39
Prof. Dr. -Ing. Wolfgang Fricke , TUHH Prof. Dr. -Ing. Uwe Weltin, TUHH Dipl. -Ing. Olav Feltz, TUHH Serkan Birinci 15 September 2008 Konstruktion und Festigkeit von Schiffen SERKAN BIRINCI M.Sc. International Production Management Prof. Dr. -Ing. Wolfgang Fricke, TUHH Prof. Dr. -Ing. Uwe Weltin, TUHH Dipl. -Ing. Olav Feltz, TUHH 15 September 2008 EXPERIMENTAL AND NUMERICAL FATIGUE STRENGTH INVESTIGATION OF A WELDED STRUCTURE AND ASSESSMENT WITH DIFFERENT APPROACHES

Master Thesis Presentation

Embed Size (px)

Citation preview

Page 1: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

SERKAN BIRINCI

M.Sc. International Production Management

Prof. Dr. -Ing. Wolfgang Fricke, TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

15 September 2008

EXPERIMENTAL AND NUMERICAL FATIGUE STRENGTH INVESTIGATION OF A WELDED

STRUCTURE AND ASSESSMENTWITH DIFFERENT APPROACHES

Page 2: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Main Aim

• To assess the fatigue strength of four different structural details by applying different

fatigue assessment methods

• Comparison of these methods according to the applicability for a specific detail

Introduction Theoretical Background Experimental Setup Results Conclusion

Page 1

Page 3: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Fatigue FailureThe progressive and localized structural damage that occurs when a material is

subjected to a cyclic loading.

Steps of Crack Formation• Crack Initiation

• Crack propagation

• Final Fracture

Major Influences on Fatigue Strength• Local Parameters of Geometry : Toe Radius, Weld Angle and Surface Crack Depth

• Loading : Fluctuating and Repeating

• Material Type

• Fusion Process, Residual Stresses

• Stress Concentration Effects : Key way, Hole and Non-welded Root Gaps

Introduction Theoretical Background Experimental Setup Results Conclusion

Page 2

Page 4: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Fatigue Assessment Approaches

Page 3

• Global Approaches

- Nominal Stress Method

• Local Approaches

- Structural Hot Spot Stress Method

- Effective Notch Stress Method

• Linear Elastic Fracture Mechanics Approach

Page 5: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Fatigue Assessment Approaches

• Global Approaches

- Nominal Stress Method

• Local Approaches

- Structural Hot Spot Stress Method

- Effective Notch Stress Method

• Linear Elastic Fracture Mechanics Approach

Nominal Stress Classes

Number of Cycles (N)

∆σ[M

Pa]

Page 4

Page 6: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Fatigue Assessment Approaches

• Global Approaches

- Nominal Stress Method

• Local Approaches

- Structural Hot Spot Stress Method

- Linear Stress Extrapolation

- According to Xiao and Yamada

- Effective Notch Stress Method

• Linear Elastic Fracture Mechanics Approach

Page 5

Page 7: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Fatigue Assessment Approaches

• Global Approaches

- Nominal Stress Method

• Local Approaches

- Structural Hot Spot Stress Method

- Linear Stress Extrapolation

- According to Xiao and Yamada

- Effective Notch Stress Method

• Linear Elastic Fracture Mechanics Approach

Page 6

Page 8: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Fatigue Assessment Approaches

• Global Approaches

- Nominal Stress Method

• Local Approaches

- Structural Hot Spot Stress Method

- Effective Notch Stress Method

• Linear Elastic Fracture Mechanics Approach

Page 7

RADIUS 1 mm

Page 9: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Fatigue Assessment Approaches

• Global Approaches

- Nominal Stress Method

• Local Approaches

- Structural Hot Spot Stress Method

- Effective Notch Stress Method

• Linear Elastic Fracture Mechanics Approach

Page 8

IK = . .a Yσ π

• KIC = Fracture Toughness

• KI = Stress Intensity Factor

Page 10: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Relation Between Stresses

Base Plate

Cover Plate

Strengths and Weaknesses of the Methods

Nominal Stress Method

- Local geometry properties not evaluated

- But included in detail classes and S-N curves

Structural Stress Method

- Omits the detail classes

- Captures the local macro geometric effects

- Excludes the notch effect

Effective Notch Stress Method

- Includes the effect of local weld toe geometry

n

kmax

max

I

= Nominal Stress

= Maximum Notch Stress

= Maximum Structural Stress

K = Stress Intensity Factor

s

σ

σ

σ

Page 9

Page 11: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Specification of Specimens

• 4 cases ( each of 10 Specimens )

- Size : 300 mm × 50 mm × 12 mm

- Weld Throat Length (a) : 3 mm and 7 mm

- Loading Type : Load Carrying and Non-Load Carrying

SECTION A-A

Lc / 2

T

T/2

Lw

a

F

Page 10

Page 12: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Specification of Experiment

• The Applied Repeated Nominal Stress

- 90 MPa – 120 Mpa for 3 mm Load Carrying Fillet Weld Joint

- 120 MPa – 170 Mpa for 3 mm Non-Load Carrying Fillet Weld Joint

- 120 MPa – 210 Mpa for 7 mm Load Carrying Fillet Weld Joint

- 150 MPa – 200 Mpa for 7 mm Non-Load Carrying Fillet Weld Joint

• Frequency : 30 Hz

• Stress Ratio, R = 0

Page 11

Page 13: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Observed Crack Formation

Page 12

TOE

CRACK

ROOT

CRACK

a

ROOT

CRACK

a

TOE

CRACK

a

TOE

CRACK

a

3 mm a-Length

Load Carrying Fillet Weld

3 mm a-LengthNon-Load Carrying

Fillet Weld

7 mm a-Length

Load Carrying

Fillet Weld

7 mm a-Length

Non-Load Carrying Fillet Weld

σ σ

σ σ σ σ

σ σ

Page 14: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Observed Crack Formation

Weld root crack in 3 mm

load carrying fillet weld joint

Page 13

Page 15: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Test Results for Nominal Stress Method

S - N RESULTS OF THE FATIGUE TEST

54.7

10

100

1000

1.E+04 1.E+05 1.E+06 1.E+07

Number of Cycle ( N )

Stress Range ( N/m

m2)

Pü=10%

Pü=50%

Pü=90%

Pü=97.7%

3mm Load Carrying Fillet Weld - Crack at Weld Root

7mm Load Carrying Fillet Weld - Crack at Weld Toe

3mm Non-Load Carrying Fillet Weld - Crack at Weld Root and Weld Toe

7mm Non-Load Carrying Fillet Weld - Crack at Weld Toe

Page 14

Stress Range (N / m

m2)

Page 16: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Investigated Variables3 mm throat length

• Weld size 7 mm throat length

Load carrying weld• Loading type

Non-load carrying weld

• Effect of contact analysis in FEM program (ANSYS)

Assumptions for FEM Model

• Assumption of specimen

- Flank angle of 135 ˚

- Weld Toe Radius 1 mm

- Throat thickness of 3 mm and 7 mm

• Assumption of FEM model

- Plane stress condition

- 90 MPa Nominal Stress

- Restraints applied end of the main plate

Page 15

Page 17: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Structural Hot Spot Stress Method by Linear Extrapolation

AXIAL STRESS

( m m )0 T 0,4 T 1,0 T

0 T

a) Coarse Mesh

c) Coarse Mesh Refined

b) Finer Mesh

d) Finer Mesh Refined

Page 16

• 3 mm and 7 mm throat thickness

are insensitive to non-linear peak

stress

Page 18: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

LINEAR STRESS EXTRAPOLATION AT THE WELD TOE

88000

90000

92000

94000

96000

98000

100000

102000

104000

106000

108000

00.20.40.60.81

DISTANCE (T)

AXIAL STRESS

L3_Non-Load Carrying Coarse MeshL7_Non-Load Carrying Coarse MeshL3_Non-Load Carrying Coarse Mesh RefinedL7_Non-Load Carrying Coarse Mesh RefinedL7_Non-Load Carrying Finer MeshL3_Non-Load CarryingL7_Non-Load CarryingL3_Load CarryingL7_Load Carrying

3 mm load carrying

7 mm load carrying

Page 17

Structural Hot Spot Stress Method by Linear Extrapolation

Page 19: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

1 mm

Introduction Theoretical Background Experimental Setup Results Conclusion

Structural Hot Spot Stress Method by Xiao and Yamada

Page 18

Notch Stress Modeled

1 mm mesh size Modeled

1 mm

Page 20: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Structural Hot Spot Stress Method by Xiao and Yamada

Page 19

10

100

1000

1.E+05 1.E+06 1.E+07

Number of Cycle ( N )

Structural Stress at 1 m

m Depth ( M

pa )

R = 0

FAT 100

3mm Non-Load Carrying without contact analysis, Ks= 1.21,Weld Toe Crack 3mm Non-Load Carrying with contact analysis, Ks= 1.27,Weld Toe Crack7mm Load Carrying without contact analysis, Ks = 1.34,Weld Toe Crack 7mm Load Carrying with contact analysis, Ks = 1.24,Weld Toe Crack 7mm Non-Load Carrying without contact analysis, Ks = 1.19,Weld Toe Crack 7mm Non-Load Carrying with contact analysis, Ks = 1.16,Weld Toe Crack

WÖHLER S-N CURVEFORMED WITH

AXIAL STRESS σX Notch Stress Modeled

Page 21: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Structural Hot Spot Stress Method by Xiao and Yamada

Page 20

10

100

1000

1.E+05 1.E+06 1.E+07

Number of Cycle ( N )

Structural Stress at 1 m

m Depth (Mpa)

R = 0

FAT 100

3mm Non-Load Carrying, without contact analysis, Ks= 1.37, Weld Toe Crack 3mm Non-Load Carrying, with contact analysis, Ks= 1.46, Weld Toe Crack7mm Load Carrying, without contact analysis,Ks = 1.63, Weld Toe Crack7mm Load Carrying, with contact analysis,Ks = 1.42, Weld Toe Crack7mm Non-Load Carrying, without contact analysis, Ks = 1.31, Weld Toe Crack7mm Non-Load Carrying, with contact analysis, Ks = 1.25, Weld Toe Crack

WÖHLER S-N CURVEFORMED WITH

PRINCIPAL STRESS σ1 Notch Stress Modeled

Page 22: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Structural Hot Spot Stress Method by Xiao and Yamada

Page 21

10

100

1000

1.E+05 1.E+06 1.E+07

Number of Cycle ( N )

Structural Stress at 1 m

m Depth (Mpa)

R = 0

FAT 100

3mm Non-Load Carrying, without contact analysis, Ks= 1.06, Weld Toe Crack 3mm Non-Load Carrying, with contact analysis, Ks= 1.11, Weld Toe Crack7mm Load Carrying, without contact analysis, Ks= 1.20, Weld Toe Crack7mm Load Carrying, with contact analysis, Ks= 1.12, Weld Toe Crack7mm Non-Load Carrying, without contact analysis, Ks= 1.10, Weld Toe Crack7mm Non-Load Carrying, with contact analysis, Ks= 1.07, Weld Toe Crack

WÖHLER S-N CURVEFORMED WITH

AXIAL STRESS σX

1 mm mesh size Modeled

Page 23: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Structural Hot Spot Stress Method by Xiao and Yamada

Page 22

10

100

1000

1.E+05 1.E+06 1.E+07

Life Cycle ( N )

Structural Stress at 1 m

m Depth (Mpa)

R = 0

FAT 100

3mm Non-Load Carrying, without contact analysis, Ks= 1.20, Weld Toe Crack 3mm Non-Load Carrying, with contact analysis, Ks= 1.26, Weld Toe Crack7mm Load Carrying, without contact analysis, Ks= 1.50, Weld Toe Crack7mm Load Carrying, with contact analysis, Ks= 1.27, Weld Toe Crack7mm Non-Load Carrying, without contact analysis, Ks= 1.23, Weld Toe Crack7mm Non-Load Carrying, with contact analysis, Ks= 1.16, Weld Toe Crack

1 mm mesh size Modeled

WÖHLER S-N CURVEFORMED WITH

PRINCIPAL STRESS σ1

Page 24: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Structural Hot Spot Stress Method by Xiao and Yamada

Page 23

1 mm mesh

size ModeledNotch Stress

Modeled

• All compared parameters of notch stress modeled mesh give higher values

than 1 mm mesh size model.

• Not having 1 mm fictitious radius causes increased stresses at the plate edge

of 1 mm mesh size model, and correspondingly causes decreased stresses.

• Xiao and Yamada SHS Stress Approach highly sensitive to mesh size at the weld toe.

• All the stress values of contact analysis used 1 mm mesh size model are

higher than without contact analysis used.

Page 25: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Effective Notch Stress Method

Page 24

Notch Stress Modeled Fictitious notch radius rf = 1 mm

Fictitious radius rf = 1 mm

R1

R1• All principal stresses were taken from

the points in where the crack formation

occurred in the real test specimen.

Page 26: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Effective Notch Stress Method

Page 25

10

100

1000

1.E+05 1.E+06 1.E+07

Number of Cycle ( N )

Effective Notch Stress Range (Mpa)

R = 0

3 mm Load Carrying Fillet with contact analysis Kf = 7.50, Weld Root Crack3 mm Load Carrying Fillet without contact analysis Kf = 6.38 , Weld Root Crack3mm Non-Load Carrying with contact analysis, Kf = 3.50, Weld Toe Crack3mm Non-Load Carrying without contact analysis Kf = 3.40, Weld Toe Crack3mm Non-Load Carrying with contact analysis, Kf = 3.73, Weld Root Crack3mm Non-Load Carrying without contact analysis Kf = 2.28, Weld Root Crack7mm Load Carrying wih contact analysis, Kf = 3.27, Weld Toe Crack7mm Load Carrying without contact analysis Kf = 3.96, Weld Toe Crack7mm Non-Load Carrying wih contact analysis, Kf = 2.76, Weld Toe Crack7mm Non-Load Carrying without contact analysis Kf = 2.96, Weld Toe Crack

FAT 225 ( m = 3 )

• Design assign curve

with FAT 225

• Highest Kf value obtained

3 mm Load Carrying Fillet

Weld

• Lowest Kf value obtained

3 mm Non-Load Carrying

Fillet Weld

• The contact analysis result

of 3 mm fillet weld higher

than the without contact

analysis

• The contact analysis

result of 7 mm fillet weld

lower than the without

contact analysis

Page 27: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Effective Notch Stress Method

Page 26

With Contact

Analysis

Without Contact

Analysis

• Maximum Stress at

the Weld root

• Maximum Stress at

the Weld Toe

• 3 mm fillet weld with the contact analysis

conducts bending forces from the weld toe to

weld root

• Contact effect increases the effective notch

stress in the weld toe

Page 28: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Linear Elastic Fracture Mechanics

Page 27

With Contact

Analysis

• FRANC2D crack growth program used to evaluate the fatigue life of 3 mm throat

thickness Load carrying and Non-Load carrying weld model

• Plane stress assumption

• To prove the accuracy of program, a test was done with a very simple specimen with

0.5 mm and 1.0 mesh size. Then,result compared with analytical result.

a0= 0.1 mm C = 5.21·10-13

∆a = 0.1 mm KIC = 2245 [N/mm3/2]

P = 90 Mpa m = 3.0

IK = . .a Yσ π

/ 2 / 2 1 / 2 10

1 1 1

( / 2 1)m m m m me

NC m Y a aσ π − −

= −

⋅ ∆ ⋅ − ⋅ ⋅

/ 2 / 2 1 / 2 1

1 1 1

( / 2 1) ( ) ( )m m m m mc c

NC m Y a a a aσ π − −

∆ = − ⋅ ∆ ⋅ − ⋅ ⋅ + ∆

(1)

(2)

(3)

Page 29: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Linear Elastic Fracture Mechanics

Page 28

With Contact

Analysis

• Mode I SIF graphs calculated by FRANC2D program and by analytically

• not insensitive to mesh size

• SIF of 1 mm mesh size test model resulted nearly %10 higher value than 0.5 mm

mesh size test modelMODE I SIF HISTORY

-100.000

100.000

300.000

500.000

700.000

900.000

0.000 1.000 2.000 3.000 4.000 5.000

Crack Length

KI

FRANC2D ANALYTICAL

Page 30: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Linear Elastic Fracture Mechanics

Page 29

With Contact

Analysis

• Fatigue life graphs calculated by FRANC2D program and by analytically

• fatigue life time increased nearly %40, due to 1mm mesh size

NUMBER OF CYCLES vs. CRACK LENGTH

-2.000E+05

2.000E+05

6.000E+05

1.000E+06

1.400E+06

1.800E+06

0.000 1.000 2.000 3.000 4.000 5.000

CRACK LENGTH ( mm )

NUMBER OF CYCLES ( N )........

FRANC2D ANALYTICAL

Page 31: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Linear Elastic Fracture Mechanics

Page 30

With Contact

Analysis

• Fatigue life and SIF graphs of 3 mm Load and Non-Load carrying Fillet Weld

Non-Load Carrying Weld Load Carrying Weld

Page 32: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Page 31

Conclusions

• When the weld throat thickness of the specimens increases, the crack formation passes from weld

root to weld toe

• The applicability of Structural Hot Spot (SHS) method by Linear Stress Extrapolation

is relatively easier than other methods

• Weld Size variation causes inconsistent results, the SHS method is sensitive to mesh size

• The effects of weld size variation is most clearly seen in Effective Notch Stress Method, and least

seen Xiao and Yamada SHS Stress Method

• The obtained principal stresses in Xiao and Yamada SHS Stress Method are higher than axial

stresses

• All compared parameters of notch stress modeled mesh in Xiao and Yamada SHS Stress Method

result higher stress values than 1 mm mesh size model

• Xiao and Yamada SHS Stress Method is highly sensitive to mesh size at the weld toe

• FRANC2D is sensitive to mesh size, and uses numerical integration to calculate fatigue life.

Therefore, correct mesh size of the model is important.

Page 33: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Page 31

Future Works

• Stress distribution with the variation of the local shape of the weld, the weld toe radius, flank

angle and the mesh size by Xiao and Yamada Method

• Exact mesh size with the calculation of FRANC2D for the 7 mm load carrying and non-load

carrying fillet weld

Page 34: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Page 32

THANK YOU FOR YOUR ATTENTION

Page 35: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Test Results for Nominal Stress Method ( Separated)

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

S - N RESULTS OF THE FATIGUE TESTLoad Carrying 3mm a-length

Weld Root

10

100

1000

10000

1.E+04 1.E+05 1.E+06 1.E+07

Life Cycle ( N )

Stress Range

( Mpa )

3mm Load Carrying Fillet Weld - Crack at Weld Root

Pü=10%

Pü=50%

Pü=90%

Pü=97.7%

R = 0

40.1

Page 36: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Test Results for Nominal Stress Method ( Separated)

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

S - N RESULTS OF THE FATIGUE TESTNon-Load Carrying 3mm a-length

Weld Toe

10

100

1000

1.E+05 1.E+06 1.E+07

Life Cycle ( N )

Stress Range ( Mpa )

3mm Non-Load Carrying Fillet Weld - Crack at Weld Toe

Pü=10%

Pü=50%

Pü=90%

Pü=97.7%

R = 0

75.3

Page 37: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Test Results for Nominal Stress Method ( Separated)

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

S - N RESULTS OF THE FATIGUE TESTNon-Load Carrying 3mm a-length

Weld Root

10

100

1000

1.E+05 1.E+06 1.E+07

Life Cycle ( N )

Stress Range ( Mpa )

3mm Non-Load Carrying Fillet Weld - Crack at Weld Toe

Pü=10%

Pü=50%

Pü=90%

Pü=97.7%

R = 0

68.8

Page 38: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Test Results for Nominal Stress Method ( Separated)

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

S - N RESULTS OF THE FATIGUE TESTLoad Carrying 7 mm a-length

Weld Toe

10

100

1000

1.E+05 1.E+06 1.E+07

Life Cycle ( N )

Stress Range ( Mpa )

7 mm Load Carrying Fillet Weld - Crack at Weld Toe

Pü=10%

Pü=50%

Pü=90%

Pü=97.7%

R = 0

82.4

Page 39: Master Thesis Presentation

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

Introduction Theoretical Background Experimental Setup Results Conclusion

Test Results for Nominal Stress Method ( Separated)

Prof. Dr. -Ing. Wolfgang Fricke , TUHH

Prof. Dr. -Ing. Uwe Weltin, TUHH

Dipl. -Ing. Olav Feltz, TUHH

Serkan Birinci15 September 2008

Konstruktion und Festigkeit von Schiffen

S - N RESULTS OF THE FATIGUE TESTNon-Load Carrying 7 mm a-length

Weld Toe

10

100

1000

1.E+05 1.E+06 1.E+07

Life Cycle ( N )

Stress Range ( Mpa )

7 mm Load Carrying Fillet Weld - Crack at Weld Toe

Pü=10%

Pü=50%

Pü=90%

Pü=97.7%

R = 0

75.4