel at the face of

    the wall stem (Service I)

    qbfwall 5.34 ksf

    qubfwall quheelqutoe quheel

    WpcapWpcheel Factored Bearing pressure in the heel t the

    face of the wall stem (Strength I)

    qubfwall 7.52 ksf

    The maximum factored moment applied due to Strength I Limit State on the Heel Footing is:

    Muheel_strI DCstrmax conc Dpcap Wpcheel EVstrmax EVSoilheelrect

    ESstrmax ESvert LSstrmax LSvert

    Wpcheel2

    ft

    quheel Wpcheel 12qubfwall quheel

    2

    Wpcheel3

    Wpcheel ft

    Muheel_strI 327.5 kip ftThe maximum service moment applied due to Service I Limit State on the Heel Footing is:

    Muheel_servI DCsv conc Dpcap Wpcheel EVsv EVSoilheelrect

    ESsv ESvert LSsv LSvert

    Wpcheel2

    ft

    qheel Wpcheel 12qbfwall qheel

    2

    Wpcheel3

    Wpcheel ft

    Muheel_servI 211.52 kip ft

    7.1.2 Design for Flexure

    Muheel_strI 327.505 kip ft Total Factored Moment at Heel per Foot

    Muheel_servI 211.519 kip ft Total Service Moment at Heel per Foot

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 40 OF 59

    7.1.2.1 Primary Flexural Reinforcement (Top of Heel Footing)

    Note: The use of epoxy coated reinforcement is required

    According to AASHTO 5.7.3.3.2 unless otherwise specified, at any section of a flexural component, theamount of flexural reinforcement shall be adequate to develop a factored flexural resistance, Mr, at least equalto the lesser of:

    The cracking moment (Mcr) determined from Equation 5.7.3.3.2-11.33 times the factored moment required by the applicable strength load combinations specified inAASHTO Table 3.4.1-1

    Muheel_strI 327.5 kip ft Total Factored Moment at Heel per Foot b 12in Width of concrete striptft Dpcap 48 in

    Igb tft

    312

    Ig 110592 in4 Moment of inertia

    yttft2

    yt 24 in Depth at mid-sectionSection modulus for the extreme fiber ofthe composite section where tensile stressis caused by externally applied loads(AASHTO 5.7.3.3.2)

    ScIgyt

    4.61 103 in3

    Flexural cracking variability factor(AASHTO 5.7.3.3.2)1 1.6

    fr 0.24 f'c ksi 0.54 ksi Modulus of rupture for cracking momentcalculations (AASHTO 5.4.2.6)

    Ratio of specified minimum yield strengthto ultimate tensile strength for A615 Grade60 reinforcement (AASHTO 5.7.3.3.2)

    3 0.75

    Cracking moment (simplified equation -neglects prestressing and noncompositeterms) (AASHTO LRFD Eqn. 5.7.3.3.2-1)

    Mcr 3 1 fr Sc 247.29 kip ftMuheel_des Mcr Muheel_strI Mcrif

    Muheel_strI otherwise

    Muheel_des 327.5 kip ft Minimum design moment

    Depth to tensile steel reinforcementmeasured from extreme compression fiberof concrete section. For the calculation ofeffective depth, d, assume #10 bar.

    dheel tft12

    1.27 in Coverft 45.37 in

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 41 OF 59

    RnMuheel_strI

    0.9 b dheel20.18 ksi Coefficient of resistance

    Calculated ratio of steel for the ultimatemoment in the heel footing 0.85

    f'cfy

    1 12Rn

    0.85f'c

    0.003

    Calculated amount of steel for the ultimatemoment in the heel footingAs b dheel 1.64 in

    2

    bal 0.0335 Balanced ratio of steel reinforcement

    max 0.75 bal 0.0252 Maximum ratio of steelFor practical purposes a steel ratio up to1/2max = 1/2x0.75xbal = 0.375bal canalso be used

    pract12max 0.0126

    Standard reinforcing bar number providedfrom AASHTO Appendix B, Table B.4,selected for the wall stem

    Barheel 10

    Bar# Dia(in) Area(in2)3 0.375 0.114 0.5 0.205 0.625 0.316 0.75 0.447 0.875 0.68 1.00 0.799 1.128 1.0010 1.27 1.2711 1.41 1.56

    dbheel db1 in 1.27 in Diameter of primary reinforcement in theheel

    Abheel Ab1 in2 1.27 in2 Area of single primary reinforcement in the

    heel

    Calculated spacing of momentreinforcementSheel 12

    AbheelAs

    in 9.3 in

    Sheel 6in Selected Spacing of momentreinforcement

    AsheelAbheelSheel

    12 in 2.54 in2 Area of primary reinforcement in the heel

    Approximate depth of compression blockaheel

    Asheel fy0.85 f'c b

    2.99 in

    Equivalent rectangular stress blockreduction factor = 0.85 for f`c

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 42 OF 59

    Depth to neutral section in concretesection (AASHTO 5.5.4.2.1)cheel

    aheel1

    3.74 in

    Depth to tensile steel reinforcementmeasured from extreme compression fiberof concrete section

    dheel tftdbheel

    2 Coverft 45.37 in

    7.1.2.2 Check Moment StrengthTensile strain in concrete section at tensilesteel reinforcement where a strain of 0.005is the limiting strain to ensure the concretemember in flexure will be tensioncontrolled (AASHTO Figure C5.5.4.2.1-1)

    t 0.003dheel cheel

    cheel

    0.0334

    checkstrain "Tension Controlled" t 0.005if"Not Tension Controlled" otherwise

    checkstrain "Tension Controlled"

    f 0.90 t 0.005if

    0.65 0.15dheelcheel

    1

    0.002 t 0.005if

    0.75 otherwise

    LRFD reduction factor for bending fornon-prestressed members (AASHTO Eqn.5.5.4.2.1-2)

    f 0.9Flexural resistance for an equivalent 1ftwidth of deck (AASHTO 5.7.3.2)Mnheel f Asheel fy dheel

    aheel2

    501.44 kip ft

    Muheel_des 327.5 kip ft Minimum design moment

    checkflexure "O.K." Mnheel Muheel_desif"N.G." otherwise

    checkflexure "O.K."

    7.1.2.3 Check for Minimum Reinforcement per AASHTO 5.7.3.3.2

    Muheel_strI 327.5 kip ft Total Factored moment at Toe per FootCracking moment (simplified equation -neglects prestressing and noncompositeterms) (AASHTO LRFD Eqn. 5.7.3.3.2-1)

    Mcr 247.29 kip ft

    checkminflexure "O.K." Mnheel min 1.33Muheel_strI Mcr if"N.G." otherwise

    checkminflexure "O.K."

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 43 OF 59

    7.1.2.4 Crack Control

    7.1.2.4.1 Stress at Tensile ReinforcementThe control of cracking by distribution of reinforcement must be checked. According to AASHTO LRFDArticle 5.7.3.4, crack control reinforcement is required where tension in the cross-section exceeds 80% of themodulus of rupture.

    Applied Service limit state factoredmomentMuheel_servI 211.52 kip ft

    Modular ratio of steel to concrete moduli ofelasticityn

    EsEc

    6.76Depth to tension steel measured fromextreme compressive fiber of concretesection

    dheel 45.37 in

    Asneg 0 Area of steel in compression. Notconsidered in the calculations.

    Depth to compressive reinforcing steelmeasured from extreme compressive fiberof the concrete section

    d' Coverfb12

    1.27 in

    Sum of the statical momentsabout the neutral axisf c( )

    b c22

    n Asheel n 1( ) Asneg c n Asheel dheel n 1( ) Asneg d'

    Depth to the neutral axis from extremecompressive fiber of structural slabc root f c( ) c 0in tft 10.06 in

    Moment of inertia of the doublyreinforced transformed crackedsection

    Icrb c3

    3n Asneg d' c( )2 n Asheel dheel c 2 2.55 104 in4

    Distance from neutral axis to tensile steelreinforcementyheel dheel c 35.31 in

    Tensile stress at tensile steelreinforcements n

    Muheel_servI yheelIcr

    23.79 ksi

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 44 OF 59

    7.1.2.4.2 Required Spacing for Crack ControlMaximum Spacing per LRFD 5.7.3.4

    Note: AASHTO LRFD 5.7.3.4 states that when tension in the cross-section exceeds 80% of the modulus ofrupture, specified in Article 5.4.2.6, at applicable service limit state load combination, the concretedeck slab main reinforcement must meet the following spacing limitations.

    Equivalent deck section modulus atmidspanS Sc 4.61 10

    3 in3

    Tensile stress at extreme deck due toService I Load combinationsfMserv

    Muheel_servIS

    0.55 ksi

    Checkvalidity "LRFD 5.7.3.4 is Valid" fMserv 0.8 0.24 f'c ksi if"LRFD 5.7.3.4 is Not Valid" otherwise

    Checkvalidity "LRFD 5.7.3.4 is Valid"

    Thickness of concrete cover measuredfrom extreme tension fiber to center of theflexural reinforcement located closestthereto (AASHTO 5.7.3.4)

    dc Coverftdbheel

    2 2.64 in

    Class 2 exposure factor for decks andsubstructures exposed to water (AASHTO5.7.3.4)

    cf 0.75

    s 1dc

    0.7 tft dc 1.08Maximum spacing of tensile reinforcingbars allowed to control flexural cracking ofconcrete for service loads (AASHTO Eq.5.7.3.4-1)

    Smax1700 cf

    ssksi

    2

    dcin

    in 15.11 in

    Maximum Spacing per LRFD 5.10.3.2

    Note: AASHTO LRFD 5.10.3.2 states that the spacing of the reinforcement in walls and slabs shall notexceed 1.5 times the thickness of the member or 18 in.

    Smax2 min tft 18in 18 in Maximum spacing of steel reinforcing barsallowed per AASHTO LRFD 5.10.3.2

    Smax min Smax1 Smax2 15.11 in Maximum allowable spacing of steelreinforcing bars

    Check that the provided spacing is less than the maximum allowable spacing:

    checklim "OK" Sheel Smaxif"N.G." otherwise

    checklim "OK"

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 45 OF 59

    7.2 Toe Design for Flexure7.2.1 Applied Moment at Toe

    The bearing pressure at the front face of the stem is:

    Bearing pressure in the toe at the face ofthe wall stem (Service I)qffwall

    qheel qtoeWpcap

    Wpctoe qtoe 6.19 ksfFactored Bearing pressure in the toe t theface of the wall stem (Strength I)quffwall

    quheel qutoeWpcap

    Wpctoe qutoe 8.81 ksfThe loads that are required include:

    DLpcap_toe conc Dpcap Wpctoe 1.2kipft

    self-weight of toe footing

    The maximum factored moment applied due to Strength I Limit State on the Toe Footing is:

    Mutoe_strI 1ft DCstrmin DLpcap_toeWpctoe

    2

    quffwall Wpctoe 12qutoe quffwall

    2

    2Wpctoe3

    Wpctoe

    Mutoe_strI 17.93 kip ftThe maximum service moment applied due to Service I Limit State on the Toe Footing is:

    Mutoe_servI 1ft DCsv DLpcap_toeWpctoe

    2

    qffwall Wpctoe 12qtoe qffwall

    2

    2Wpctoe3

    Wpctoe

    Mutoe_servI 12.1 kip ft

    Once the maximum moment at the critical section is known, the same procedure that was used for the stemto calculate the flexural reinforcement must be followed. The footing toe flexural reinforcement is locatedlongitudinally in the bottom of the footing since the bottom of footing is in tension at the critical section.These bars will extend from the back of the heel to the front of the toe taking into account the clear cover.

    7.2.2 Design for Flexure

    Mutoe_strI 17.934 kip ft Total Factored Moment at Toe per Foot

    Mutoe_servI 12.102 kip ft Total Service Moment at Toe per Foot

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 46 OF 59

    7.2.2.1 Primary Flexural Reinforcement (Bottom of Toe Footing)

    Note: The use of epoxy coated reinforcement is required

    According to AASHTO 5.7.3.3.2 unless otherwise specified, at any section of a flexural component, theamount of flexural reinforcement shall be adequate to develop a factored flexural resistance, Mr, at least equalto the lesser of:

    The cracking moment (Mcr) determined from Equation 5.7.3.3.2-11.33 times the factored moment required by the applicable strength load combinations specified inAASHTO Table 3.4.1-1

    Mutoe_strI 17.934 kip ft Total Factored Moment at Toe per Foot

    b 12in Width of concrete strip

    tft Dpcap 48 in Thickness of the footing

    Igb tft

    312

    Ig 110592 in4 Moment of inertia

    yttft2

    yt 24 in Depth at mid-sectionSection modulus for the extreme fiber ofthe composite section where tensile stressis caused by externally applied loads(AASHTO 5.7.3.3.2)

    ScIgyt

    in3

    Flexural cracking variability factor(AASHTO 5.7.3.3.2)1 1.6

    fr 0.24 f'c ksi 0.54 ksi Modulus of rupture for cracking momentcalculations (AASHTO 5.4.2.6)

    Ratio of specified minimum yield strengthto ultimate tensile strength for A615 Grade60 reinforcement (AASHTO 5.7.3.3.2)

    3 0.75

    Cracking moment (simplified equation -neglects prestressing and noncompositeterms) (AASHTO LRFD Eqn. 5.7.3.3.2-1)

    Mcr 3 1 fr Sc 247.29 kip ft

    Mutoe_des Mcr Mutoe_strI McrifMutoe_strI otherwise

    Mutoe_des 247.29 kip ft Minimum design moment

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 47 OF 59

    Depth to tensile steel reinforcementmeasured from extreme compression fiberof concrete section. For the calculation ofeffective depth, d, assume #10 bar.

    dtoe tft12

    1.27in Coverfb 3.7 ft

    RnMutoe_des

    0.9 b dtoe20.14 ksi Coefficient of resistance

    Calculated ratio of steel for the ultimatemoment in the toe footing 0.85

    f'cfy

    1 12Rn

    0.85f'c

    0.00237

    Calculated amount of steel for the ultimatemoment in the toe footingAs b dtoe 1.26 in

    2

    bal 0.0335 Balanced ratio of steel reinforcement

    max 0.75 bal 0.0252 Maximum ratio of steelFor practical purposes a steel ratio up to1/2max = 1/2x0.75xbal = 0.375bal canalso be used

    pract12max 0.0126

    Standard reinforcing bar number providedfrom AASHTO Appendix B, Table B.4,selected for the wall stem

    Bartoe 10

    Bar# Dia(in) Area(in2)3 0.375 0.114 0.5 0.205 0.625 0.316 0.75 0.447 0.875 0.68 1.00 0.799 1.128 1.0010 1.27 1.2711 1.41 1.56

    dbtoe db1 in 1.27 in Diameter of primary reinforcement in thetoe footing

    Abtoe Ab1 in2 1.27 in2 Area of single primary reinforcement

    Calculated spacing of momentreinforcement Stoe 12

    AbtoeAs

    in 12.1 in

    Stoe 6in Selected Spacing of momentreinforcement

    Area of primary reinforcement in the toefootingAstoe

    AbtoeStoe

    12 in 2.54 in2

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 48 OF 59

    atoeAstoe fy0.85 f'c b

    2.99 in Approximate depth of compression blockEquivalent rectangular stress blockreduction factor = 0.85 for f`c

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 49 OF 59

    7.2.2.3 Check for Minimum Reinforcement per AASHTO 5.7.3.3.2

    Mutoe_strI 17.93 kip ft Total Factored moment at Toe per Foot

    Cracking moment (simplified equation -neglects prestressing and noncompositeterms) (AASHTO LRFD Eqn. 5.7.3.3.2-1)

    Mcr 247.29 kip ft

    checkminflexure "O.K." Mntoe min 1.33Mutoe_strI Mcr if"N.G." otherwise

    checkminflexure "O.K."

    7.2.2.4 Crack Control

    7.2.2.4.1 Stress at Tensile ReinforcementThe control of cracking by distribution of reinforcement must be checked. According to AASHTO LRFDArticle 5.7.3.4, crack control reinforcement is required where tension in the cross-section exceeds 80% of themodulus of rupture.

    Mutoe_servI 12.1 kip ft Applied Service limit state factoredmoment

    Modular ratio of steel to concrete moduli ofelasticityn

    EsEc

    6.76Depth to tension steel measured fromextreme compressive fiber of concretesection

    dtoe 44.37 in

    Area of steel in compression. Notconsidered in the calculationAsneg 0

    Depth to compressive reinforcing steelmeasured from extreme compressive fiberof the concrete section

    d' Coverft12

    1.27in 2.64 in

    Sum of the statical momentsabout the neutral axisf c( )

    b c22

    n Astoe n 1( ) Asneg c n Astoe dtoe n 1( ) Asneg d'Depth to the neutral axis from extremecompressive fiber of structural slabc root f c( ) c 0in tft 9.93 in

    Moment of inertia of the doublyreinforced transformed cracked sectionIcr

    b c33

    n Asneg d' c( )2 n Astoe dtoe c 2 2.43 104 in4Distance from neutral axis to tensile steelreinforcementytoe dtoe c 34.43 in

    Tensile stress at tensile steelreinforcements n

    Mutoe_servI ytoeIcr

    1.39 ksi

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 50 OF 59

    7.2.2.4.2 Required Spacing for Crack Control

    Maximum Spacing per LRFD 5.7.3.4

    Note: AASHTO LRFD 5.7.3.4 states that when tension in the cross-section exceeds 80% of the modulus ofrupture, specified in Article 5.4.2.6, at applicable service limit state load combination, the concretedeck slab main reinforcement must meet the following spacing limitations.

    Equivalent deck section modulus atmidspanS Sc 4.61 10

    3 in3Tensile stress at extreme deck due toService I Load combinationsfMserv

    Mutoe_servIS

    0.03 ksi

    Checkvalidity "LRFD 5.7.3.4 is Valid" fMserv 0.8 0.24 f'c ksi if"LRFD 5.7.3.4 is Not Valid" otherwise

    Checkvalidity "LRFD 5.7.3.4 is Not Valid"Thickness of concrete cover measuredfrom extreme tension fiber to center of theflexural reinforcement located closestthereto (AASHTO 5.7.3.4)

    dc Coverfbdbtoe

    2 3.63 in

    Class 2 exposure factor for decks andsubstructures exposed to water (AASHTO5.7.3.4)

    cf 0.75

    s 1dc

    0.7 tft dc 1.12Maximum spacing of tensile reinforcingbars allowed to control flexural cracking ofconcrete for service loads (AASHTO Eq.5.7.3.4-1)

    Smax1700 cf

    ssksi

    2

    dcin

    in 330.22 in

    Maximum Spacing per LRFD 5.10.3.2

    Note: AASHTO LRFD 5.10.3.2 states that the spacing of the reinforcement in walls and slabs shall notexceed 1.5 times the thickness of the member or 18 in.

    Smax2 min tft 18in 18 in Maximum spacing of steel reinforcing barsallowed per AASHTO LRFD 5.10.3.2

    Smax min Smax1 Smax2 18 in Maximum allowable spacing of steelreinforcing bars

    Check that the provided spacing is less than the maximum allowable spacing:

    checklim "OK" Stoe Smaxif"N.G." otherwise

    checklim "OK"

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 51 OF 59

    7.3 Shrinkage and Temperature Reinforcement per AASHTO LRFD Article 5.10.8

    b Wpcap 237 in total width of footing from outside tooutside

    h tft 48 in thickness of footingAmount of steel reinforcement required fortemperature and shrinkageAs_shtemp max 0.11in

    2 min1.3 b h

    2 b h( ) fykipin

    0.6in2

    0.432 in2

    Selected steel bar size for temperatureand shrinkage reinforcement located in thetransverse top and bottom of footing

    Barshtempft 7

    Bar# Dia(in) Area(in2)3 0.375 0.114 0.5 0.205 0.625 0.316 0.75 0.447 0.875 0.68 1.00 0.799 1.128 1.0010 1.27 1.27

    Abshtemp Ab1 in2 0.6 in2 Area of single reinforcement

    Maximum spacing for temperature andshrinkage reinforcementSshtempft min 18in 3 tft 12in

    AbshtempAs_shtemp

    16.65 in

    Selected spacing for temperature andshrinkage reinforcementSshtempft 12in

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 52 OF 59

    7.4 Design for ShearShear design in retaining wall footings consists of having adequate resistance against one-way andtwo-way actions. (Two-way shear does not apply for the spread footing). The design shear is taken at acritical section. For retaining walls, one-way action is checked in the toe and heel. The factored shearforce at the critical section is computed by cutting the footing at the critical section and summing theloads that are outside the critical section.

    7.4.1 One-Way Shear Force at Footing Heel

    For one-way action in the retaining wall footing heel the critical section is taken as follows:

    dheel tft Coverftdbheel

    2 dheel 45.37 in Assumed effective depth

    aheel 2.99 in Depth of equivalent stress block at heel

    bv 12in Effective web width per 1ft strip

    dvheel max dheelaheel

    2 0.9dheel 0.72 tft

    Effective shear depth (AASHTO LRFDArticle 5.8.2.9)

    The bearing pressure at distance dv from the back face of the stem is calculated as:

    Bearing stress in the heel at the face of thewall stem (Service I)qbfwall 5.34 ksfBearing stress in the heel at the face ofthe wall stem (Strength I)qubfwall 7.52 ksf

    The factored one-way shear force and Moment at the retaining wall footing heel critical section on a per footbasis is:

    Vuheel DCstrmax conc Dpcap Wpcheel EVstrmax EVSoilheelrect

    ESstrmax ESvert LSstrmax LSvert

    qubfwall quheel2

    Wpcheel

    1 ft

    Vuheel 22.82 kipMuheel_strI 327.5 kip ft

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 53 OF 59

    7.4.2 One-Way Shear Force at Footing Toe

    For one-way action in the retaining wall footing toe, the critical section is taken as follows:

    dtoe tft Coverfbdbtoe

    2 dtoe 44.37 in Assumed effective depth

    atoe 2.99 in Depth of equivalent stress block at toe

    Effective shear depth (AASHTO LRFDArticle 5.8.2.9)dvtoe max dtoe

    atoe2

    0.9dtoe 0.72 tft

    dvtoe 42.87 in

    bv 12in Effective web width per 1ft stripThe factored one-way shear force at the retaining wall footing toe critical section on a per foot basis is:

    Vutoe 1ft DCstrmin DLpcap_toequtoe quffwall

    2Wpctoe

    Vutoe 17.59 kip

    7.4.3 Check for Shear in Footing Heel

    The critical section for shear in the heel is located at the interior face of the wall stem but not at distance dvsince the primary flexural reinforcement are located in the top face of the heel where the load is applied 7.4.3.1 Simplified procedure for nonprestressed sections according to AASHTO LRFD 5.8.3.4.1

    dv dvheel value for sections less than 16" inthickness LRFD [5.8.3.4.1] 2.0

    tv tft 48 in if tv less than 16 in, then 45deg value for sections less than 16" in

    thickness LRFD [5.8.3.4.1]

    Nominal shear resistance (1) (AASHTOLRFD Eqns. 5.8.3.3-3 and 5.8.3.3-1)Vn1 0.0316 f'c ksi bv dv Vn1 74.4 kip

    Vn2 0.25 f'c bv dv Vn2 658.06 kip Nominal shear resistance (2) (AASHTOLRFD Eqn. 5.8.3.3-2)

    The nominal shear resistance is the lesser of:Nominal shear resistance (AASHTO LRFDArticle 5.8.3.3)Vn min Vn1 Vn2 Vn 74.4 kipResistance factor for shear (AASHTOLRFD Article 5.5.4.2.1)v 0.9Factored shear resistance (AASHTOLRFD Eqn. 5.8.2.1-2)Vr v Vn Vr 66.96 kip

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 54 OF 59

    Vuheel 22.82 kip Factored shear at critical section of heel(AASHTO LRFD Eqn. 5.8.2.1-2)

    checklim "OK" Vr Vuheelif"N.G." otherwise

    checklim "OK"

    Note:If the Nominal shear resistance is not adequate using =2 and =45 deg, or the concrete section does notmeet the requirements for simplified procedure, use the General procedure of AASHTO LRFD Article 5.8.3.4.2

    7.4.3.2 General Procedure according to AASHTO LRFD 5.8.3.4.2

    Area of nonprestressed steel on theflexural tension side of the memberAs Astoe 2.54 in

    2

    Nu 0 Factored axial load taken as positive iftensile and negative if compressive (kip)

    Vu Vuheel 22.82 kip Factored shear force (kip)

    See LRFD Figure 5.8.3.4.2-3: Definition ofcrack spacing parametersx dv 43.87 in

    Mucs Muheel_strI

    Absolute value of factored moment atcritical section for shearMucs 327.5 kip ft

    Mu max Mucs Vu dv 327.5 kip ftNet longitudinal tensile strain in thesection at the centroid of tensionreinforcement per LRFD Eq. 5.8.3.4.2-4ss

    Mudv

    0.5Nu Vu

    Es As1.53 10 3

    If the value of s calculated from Eq.5.8.3.4.2-4 is negative, it should be takenas zero or the value should be recalculatedwith the denominator of Eq. 5.8.3.4.2-4replaced by (EAs + EpAps + EoAc,).However, s should not be taken as lessthan -0.40 x 10-3.

    s 0 ss 0ifss otherwise

    1.53 10 3

    sxe max 12in min sx1.38

    agin

    0.63 80in

    43.87 in crack spacing parameter per LRFD Eq.

    5.8.3.4.2-5

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 55 OF 59

    29 3500s 34.34

    4.8

    1 750 s 51

    39sxein

    1.38 for sections not containing at least theminimum amount of transversereinforcement (LRFD Eq. 5.8.3.4.2-2)

    Vn1 0.0316 f'c ksi bv dv 51.24 kip Nominal shear resistance of a concretemember LRFD [5.8.3.3]

    Vn2 0.25 f'c bv dv 658.06 kipThe nominal shear resistance is the lesser of:

    Vn min Vn1 Vn2 Vn 51.24 kipVr v Vn Vr 46.12 kip Factored shear resistance

    Vuheel 22.82 kip Factored shear at critical section of heel(AASHTO LRFD Eqn. 5.8.2.1-2)

    checklim "OK" Vr Vuheelif"N.G." otherwise

    checklim "OK"

    7.4.4 Check for Shear in Footing Toe:

    7.4.4.1 Simplified procedure for nonprestressed sections according to AASHTO LRFD 5.8.3.4.1

    dv dvtoe value for sections less than 16" inthickness LRFD [5.8.3.4.1] 2.0

    tv tft 48 in if tv less than 16 in, then 45deg value for sections less than 16" in

    thickness LRFD [5.8.3.4.1]

    Nominal shear resistance (1) (AASHTOLRFD Eqns. 5.8.3.3-3 and 5.8.3.3-1)Vn1 0.0316 f'c ksi bv dv Vn1 72.7 kip

    Vn2 0.25 f'c bv dv Vn2 643.06 kip Nominal shear resistance (2) (AASHTOLRFD Eqn. 5.8.3.3-2)

    The nominal shear resistance is the lesser of:

    Vn min Vn1 Vn2 Vn 72.7 kipNominal shear resistance (AASHTO LRFDArticle 5.8.3.3)

  • Title: Proposed Retaining Wall (Typical SE Wall Without Canopy Column Pedestal)

    PROJECT NUMBER: HBM1301-568 PROJECT NAME: CTA-95th St Terminal Improvement

    CALC BY: MA, LAB DATE: 03/21/2014CHECK BY: MI, MAI DATE: 03/28/2014

    SHEET: 56 OF 59

    Resistance factor for shear (AASHTOLRFD Article 5.5.4.2.1)v 0.9

    Factored shear resistance (AASHTOLRFD Eqn. 5.8.2.1-2)Vr v Vn Vr 65.43 kip

    Vutoe 17.59 kip Factored shear r