32
1 Master NPAC: An introduction to the theory of nuclear reactions Guillaume Hupin IPN Orsay prepared with inputs of D. Lacroix Lecture 1 : Generalities from classical to quantum scattering

Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

1

Master NPAC:

An introduction to the theory of nuclear

reactions

Guillaume Hupin

IPN Orsayprepared with inputs of D. Lacroix

Lecture 1 : Generalities from classical to

quantum scattering

Page 2: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

22

Generalities from classical to quantum scattering

Two-body quantum scattering: phase-shifts, resonances…

Formal theory of scattering to optical potential Gen

era

l asp

ects

Inelastic channels, Fusion

Direct reactions: continuum effect, Break-up, knock-out

Nu

cle

ar

Ph

ysic

s

Microscopic approaches to reactions: TDHF

Few-body approaches to reactions

Researc

h t

op

ics

Page 3: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

33

Quantum Collision Theory C. J. Joachain, ISBN 978-0-

444-86773-5, North-Holland, 1975.

Scattering Theory, J. R. Taylor, 978-0-486-45013-1,

Dover publications, 1983.

Introduction to Nuclear Reactions, C. A. Bertulani and

P. Danielewicz,978-0-750-30932-5, Taylor & Francis,

2003.

Nuclear Reactions for Astrophysics, I. J. Thompson and

F. M. Nunes, 978-0-524-85635-5, Cambridge University

press, 2009.

Nuclear Reactions, H.P. gen. Schieck, 978-3-642-

53985-5, Springer, 2014.

Introduction to Nuclear Reactions, G.R. Satchler, 0-

333-25907-6, Macmillan Press, 1980.

Page 4: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

44

IPNO

P. Napolitani

G. Hupin

D. Lacroix

J. Carbonell

CEA

M. Dupuis

G. Blanchon

U. of Surrey

P. Stevenson

N. Timofeyuk

A. Diaz-Torres

GANIL

M. Płoszajczak

IPHC

R. Lazauskas

M. Dufour

U. of Varsaw

P. Magierski

U. of Sevilla

A. Moro

J. Lay Valera

ULB

D. Baye

P. Descouvemont

P. Capel

U. of Pisa

A. Kievsky

L. Marcucci

M. Viviani

A. Bonaccorso

GSI

S. Typel

T. Neff

U. of Bochum

E. Epelbaum

U. of Erlangen

P.-G Reinhardt

CSIC

E. Garrido

U. of Trento

G. Orlandini

W. Leigmann

U. Jagiellonian

R. Skibiń

J. Golak

H. Witała

U. of Vilnius

A. Deltuva

Jülich

A. Nogga

J. Haidenbauer

U.-G. Meißner

U. of Lisboa

A. Fonseca

Missing:

Nuclear data evaluators

Page 5: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

55

High energy picture: from CMS (CERN)

The low energy nuclear physicist viewpoint

• NN-interaction is a fundamental force

• Nucleons are considered as

elementary (point-like) particles

Here we consider that there is not enough

energy to excite internal degrees of freedom of

nucleons

From D. Furnstahl, Nucl. Phys. B Proc. Suppl. (2012).

~ hard scale

Beam energy < 140 MeV/nucleon (𝜋 threshold)

p p

p

p

Page 6: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

66

Typical experiment:

𝑒−, 𝛾, p, n, t, 3He…Heavy Ions…

Beam control:

Beam energy, reactant polarization

Target choice

𝑒−, 𝛾, p, n, t, 3He…Heavy

Ions…polarimeter,

atomic transitions…

Role of reaction theory:

Reconstruct the unseen

history of the reaction

Expt.

parameters

Detection

Theory

Page 7: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

77

Nowadays, scientists are

interested in Radioactive

Ion Beams (RIB) to

probe the physics far

from the stability/ of

extreme isospin/ of

astrophysical interest/ …

Page 8: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

88

An example of experiment

• Precisely measure the ejectile

• Particle ID with good energy and angles

• measurement

Agata:

4𝜋 gamma-ray detector

FWHM 6keV @ 1 MeV

~43%VAMOS spectrometer

Page 9: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

99

Reactions observables depends on the wavelength of the

projectile and how it interacts with target

Why do we need so many beams/detectors ?

Nucleon-nucleon collisions

or

1H

p n

1S0

NN interactions

Charge densities𝑒−Electron scattering

𝑒−

Page 10: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

1010

Knockout reactions (high energy) Spectroscopic information

𝑡+∞

𝑡−∞

Transfer reactions (low energy) Spectroscopic information

𝑡−∞

𝑡+∞

Some reactions are designed to study nuclear structure

Page 11: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

1111

Coulomb excitation Collective motion

𝛾

Others give access to specific mode of excitations

Photonuclear reactions

GDR excitation𝛾

Also Bremsstrahlung,

radiative capture𝛾 𝑡−∞ 𝑡+∞

Page 12: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

1212

Out of equilibrium properties (away from nuclear density + cold)

Reactions at Fermi energy

(30 to 150 MeV/A)

Fragmentation

𝑡−∞ 𝑡+∞

Page 13: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

1313

Spectator/participant

fragmentation

Fusion

evaporation

Fusion

fission Vaporization

Quasi-fission

TransferQuasi-elastic

Beam EnergyFusion barrier (5-30 MeV/A) Fermi-Energy (30-100 MeV/A)

Typical excitation energy

8-10 MeV/A3-10 MeV/A0-3 MeV/A

Fragmentation

Incoming channel

𝑡−∞𝑡+∞

We control

Formation of a

compound nucleus

Thermalization

Dinucleus

𝜸𝜸𝜸

Page 14: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

1414

Mass/Charge:

• Projectile 𝑁𝑝, 𝑍𝑝• Target 𝑁𝑡, 𝑍𝑡

Beam Energy

• ൗ𝐸𝑏𝐴 , 𝐸𝑝

Spin moments

• Projectile 𝑝𝑧, 𝑝𝑧𝑧…• Target 𝑞𝑧 , 𝑞𝑧𝑧 …

How the probe interacts

• Strong nuclear

• Electromagnetic

• Weak

Page 15: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

1515

????

Inclusive/exclusive

Strongly detectors

dependent

Exit channel

Means that X is not in its ground state

Entrance channel

b

Ep

𝑅𝑐.𝑚.

𝐴𝑃, 𝑍𝑃

𝐴𝑇 , 𝑍𝑇Ԧ𝑆

Ԧ𝑆

Elastic scattering 𝐴(𝑎, 𝑎)𝐴

Inelastic scattering

Deeply inelastic…

Compound nucleus

𝐴 + 𝑎՜𝐴 + 𝑎

𝐴 + 𝑎՜𝐵 + 𝑏

𝐴 + 𝑎՜𝐵∗ + 𝑏∗ +⋯

𝐴 + Ԧ𝑎՜ Ԧ𝐴 + 𝑎 Spin transfer 𝐴( Ԧ𝑎, 𝑎) Ԧ𝐴

𝐴 + 𝑎՜𝐶∗ ՜ decay

Transfer reaction 𝐴 𝑎, 𝑏 𝐵

𝐴 + 𝑎՜𝐴 + 𝑎 + 𝛾 Nuclear Bremsstrahlung

No e

nerg

y

tran

sfe

r

En

erg

y

tran

sfe

r

Page 16: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

1616

Total charge:

𝑖

𝑍𝑖 =𝑓

𝑍𝑓

Total Baryonic number; i.e. when 𝐸 < 𝐸𝜋 treshold protons and neutron

are equilibrated:

𝑖

𝑍𝑖 =𝑓

𝑍𝑓

𝑖

𝑁𝑖 =𝑓

𝑁𝑓

Total energy

Total linear momentum

Total angular momentum

Total parity

Total isospin

Important kinematics relations

through, which one related quantities

to initial parameter

𝐽𝑖𝜋𝑖𝑇𝑖 = 𝐽𝑓

𝜋𝑓𝑇𝑓where

𝐴 𝐼𝐴 , 𝜋𝐴, 𝑇𝐴 , 𝑎 , 𝐼𝑎𝜋𝑎, 𝑇𝑎𝑆𝜓 𝑟

𝐽𝑖𝜋𝑖𝑇𝑖

𝐵 𝐼𝐵 , 𝜋𝐵, 𝑇𝐵 , 𝑏 𝐼𝑏𝜋𝑏 , 𝑇𝑏𝑆 ෨𝜓 𝑟

𝐽𝑓𝜋𝑓𝑇𝑓

Page 17: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

1717

Challenge of nuclear reaction theory

Understand the reaction mechanism to get information on nuclei

Explain the diversity of nuclear phenomena

Give a unified description of these phenomena

Challenge of this lecture

Gives some hint on how these (some) phenomena are described

Gives you some starting point/minimal background on nuclear

reactions models

Gives you overview of hot topics in the field

Page 18: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

18

Scattering in Classical

Mechanics

As an introduction

Page 19: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

1919

Total cross-section

(Number of scattered particle per unit time)(𝜃, 𝜑)

(Incident flux) (Scattering centers, n)(unit of solid angle)

Differential cross-section

𝑑𝜎channel 𝜃,𝜑

𝑑Ω=

𝑛=1 𝑗𝑓 𝜃, 𝜑

𝑗𝑖

𝜎tot = න

c

𝑑𝜎c 𝜃, 𝜑

𝑑Ω𝑑Ω

Page 20: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

2020

In classical mechanic, equations are deterministic i.e. the trajectory depends on b

(or equivalently 𝑏 𝜋 ).

So number of scattered particle per unit time:

𝑗𝑖𝜋 𝑏 + 𝑑𝑏 2 − 𝑏2 ~𝑗𝑖2𝜋𝑏𝑑𝑏

The differential cross-section is:

𝑑𝜎c 𝜃, 𝜑

𝑑Ω=

𝑏

sin 𝜃

𝑑𝑏

𝑑𝜃

Page 21: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

2121

Page 22: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

2222

Page 23: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

2323

Geiger-Marsden experiment (1908-1913)

E < 7.7 MeV

Data: http://hyperphysics.phy-astr.gsu.edu

𝑑𝜎

𝑑𝛺=

𝑍1𝑍2𝑒2

8𝜋𝜀0𝑚𝑣02

2

csc4𝜃

2

Page 24: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

2424

• Detector at a fixed 𝜃 angle

• Scan for various beam energy

Eisberg, R. M. and Porter, C. E., Rev. Mod. Phys. 33, 190 (1961)

Geiger-Marsden

data

Rutherford

formula

Exp.

𝑑𝜎

𝑑𝛺=

𝑍1𝑍2𝑒2

8𝜋𝜀0𝑚𝑣02

2

csc4𝜃

2

Page 25: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

2525

Eisberg, R. M. and Porter, C. E., Rev. Mod. Phys. 33, 190 (1961)

Rutherford

formula

Exp.

Alpha particle are not

point like-particle

But this alone cannot explain the deviations

from Rutherford

• Nucleons do interact also through

the nuclear force.

• This interaction is a short-range

interaction

grazing

𝑑0

𝐸

𝑑0 =𝑒2𝑍1𝑍22𝜋𝜀02𝐸

Page 26: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

2626

Nucleons or 𝛼 scattering on nuclei are

sensitive to both the nucleus spatial

extension and the nuclear interaction

Electron scattering is mostly sensitive to

charged matter (proton) densitySee Z protons

To probe nuclear properties with electrons, high energy electron beam are needed

(𝑚𝑒 ≪ 𝑚𝛼)

𝛽 =𝑣

𝑐is not small and relativistic effects are important

For 𝛽 = 1 Mott scattering formula 𝑑𝜎

𝑑𝛺 Mott≃

𝑑𝜎

𝑑𝛺 Ruthcos2

𝛩

2

𝑒−

𝑒−

Rutherford with relativistic effects (assuming no nuclear spatial extension):

valid for small Z𝑑𝜎

𝑑𝛺≃

𝑑𝜎

𝑑𝛺Ruth

1 − 𝛽2 sin2𝛩

2

Page 27: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

2727

Hofstadter, R., et al., Phys. Rev. 92, 978 (1953).

Nuclear systems cannot be treated as point-like

particles and have finite extension

𝑒−

𝑒−

𝑑𝜎

𝑑𝛺 Mott≃

𝑑𝜎

𝑑𝛺 Ruthcos2

𝛩

2

𝑒−

Or

?

Page 28: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

28

Quantum collisions

What ? Why for nuclei ?

Page 29: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

2929

We assume that the “entities” interact through a central

potential 𝑉 Ԧ𝑟𝐴 − Ԧ𝑟𝑎

Classical picture

a

A

Incoming beam

Quantum picture

Incoming

Outgoing

Incoming beam

𝐸𝐵 =𝑃𝑎2

2𝑀𝑎𝐸𝐵 =

ℏ2𝑘2

2𝑀𝑎

Trajectories are deterministic

ൿห𝜙𝑖

𝑟՜∞𝑒𝑖𝑘. Ԧ𝑟plane wave

Outgoing spherical wave

ቚ𝜙𝑓𝑟՜∞

𝑓 Θ,𝜑𝑒𝑖𝑘𝑟

𝑟

Page 30: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

3030

Few implications of quantum mechanics

➢ Interfering trajectories can be

constructive or destructive.

➢ Impact parameter is not defined in

the quantum world

Trajectories are indistinguishable

𝑏′

𝑏

Impossible in

classical world

Particle-Target motion must be

described by wave functions➢ Quantum interference phenomenon

Page 31: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

3131

𝑑𝜎 𝜃,𝜑

𝑑Ω=𝑗𝑓 𝜃, 𝜑

𝑗𝑖

We start from and

ൿห𝜓+ = ൿห𝜙𝑖 + ቚ𝜙𝑓

𝜓𝑘+ Ԧ𝑟

𝑟՜∞𝐴 𝑒𝑖𝑘. Ԧ𝑟 + 𝑓 Θ,𝜑

𝑒𝑖𝑘𝑟

𝑟

Quantum current is defined as

Ԧ𝐽 =ℏ

2𝜇𝑖𝜓𝑘+ ∗∇𝜓𝑘

+ − 𝜓𝑘+∇ 𝜓𝑘

+ ∗

Ԧ𝐽 = Ԧ𝑗𝑖 + Ԧ𝑗𝑓 + Ԧ𝑗int

𝑗𝑓 𝜃, 𝜑 = Ԧ𝐽 ∙ Ƹ𝑟 𝑟−2

𝑗𝑖 = Ԧ𝐽 ∙ Ƹ𝑧

𝑗𝑓 𝜃, 𝜑 = 𝑣 𝐴 2 𝑓 Θ,𝜑 2

𝑗𝑖 = 𝑣 𝐴 2

𝑑𝜎 𝜃, 𝜑

𝑑Ω= 𝑓 Θ,𝜑 2

𝑗int = 0 for θ ≠ 0

gives the optical theorem

We find the cross section to be:Τ1 𝑟 leading

contributions

Page 32: Master NPAC: An introduction to the theory of …npac.lal.in2p3.fr/.../hadronic/Lecture1_NPAC_intro_v2.pdfIntroduction to Nuclear Reactions, C. A. Bertulani and P. Danielewicz,978-0-750-30932-5,

3232

Ex: scattering of 12C + 12C @ 5 MeV

Since nucleons are fermions One cannot distinguish

the two cases i.e. wf is

antisymetric

This leads to

Rutherford

Exp

Illustration from G. R. Satchler“Introduction to direct reactions”

𝑑𝜎 𝜃,𝜑

𝑑Ω= 𝑓 Θ, 𝜑 + 𝑓 𝜋 − Θ,𝜑 2

causes interferences !

Note that the same happens with Coulomb