45
Center for Advanced Plasma Surface Technology http://www.capst.re.kr Magnetron Sputtering Technology 1 / 89 Magnetron Sputtering Technology Center for Advanced Plasma Surface Technology (CAPST) School of Advanced Materials Science and Engineering Sungkyunkwan University Suwon, Korea 440-746 E-mail : [email protected] Jeon G. Han Center for Advanced Plasma Surface Technology http://www.capst.re.kr Magnetron Sputtering Technology 2 / 89 Outline 1. Historical timeline of sputtering technology 2. Overview on industrial application of magnetron sputtering 3. Basics for magnetron sputtering 4. Sputtering Systems 5. Sputtering processes 6. Thin film design and control by plasma diagnostics 7. Recent progress and perspective of magnetron sputtering technology

Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Embed Size (px)

Citation preview

Page 1: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

1 / 89

Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology (CAPST)School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon, Korea 440-746E-mail : [email protected]

Jeon G. Han

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

2 / 89

Outline

1. Historical timeline of sputtering technology

2. Overview on industrial application of magnetron sputtering

3. Basics for magnetron sputtering

4. Sputtering Systems

5. Sputtering processes

6. Thin film design and control by plasma diagnostics

7. Recent progress and perspective of magnetron sputtering technology

辻野貴志
タイプライターテキスト
Copyright remains with the author(s).
Page 2: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

3 / 89

History of Sputtering

� The verb to SPUTTER originates from Latin SPUTARE(To emit saliva with noise).

� Phenomenon first described 150 years ago…

� Grove (1852) and Plücker (1858) first reported vaporization

and film formation of metal films by sputtering.

� Key for understanding discovery of electrons and positive ions

in low pressure gas discharges and atom structure (J.J. Thomson, Rutherford), 1897—

� Other names for SPUTTERING were SPLUTTERING and CATHODEDESINTEGRATION.

� The verb to SPUTTER originates from Latin SPUTARE(To emit saliva with noise).

� Phenomenon first described 150 years ago…

� Grove (1852) and Plücker (1858) first reported vaporization

and film formation of metal films by sputtering.

� Key for understanding discovery of electrons and positive ions

in low pressure gas discharges and atom structure (J.J. Thomson, Rutherford), 1897—

� Other names for SPUTTERING were SPLUTTERING and CATHODEDESINTEGRATION.

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

4 / 89

History of Sputtering

� Cylindrical-hollow cathode discharge : by Penning in 1936

� Cylindrical-post cathode discharge : by Penning & Moubis in 1939

� Magnetron ion gauge : by Penning in 1939

� Sputter erosion pattern : by Helmer & Jepson in 1961

� Conical / Circular / Planar magnetron devices : in 1970`s

� Unbalanced magnetron device : by Window in 1984

� Closed-field unbalanced magnetron device : by Teer in 1989

� Pulsed magnetron device : by Schiller etc. in 1993

� Variable field magnetron device : by Colligon etc. in 1995

� High Power Pulse Magnetron Sputtering : by Kouznetsov in late 1990s

Page 3: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

5 / 89

Overview on industrial application of magnetron sputtering

� Electronics

� Automobile and machinery

� Decorative and Packaging etc.

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

6 / 89

Thin films synthesized by magnetron sputtering

1. Metals – Cu, Ti, Al, W, Mo, Cr, Si etc.

2.Oxides – ITO, A12O3, In2O3, SnO2, SiO2, Ta2O5.

3. Nitrides - TaN, TIN, A1N, Si3N4, CNX

4. Carbides - TiC, WC, SiC

5. Sulfides - CdS, CuS, ZnS

6. Oxycarbides and oxynitrides of Ti, Ta, Al, and Si

Page 4: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

7 / 89

Plasma Display Panel

Liquid Crystal Display Field Emission Display

Organic Light-Emitting DisplayPlasma Display Panel

Liquid Crystal Display Field Emission Display

Organic Light-Emitting Display

Flat Panel Display

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

8 / 89

Glass & Energy

Low-E = Low-Emissivity

• Redirects (reflects) radiant heat (long wave radiant energy) back toward the source

• Reduces heating costs in the winter

• Reduces cooling costs in the summer

• Various combinations work with the direct sun (SHGC) and re-radiated heat U-factor

� Low E glass� Reflective glass� Decorative glass� Light valve glass� Electrochromic glass Low thermal loss

High solar heat gain

Sputter coating process

Page 5: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

9 / 89

Film Color Hardness

(GPa)Frictioncoeff.

TiN Gold 22 – 25 0.45

ZrN White gold 18 – 21 0.45

CrN Silver gray 18 – 23 0.35

TiCN Violet –gray 28 – 34 0.2

CrCN Gray 20 – 30 0.2

TiAlN Violet –black 25 – 35 0.4

CrAlN Gray 24 – 30 0.35

Al2O3 Gray 20 – 24 0.2

DLC Black 20 – 60 < 0.1

Properties of tribological coatings

Applications for Machinery parts

Applications of various tools & molds

Automobile, Tool & machinery industry

Applications for automobile industry

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

10 / 89

Basics for magnetron sputtering� Ion-surface interaction

� Principle of magnetron discharge

� Sputtering yield ( species, energy, incident angle etc)

Page 6: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

11 / 89

• “Sputtering” is a term used to describe the mechanism in

which atoms are ejected from the surface of a material

when that surface is struck by sufficient energetic

particles.

• Alternative to evaporation.

• First discovered in 1852, and developed as a thin film

deposition technique by Langmuir in 1920.

• Depostion of various metallic films and compounds films.

What is sputtering?

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

12 / 89

The impact of an atom or ion on a surface produces sputtering from the surface as a result of the momentum transfer from the in-coming particle.

Unlike many other vapor phase techniques there is no melting of the material.

The impact of an atom or ion on a surface produces sputtering from the surface as a result of the momentum transfer from the in-coming particle.

Unlike many other vapor phase techniques there is no melting of the material.

Atom or ion with kinetic energy

Surface

e-

Atom, ion

What is sputtering?

Page 7: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

13 / 89

Sputtering process for thin film deposition

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

14 / 89

1st : Ions are generated in plasma and directed at a target.

2nd : The ions sputter targets atoms .

3rd : The ejected atoms are transported to the substrate.

4th : Atoms condense and form a thin film on the substrate

Sputtering steps

Page 8: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

15 / 89

Plasma

� Plasma is weakly ionized quasi-neutral gas made up of ions, electrons atomic and

molecular species �ne = ni = n0

� Processing plasmas have plasma densities between 108 ~ 1013/cm3

� In magnetically confined plasma ( magnetrons), plasma densities as high as

1015/cm3 can be realized

� Plasma species : Electron (ne), Ions (ni), Neutrals (n0)

� Electron velocities are much higher than that of ions

� Plasma generation� Plasma generation regions � collision between high velocity electron

(thermal or high energy electron) and neutrals

� Applying power sources for discharge;

- DC source : Continuous DC, Pulsed DC

- AC source : LF ( ~ 100 Hz), MF ( ~100 - ~ 1MHz), RF ( > ~1 MHz)

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

16 / 89

Charged particle motionin a static electric and magnetic fields

� Lorentz equation

J. Roth - Industrial Plasma Engineering Volume 2 ; Applications To Nonthermal Plasma processing

� Orbits of ion and electron in a homogeneous static magnetic field

� Without electric field

� electron orbits in plane of the page

� With electric field

� Electron experiences constant force

� Cyclical motion with net movement to x direction

Page 9: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

17 / 89

� Electron motionin a combined electric and magnetic field

J. Roth - Industrial Plasma Engineering Volume 2 ; Applications To Nonthermal Plasma processing

Magnetron discharges :are characterized by crossed electric and magnetic fields, with the sheath electric field at right angles to a confining magnetic mirror field. The E/B ‘magnetron’ drift velocity is perpendicular to both the electric and magnetic fields, thus making the plasma itself and its effects on a workpiece more uniform in the E B/B2 drift direction.

Magnetron discharge

� Static B field perpendicular to plane ofcathode

� electrons move in spiral path� ionization increase, voltage decrease

� Static B field parallel to plane of cathode� electrons constrained near cathode� high level of ionization , voltage decrease� EXB drift cause electrons to drift to one side

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

18 / 89

Magnetron configurations

magnetron sputtering plasma

Sputter target

J. Roth - Industrial Plasma Engineering Volume 2 ;

Applications To Nonthermal Plasma processing

Page 10: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

19 / 89

Collision cascade sputtering mechanism and energetic particles involved in the sputtering process

·�

Sputtering, energy and momentum transfer, annealing,enhanced diffusion

Shockwave

Pointdefect

Thermalspike

Collisioncascade

Backscatteredparticles

Secondaryelectrons

Gas desorption

Amorphisation

Compoundformation

Implantation

Topographychanges

Chemical surfaceReaction

Modification ofSurface properties

Primary ions

Adapted from www.PVD-coatings.co.uk

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

20 / 89

Sputtering Yieldsincident ion energy and target atom mass

Threshold energy ~ 25 eV

3.0

3.4

4.9

3.5

7.6

6.8

8.9

5.8

3.7

� � ���

����

���

��

UE

mmmmS i

ti

ti2

• Sputtering yield, S

K. Wasa et.al THIN FILM MATERIALS TECHNOLOGY, William Andrew, Inc

• Effect of target atom mass and surface

binding energy

Page 11: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

21 / 89

Sputtering Yieldseffect of incident ion angle

�Sputtering yield increases with ion incidence angle up to approx 80�due to the decrease in the scan depth of incident ions.

�Sputtering yield, S � 1/cos

�At higher angles, sputtering yield decrease as more ions are reflected in initial collisions

K. Wasa et.al THIN FILM MATERIALS TECHNOLOGY, William Andrew, Inc

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

22 / 89

Sputtering yield data for metals and semiconductors

M. Ohring – Materials Science of Thin Films

Page 12: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

23 / 89

Angular dependence of the sputtered flux

Angular distributions of sputtered particles from a polycrystalline target

Angular distributions of sputtered Si atoms for 3 keVAr+ ion bombardment at an incident angle of 60

K. Wasa et.al THIN FILM MATERIALS TECHNOLOGY, William Andrew, Inc

The distribution of sputtered particles depends primarily on the energy incidence angle of the ion and the relative masses of the collision partners

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

24 / 89

� bombarding ion energy: typically 100 ~ 1000eV

� average ejection energy of the sputtered atoms: 1 ~ 10eV

: This relatively high energy of the deposited atoms is partially responsible for the better adhesion for sputtered films than for evaporated films.

(cf.) average E of the evaporated atoms: ~ kT(0.1 ~ 0.3 eV)

bonding E of chemisorbed atoms: 1 ~ 10eV

bonding E of physisorbed atoms: < 0.5eV

� velocity of sputtered atoms: 4 ~ 9 km/sec for most materials

(cf.) velocity of evaporated atoms: ~ 1 km/sec

Energy of the Sputtered Atoms

� Comparison of velocity distributions of sputtered and evaporated Cu atoms

Page 13: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

25 / 89

� Magnetic field : 200 ~ 500 Gauss

� Working pressure : 1 ~ 10 mTorr

� Discharge voltage : 300 ~ 700 V

� Target thickness ; 3 ~ 20 mm

� Rate is proportional to power density

� Rate is limited by target cooling efficiency

Typical magnetron sputtering conditions

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

26 / 89

�Advantages� wide range of coating materials including alloys and compounds� good adhesion due to high energy of depositing atoms� high film density and uniformity� easy process control and scale-up capability � synthesize new materials- metastable compositions/structures� reactive sputtering of insulator films

Features in Magnetron sputtering

�Disadvantages� relatively low deposition rate� low energy efficiency and ionization ( a few % )� limited sputtering for insulator target� magnetic film synthesis requires special process� intrinsic stress is often high� limitation of uniformity control for complex shapes

Page 14: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

27 / 89

Evaporation Vs. Sputtering

M. Ohring – Materials Science of Thin Films

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

28 / 89

Sputtering Systems and Processes@ DC and RF diode sputtering, reactive sputtering

@ Typical magnetron sputtering systems

@ Magnetron sputtering sources

Page 15: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

29 / 89

DC and RF diode sputtering processDC

• main usage: metal sputter coating• configuration: target(cathode) + substrate(anode)• operating pressure range in the DC sputtering system• operating voltage and current

V: 500 ~ 5000 V (typically 2 ~ 5 kV)J: 0.1~ 2.0mA/cm^2 (typically ~ 0.5mA/cm^2)

• deposition rate: 10 ~ 40 nm/min• Working pressure : 30 mTorr~ 100 mTorr

• An RF sputtering can be used to deposit not only conductive and semiconductor films but also insulating films.

(cf.) DC methods cannot be used to sputter non-conducting targets because of charge accumulation on the target surface.

• Arcs are less likely to form in RF discharge.

• Good reproducibility

• The substrate mounting electrode is made larger than the target electrode to control unwanted sputtering (for RF diode type).

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

30 / 89

Typical sputtering systems

Coating drum

UnwinderRewinder Magnetron sputter

Chamber separation

� Batch type system � Roll-to-Roll Web system

Applied Films Co., LtdInstitute for Plasma Advanced Materials

� In-Line system Leybold Optics GmbH

Page 16: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

31 / 89

Conventional magnetron sourcesRectangular and circular magnetron

www.gencoa.com

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

32 / 89

�Advantage : High efficiency of target utilization (up to 90 %)Longer target life time, higher stability, less arcing

�Disadvantage : Target materials are limited in cylindrical shape and high cost

Cylindrical Magnetron Source with Rotational Magnet

www.angstromsciences.com

Page 17: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

33 / 89

Facing Target Sputtering Source

N

SUBSTRATE

TAR

GET

TAR

GET

Ar

Plasma

O2/N2 e.t.c

B

E

� Target erosion shape

� Discharge by Facing Target

� Advantage :- High target utilization,

- Low temperature process by suppression of surface damageby direct ion bombardment from target to substrate

- Low plasma impedance and low pressure discharge

S

NS

NS

Ar

NS

High ionization by electron oscillation between confined two targets

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

34 / 89

ICP Magnetron Source

CoilRF

Sub.

TargetNSN

CoilRF

Sub.

TargetNSN

�The ICP coil highly ionizes sputtered atoms moving to substrate.

� Advantage : Generation of high density plasma

High ion-to-neutral ratio at substrate

High ionization; approx. 80 %

High deposition rate by high neutral flux

Page 18: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

35 / 89

Hollow Cathode Magnetron Source

� Intense glow discharge is formed in a cup shaped cathode or between two parallel plates.

� High ion density plasma > 1013cm-3

�The electrons captured in the geometry are between two “electrostatic mirrors”, and therefore the probability for ionization of sputtered neutrals drastically can be enhanced.

Rotating magnet

target

electromagnet

S

N

S

N

S

N

S

N

S

N

S

N

magnet

Rotating magnet

target

electromagnet

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

S

N

magnettttttttaaaarrgggeee

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

36 / 89

Reactive sputtering

� Definition� The sputtering of element targets in the presence of chemically reactive gases

that actively react with both the ejected target atoms and target surface

� Reactive sputtering provides an easy technique to deposit high qualitycompound films

� For example, for oxide deposition the sputtering gas is a mixture of argon andoxygen. The argon ions in the plasma sputter the metallic target to provide themetal flux. This flux is then deposited on the substrate through reaction with oxygen to formed the oxide film.

� Reactive sputtering is commonly used to deposit thin films of ceramic compounds such as Al2O3, SiO2, TiO2, TiN, TiC, etc.

Page 19: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

37 / 89

Reactive sputtering

� Advantages

- Easy control of film composition- High deposition rate of various compound films - Cost effective & high purity compound film formation due to high purity

of target- Process capability of high target power density due to high cooling efficiency of metallic target

� Disadvantages

- Target poisoning : the build-up of insulating layers on target surface- Arcing problem and breakdown of insulating layer on target surface- Pure compound films are often hard to be formed because of reactive

species- concentration is not sufficient to react will all the sputtered atoms

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

38 / 89

� Hysteresis effect in discharge voltage- compounds formed on the poisoned target have higher

secondary electron emission coefficients compared with metals.leads to a reduction in discharge voltage

� Hysteresis effect in deposition rate- the drastic decrease in deposition rate in compound mode

Reactive sputteringPoisoning effect � With increasing flow rate of reactive gas

A: metal target is sputtered in pure ArB: the reactive gas adsorption rate on the target begins

to exceed the sputtering rate �transition from metallic mode to compound mode

C: compound layer formation on the target surface�target becomes “poisoned”

� With decreasing flow rate of reactive gasD: the sputtering rate begins to exceed the reactive gas

adsorption rate �transition from compound mode to metallic mode

Page 20: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

39 / 89

The Simulations of target current effects on poisoning & deposition rate

0 2 4 6 8 10 12 14 16 18 20 22 240.0

0.2

0.4

0.6

0.8

1.0Current on Cathode (J = 0.5 A)

0.0 J 0.1 J 0.5 J 1.0 J 1.5 J 2.0 J 2.5 J 3.0 J 3.5 J 4.0 J

O2 P

artia

l Pre

ssur

e (m

Torr

)

O2 Flow Rate (sccm)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0Current on Cathode (J = 0.5 A)

0.1 J 0.5 J 1.0 J 1.5 J 2.0 J 2.5 J 3.0 J 3.5 J 4.0 J

Dep

ositi

on R

ate

(A.U

.)

O2 Partial Pressure (mTorr)

0 2 4 6 8 10 12 14 16 18 20 22 240.0

0.2

0.4

0.6

0.8

1.0

Current on Cathode (J = 0.5 A)

0.1 J 0.5 J 1.0 J 1.5 J 2.0 J 2.5 J 3.0 J 3.5 J 4.0 J

Dep

ositi

on R

ate

(A.U

.)

O2 Flow Rate (sccm)

3.5 J4.0 J

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

40 / 89

Film Uniformity as a function of S-Curve

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6100

110

120

130

140

150

160

170

180

190

200

Distance (cm)

Dep

ositi

on R

ate

(nm

/min

)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 640

45

50

55

60

65

70

75

80

85

90

Distance (cm)

Depo

sitio

n R

ate

(nm

/min

)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 60

5

10

15

20

25

30

35

40

Dep

ositi

on R

ate

(nm

/min

)

Distance (cm)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 620

25

30

35

40

45

50

55

60

65

70

Depo

sitio

n R

ate

(nm

/min

)

Distance (cm)0 5 10 15 20 25 30

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Po2 (m

Torr

)

O2 Flow Rate (sccm)

with increasing O2 partial pressure with decreasing O2 partial pressure

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6100

120

140

160

180

200

220

240

Depo

sitio

n R

ate

(nm

/min

)

Distance (cm)

a

a b c

d

e

bc

d

e

Page 21: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

41 / 89

� Pulsed reactive gas flow

Pulsed magnetron sputteringin reactive magnetron sputtering

-. The reactive gas flow switches on & off periodically for short time-. Not easy control of process

� Pulsed DC magnetron-. Unipolar and Bipolar pulsed DC-. Single or Dual target system

-. Effective control of plasma density by modulation of duty ratio and frequency-. High rate reactive sputtering capability by bipolar pulsed DC

Normal sputter mode Reversal mode Return to sputter mode

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

42 / 89

Ion beam sputtering process� Advantages

� independent control of target current density and voltage

� low pressure operation ( 0.1 mTorr)

and contamination can be reduced.

� the deposited atoms have high kinetic energy

and thus high reactivity.

� negative ion effect (re-sputtering effect) can be avoided.

� sputtering of magnetic material target

� Disadvantages� difficulty in large area deposition� low sputtering rate ( a few ~ several hundred /min)� ion source is expensive.

J. Roth - Industrial Plasma Engineering Volume 2 ; Applications To Nonthermal Plasma processing

Page 22: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

43 / 89

Thin film design and control by Plasma Diagnostics in Magnetron Sputtering Process

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

44 / 89

Plasma Processing

Plasma density, Te, Vp,

Heating/coolingBias voltage, Activation,

Pressure etc.

• Kinetic energy• Neutral/ ion flux• Mass

• Heat conduction• Radiation

• Electronic energy

• Composition

Design and Synthesis of Thin Film

PhysicalEnergy

ThermalEnergy

ChemicalPotential

Energy for

Film Synthesis

Nucleation&

Growth

Page 23: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

45 / 89

How to design and synthesize for functional film?

Design of Film Structure and Plasma Parameters for Film Synthesis

Design and control of plasma parameters� Plasma parameter design and processing

Depositing energy control on surface

Micro structure control

� Process design for film structure control

� Heat of formation (�Hf) for film materials

� Physical energy + Thermal energy + Chemical potential

Design of film nucleation and growth

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

46 / 89

New film growth model in magnetron sputtering

Film (hot layer)

Film (solid)

Substrate(heat dissipationby conduction)

Film

h = 10~20 Å

TL

TF

TS

+ ionsHeat radiation

Lattice vibration

HL S

Heat

TL > TF TS

T= TF – TL q h

Heat flux Neutrals/ Radicals

J. G. Han, et.al., J. Vac. Sci. Technol., 24 (2006)

Page 24: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

47 / 89

Model of the film growth

Substrate Substrate

Crystallized film

Crystallized film

Substrate

q

q

qHeat irradiation

q = fd (�Hc+ Ek + Ep)

Hot layer

J. G. Han, et.al., J. Vac. Sci. Technol., 24 (2006)

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

48 / 89

Kinetic energy of condensing atoms is ~8eV

Substrate

1.5

0 �m

Thic

knes

s

100nm

Substrate

sa

l TxLkqxT ��� )()(

R.T

800K

Increasing temp.

�m

Film structure change during film growth

J. G. Han, et.al., Vacuum, 80 (2006)

Page 25: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

49 / 89

Low kinetic energy and flux (Ek ~ 0.1eV)

Frank-van der Mervelayer growth mode

High adatom mobilityDense film structure

High kinetic energy and flux (Ek ~ 10eV)

TsurfTsubstr

Island (Volmer-Weber) growth mode

Low adatom mobility Columnar film structure

TsurfTsub

Effect of physical energy and flux

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

50 / 89

Plasma diagnosticsof processing plasma during magnetron sputtering

Plasma diagnostics tools:

� Langmuir probe

- electron temperature( Te), electron density

� Fabry-Perot Confocal Interferometry

- energy of neutral particles

� Laser Induced Fluorescence (LIF)

- neutral and ion density

� Optical emission spectroscopy

- radical and ion species

� Time resolved OES with high resolution CCD

- neutrals, radicals and ions distribution

Page 26: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

51 / 89

Plasma diagnosticsElectrostatic probe ( Langmuir probe)

-30 -25 -20 -15 -10 -5 0 5 10 15 20-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Prob

e cu

rren

t ( a

rb.u

nit )

Probe voltage ( V )

Region A

Region B

Region C

Vf Vp

Region A : Electron saturation regionRegion B : Transition regionRegion C : Ion saturation region

ise

pes I

TVV

II ����

���

�� exp

RF Compensation Electrode

Probe Tip Wire

Alumina Ceramic Low Frequency Compensation Electrode

Filter

I

R

V ZSP RFCc

ZSR

RF Compensation Electrode

Probe Tip Wire

Alumina Ceramic Low Frequency Compensation Electrode

Filter

I

R

V ZSP RFCc

ZSR

� Measurement of plasma parameters� Plasma density� Plasma potential� Electron temperature� EEDF(Electron Energy Distribution Function)

Plasma

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

52 / 89

Plasma diagnosticsElectrostatic probe ( Langmuir probe)

Time-resolved probe measurement

0 5 10 15 20 25 30 35 40 45 50 550

1

2

3

4

5

6

7 10% 20% 30% 40% 50% 60% 90%

elec

tron

tem

pera

ture

(eV)

time (�sec)

0 5 10 15 20 25 30 35 40 45 50 550

1x1010

2x1010

3x1010

4x1010

5x1010

6x1010

7x1010

8x1010

9x1010

1x1011

10% 20% 30% 40% 50% 60% 90%

elec

tron

den

sity

(/cm

3 )

time (�sec)

0 10 20 30 40 50 60 70 80 90 1001.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

T e,av

g ( eV

)

duty cycle ( % )

0

1x1010

2x1010

3x1010

4x1010

5x1010

6x1010

7x1010

8x1010

Ne,

avg (

/cm

3 )

C-mode

C-mode

� Ne and Te vs duty cycle in pulsed DC magnetron discharge

C-mode

V-mode

P-mode

0 10 20 30 40 5010-5

10-4

10-3

10-2

10-1

100

Nor

mal

ized

EEP

F (A

.U.)

kinetic energy ( eV )

IC = 0.3 A 10% 20% 30% 40% 50% 60% 90%

0 10 20 30 40 5010-5

10-4

10-3

10-2

10-1

100

Nor

mal

ized

EEP

F (A

.U.)

kinetic energy ( eV )

PC = 100 W 10% 20% 30% 40% 50% 60% 90%

0 10 20 30 40 5010-5

10-4

10-3

10-2

10-1

100

Nor

mal

ized

EEP

F (A

.U.)

kinetic energy ( eV )

VC = -350 V 10% 20% 30% 40% 50% 60% 90%

Page 27: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

53 / 89

Plasma diagnosticsFabry-Perot Confocal Interferometer

FPI principleSignal after FPI:

Signal after FPI and spectrometer:

Planar FPI vs. confocal FPI

FPI was combined with an spectrometer to provide a high spectral resolution along with dispersive element.In a process of FPI mirror movement the different parts of a plasma emission line can be transmitted. In this case a FPI works like a tunable band pass filter with extremely narrow band.

Output intensity for 3 mirror positions:

Combination of a FPI and a spectrometer:

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

54 / 89

Ar Temperature : power and distance effectsDistance from target = 3cm,750.4 nm Ar line Typical Ar temperature measured by FPI

illustrates that Ar temperature does not depend much on the magnetron current, but strongly depend on the working pressure in the reactor.( Data for Ar-Cu, Ar-Cr and Ar-Ti magnetron discharges )

Magnetron current = 0.7A750.4 nm Ar line

The distance effect on the Ar temperature is minimal ( Data for Ar-Cu, Ar-Cr and Ar-Ti magnetron discharges)

J. G. Han, et.al., Plasma Source Sci. Technol., 15 (2006)

Page 28: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

55 / 89

Ar lines: pressure effect*

J. G. Han et al., J. Phys.D: Appl. Phys. Submitted

FPI Ar temperature measurements in an extended working pressure range show the saturation of the temperature after approx. 20 mtorr of pressure. This data was verified by adding 5% of nitrogen into the discharge (see next slide).

Magnetron current = 0.7ADistance from target = 3cm750.4 nm Ar line

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

56 / 89

Ti vs. Ar temperature

Ar-Ti ,I=0.7A

Ar-Tid=3cm

The strong difference between Ar and Ti temperatures can be seen. The average kinetic energy of thermalizedTi is about 0.1 eV, whereas for Ar it is above 0.15 eV.

Here a comparison between Ar and

Ti (thermalized) temperatures

measured by FPI is presented.

J. G. Han et al., J. Phys.D: Appl. Phys. Submitted

Page 29: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

57 / 89

Plasma diagnosticsLaser induced fluorescence (LIF)

GasMonochrometer

PMTFiber

Lock-in Amp.

PumpMatching Box

Computer

Magnets

RF

L

LF

TunableDiode Laser

OI

OI

PD

ICAmplifier M

M

M P

Optical Table

Antenna

M : MirrorL : LensF : FilterP : PolarizerOI : Optical IsolaterIC : Iodine CellPD : Photodiode

GasMonochrometer

PMTFiber

Lock-in Amp.

PumpMatching Box

Computer

Magnets

RF

L

LF

TunableDiode Laser

OI

OI

PD

ICAmplifier M

M

M P

Optical Table

Antenna

M : MirrorL : LensF : FilterP : PolarizerOI : Optical IsolaterIC : Iodine CellPD : Photodiode

M : MirrorL : LensF : FilterP : PolarizerOI : Optical IsolaterIC : Iodine CellPD : Photodiode

1I ILIF Laser n�

ILIF : Intensity of LIF K : FactorILaser : Intensity of Laser beamn1 : Ion metastable state densityB12 : Einstein absorption coefficientsA23, A2n : Einstein coefficients

for spontaneous emissionQ2 : Collisional depopulation of �2|

Fluorescence442.72 nm

Laser668.61 nm

02/5

44 Dp

2/743 Fd

2/344 Ps

�1|

�2|

�3|

<Argon ion metastable>

�Applications of LIF

� Relative Density, Drift Velocity, Temperature, etc.

� Dvv, Cv : Velocity-Space Diffusion & Convection (Fokker-Planck coefficients)

� Electric Field (Stark Effect)� Magnetic Field (Zeeman Effect)

� Neutral density and temperature measurement� ion density and temperature measurement

)v(),v,x(),,v,x( �

This technique employs a laser (usually tunable dye laser) to excite a resonance between a lower state (in most instances a single rotational level or group of rotation levels) ans a level in an excited electronic state.

���� fftf• Distribution Function :

�Setup

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

58 / 89

Plasma diagnosticsLaser induced fluorescence (LIF)

Ti and Ti+ density

* [N. Britun et al, Ar-Ti Magnetron Discharge Characterization Using Optical Absorption Spectroscopy, Metals and Materials International, In Press.]

[Ti] = 2x1011 cm-3 (OAS data*)

Working pressure = 4 mtorr

Page 30: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

59 / 89

Ti density by OAS*Working pressure = 4 mtorr

Density distance effect

MET – Density of metastablesGS - Density of ground states

J. G. Han, et al.Metals and Materials International, In Press.

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

60 / 89

Plasma diagnosticsOptical emission spectroscopy (OES)

OES: - a non-intrusive plasma diagnostic,- simple,- has good sensitivity, - inexpensive.

PLASMA � mixture of gas species, containing:

electrons, ions, molecules,atoms, reactive species

e-

External excitation(DC, RF, microwaves) A+B-

e-

e-

e-

e-

A+

A+

B-C

C

AC

OESsystem

After species collisions:� species relaxation� energy released�

at � characteristicsof physical phenomena

inside plasma

SpectralAnalysis

- on gas species in presence,OES - on their relative concentrations,infos: - appearance or disappearance of

species during etching process

Page 31: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

61 / 89

Plasma diagnosticsOptical emission spectroscopy (OES)

350 360 370 380 390 400 410 420 430 440 450 460 470 480 4900.0

5.0k

10.0k

15.0k

20.0k

25.0k

30.0k

Ti

Ti

N2+

Ar

ArAr

Ar

N

Ti

Ar

Ti+

TiTi

N2

Emis

sion

inte

nsity

( ar

b. u

nit )

Wavelength ( nm )360 370 380 390 400 410 42

�� Typical emission spectrum in pulsed magnetron sputtering dischaTypical emission spectrum in pulsed magnetron sputtering discharge during rge during TiNTiN depositiondeposition

00

10k

20k0

10k

20k0

10k

20k0

10k

20k

Pulsed DCDuty cycle : 20 %

Emis

sion

Inte

nsity

(arb

. uni

t)

Wavelength (nm)

Pulsed DCDuty cycle : 50 %

Pulsed DCDuty cycle : 80 %

DC

Ti II

Ti I

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

62 / 89

Plasma diagnosticsOptical emission spectroscopy (OES)

Optical Emission Image of Ar ion in pulsed Magnetron discharge

0 10 20 30 40 50 60 70 80 90 1000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0 Emission intendity

Discharge current (A)

Emis

sion

inte

nsity

(arb

. uni

t)

Duration time (�sec)

Discharge current

Page 32: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

63 / 89

� Heat and energy flux

� Kinetic energy of particles

Microstructure and film property control

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

64 / 89

...)()()1()()( ..000 ������ effeffTT TPTPTPTP ����film surface target ambient objects

���

dTITPwhere ��2

1

),()(

)(3)()53(

4/

0

0

TTassumedwemetalsfortcoefficienextinction

wavelengthX

FL ����

����

����

��

X -- effective irradiation depth (~200 nm for far IR)

TF

T0

TLSource Film Holder

Schematic of Substrate Temperature Measurement Systemusing IR Camera

Page 33: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

65 / 89

Surface temperature measurement

Ti on Glass Ti on Si

Depositions done on glass and Si substrates without additional cooling (at 3 different magnetron currents):

In case of thin substrates without cooling the temperature difference is less than that in the case of cooling substrate but both substrate and surface temperatures cab be much higher .

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

66 / 89

Effective power density evaluationin pulsed magnetron discharge

0 20 40 60 80 1000

20

40

60

80 D.C. 10 kHz 30 kHz 50 kHz

D.C.

Effe

ctiv

e Po

wer

Den

sity

W

/cm

2

Negative Pulse Duty Cycle (%)

• Effective power density ; PdA� : variable duration of the voltage pulse (= t1) ��

� 0)(1 dttII ddAPdA Pd (t)dt

Page 34: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

67 / 89

5 25 4510 30 5015 35 5520 40 60

0150350500100015002000250030003500400045005000550060006500700075008000

Neutral and ion flux with pulse duty cycle

• Pulse duty cycle : 50 %

• Pulse duty cycle : 30 %

0150350500100015002000250030003500400045005000550060006500700075008000

Ti I

Ti II

Ti I

Ti II

High density pulseed flux

J. G. Hanet al., Thin Solid Films, 475 (2004)

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

68 / 89

10 20 30 40 500.0

0.1

0.2

0.3

0.4

0.5

Ti II

/ Ti

I

Pulse frequency ( kHz )10 20 30 40 50 60 70 80 90 100

0.0

0.4

0.8

1.2

1.6

2.0

Ti II

/ Ti

I

Pulse duty cycle ( % )

Ion to neutral ratio of Tiwith various pulse parameter

Higher frequencyLower duty cycle

Increase effective powerin the same average power Higher ionization

J. G. Hanet al., Thin Solid Films, 475 (2004)

Page 35: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

69 / 89

-5 0 5 10 15 20 25 30 35 40 45 50 550

1x1010

2x1010

3x1010

4x1010

5x1010

6x1010

�Ne2 = 40 �sec

�Ne1 = 3.81 �sec

�Nel = 7.35 �sec

�Ne = 9.25 �sec Nel

Neh

Ne

elec

tron

den

sity

(/cm

3 )

time (�sec)

�Neh = 6.20 �sec

20 kHz, 50% duty cycle, 1 �sec time resolution

Time resolved electron density in pulsed plasma

-40u -30u -20u -10u 0 10u 20u 30u 40u 50u 60u 70u-500

-400

-300

-200

-100

0

100

cath

ode

volta

ge (V

)

time (sec)

• Waveform of discharge voltage

Discharge-On Discharge-Off0 5 10 15 20 25 30 35 40 45 50 55

0

1

2

3

4

5

6

7 10% 20% 30% 40% 50% 60% 90%

elec

tron

tem

pera

ture

(eV)

time (�sec)

0 5 10 15 20 25 30 35 40 45 50 550

1x1010

2x1010

3x1010

4x1010

5x1010

6x1010

7x1010

8x1010

9x1010

1x1011

10% 20% 30% 40% 50% 60% 90%

elec

tron

den

sity

(/cm

3 )

time (�sec)

Lower pulse duty cycle

High electron temp. and density

S. H. Seo et al., Plasma Source Sci. Technol., 15 (2006)

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

70 / 89

Ion Energy Distributionwith various pulse parameters

-5 0 5 10 15 20 25 30

10-2

10-1

Inte

nsity

( ar

b. u

nits

)

Ion energy ( eV )

DC Pulse 10 kHz, 20 % Pulse 10 kHz, 50 % Pulse 10 kHz, 80 %

-5 0 5 10 15 20 25 30

10-2

10-1

Inte

nsity

( ar

b. u

nits

)

Ion energy ( eV )

DC Pulse 30 kHz, 20 % Pulse 30 kHz, 50 % Pulse 30 kHz, 80 %

-5 0 5 10 15 20 25 30

10-2

10-1

Inte

nsity

( ar

b. u

nits

)

Ion energy ( eV )

DC Pulse 50 kHz, 20 % Pulse 50 kHz, 50 % Pulse 50 kHz, 80 %

0 10 20 30

10-2

10-1

Inte

nsity

( ar

b. u

nits

)

Ion energy ( eV )

DC Pulse 10 kHz, 20 % Pulse 30 kHz, 20 % Pulse 50 kHz, 20 %

-5 0 5 10 15 20 25 30

10-2

10-1

Inte

nsity

( ar

b. u

nits

)

Ion energy ( eV )

DC Pulse 10 kHz, 50 % Pulse 30 kHz, 50 % Pulse 50 kHz, 50 %

-5 0 5 10 15 20 25 30

10-2

10-1

Inte

nsity

( ar

b. u

nits

)

Ion energy ( eV )

DC Pulse 10 kHz, 80 % Pulse 30 kHz, 80 % Pulse 50 kHz, 80 %

10 kHz 30 kHz 50 kHzDCDuty cycle 20 %Duty cycle 50 %Duty cycle 80 %

DCDuty cycle 20 %Duty cycle 50 %Duty cycle 80 %

DCDuty cycle 20 % Duty cycle 50 %Duty cycle 80 %

20 % 80 %50 %DCf= 10 kHzf= 30 kHzf= 50 kHz

DCf= 10 kHzf= 30 kHzf= 50 kHz

DCf= 10 kHzf= 30 kHzf= 50 kHz

J. G. Hanet al., Surf. Coat. Technol., 200 (2005)

Page 36: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

71 / 89

zone I zone T zone II zone III

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

competitive texture restructured texture

Ts/Tm

zone I zone T zone II zone III

0 0.06 0.16

competitive texture restructured texture

Ts/Tm

zone I zone T zone II zone III

0 0.15 0.17

competitive texture restructured texture

Ts/Tm

zone I zone T zone II zone III

0 0.09 0.13

competitive texture restructured texture

Ts/Tm

D.C.

Unipolar Pulse

10 kHz

Unipolar Pulse

30 kHz

Unipolar Pulse

50 kHz

Modified Thin Film ModelTs : Film Surface Temperature

Tm : Film Melting Temperature

J. G. Han, et.al., Thin Solid Films, 400 (2006)

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

72 / 89

DC mode

Film Thickness :

150 nm

Sym-Bipolar Pulse

Grain size : 61.32 nm

Sym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

30kH

z

30kH

z

-- 20%

dut

y cy

cle

20%

dut

y cy

cle

x 30kSym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

30kH

z

30kH

z

-- 20%

dut

y cy

cle

20%

dut

y cy

cle

x 30k

Sym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

30kH

z

30kH

z

-- 50%

dut

y cy

cle

50%

dut

y cy

cle

x 30kSym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

30kH

z

30kH

z

-- 50%

dut

y cy

cle

50%

dut

y cy

cle

x 30k

Sym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

30kH

z

30kH

z

-- 80%

dut

y cy

cle

80%

dut

y cy

cle

x 30kSym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

30kH

z

30kH

z

-- 80%

dut

y cy

cle

80%

dut

y cy

cle

x 30k

x 30kSym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

10kH

z

10kH

z

-- 20%

dut

y cy

cle

20%

dut

y cy

cle

x 30kSym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

10kH

z

10kH

z

-- 50%

dut

y cy

cle

50%

dut

y cy

cle

x 30kSym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

10kH

z

10kH

z

-- 50%

dut

y cy

cle

50%

dut

y cy

cle

x 30kSym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

10kH

z

10kH

z

-- 80%

dut

y cy

cle

80%

dut

y cy

cle

x 30kSym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

10kH

z

10kH

z

-- 80%

dut

y cy

cle

80%

dut

y cy

cle

Sym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

50kH

z

50kH

z

-- 20%

dut

y cy

cle

20%

dut

y cy

cle

x 30kSym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

50kH

z

50kH

z

-- 20%

dut

y cy

cle

20%

dut

y cy

cle

x 30k

Sym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

50kH

z

50kH

z

-- 80%

dut

y cy

cle

80%

dut

y cy

cle

x 30kSym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

50kH

z

50kH

z

-- 80%

dut

y cy

cle

80%

dut

y cy

cle

x 30k

Sym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

50kH

z

50kH

z

-- 50%

dut

y cy

cle

50%

dut

y cy

cle

x 30kSym

met

ric b

ipol

ar p

ulse

mod

e

Sym

met

ric b

ipol

ar p

ulse

mod

e

50kH

z

50kH

z

-- 50%

dut

y cy

cle

50%

dut

y cy

cle

x 30k

Bipolar Pulse Frequency (kHz)

Neg

ativ

e P

ulse

Dut

y C

ycle

(%

)

Column Size & Ts Decreasing Grain size :

13.36 nm

Grain size : 59.64 nm

Grain size : 30.71 nm

Grain size : 41.22 nm

Microstructure Variations with Pulse Parameters

Page 37: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

73 / 89

30 35 40 45 50

Inte

nsity

(arb

. uni

t)

2 theta

30 40 50 30 40 50 30 40 50

Ti (100)

Ti (002)

Ti (100)

Ti (002)

2 ThetaIn

tens

ity

Ti (100)

Ti (002)

- High ionization of metal atoms- High ion energy

- Low ion flux & energy- relative high temperature in DC MS

Microstructure change by energy and heat flux

20 25 30 35 40 45 50

Inte

nsity

(arb

.u)

2 Theta

Ti (100 )

10 kHz 30 kHz 50 kHz30 40 50 30 40 50

Ti (100)

Ti (002)

Inte

nsity

2 Theta

Ti (101)

Ti (100)

Ti (002)

50 % 20 %

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

74 / 89

Low ion energyLow ion density

Middle ion energyHigh ionization

Typical control of film structure by process design

Ion energy &density control

Avg. SurfaceRoughness(Rms)

6 nm 2.4 nm 0.6 nm

Page 38: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

75 / 89

Recent progress and perspective of magnetron sputtering technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

76 / 89

� High rate deposition of metals & compound films- UBM, CFUBM & Double magnetron devices- Reduction of target poisoning - Deposition rate : Max. 3 /min (Cu) & 0.5 /min (Al2O3)

� Low pressure & self sputtering- Unbalanced magnetron with additional magnetic confinement- Magnetron discharge was sustained at 1 x 10-5 torr

� Large area coatings- Dual magnetron devices- Maximum target length > 4,200mm

� High efficiency of target utilization- Variable magnetic field / Moving magnet magnetron device- Target efficiency : > 80%

� Energy and flux controlled magnetron sources

State of Art in Magnetron Sputtering Processes

Page 39: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

77 / 89

High rate deposition

� Objectives of high rate deposition� Cost effective coating by reducing film processing time� Formation of high density films combined with high ionization

� Methods of high rate deposition� High Current / Laser Arc Ion Plating

-. Deposition rate : 5-10 /min (Cu)-. Characteristics : micro-droplet, expensive equipment

� E-Beam evaporation-. Deposition rate : due to source power & melting point of materials-. Characteristics : high power consumption(100KW), low film density

� Magnetron Sputtering-. Deposition rate : 3 /min (Cu) by high power sputtering-. Characteristics : high density film, less damage in film

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

78 / 89

Low pressure sputtering

� Plasma confinement

� Hollow cathode magnetron

0 1 2 3 4 51E-3

0.01

0.1

1

� Discharge characteristics

Extin

ctio

n pr

essu

re(P

a)

Discharge current(A)

Courtesy by Prof. J. MusilUniv. of West Bohemia, Czech Republic

Page 40: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

79 / 89

Trends toward large substrateEnlargement of display size(demand of wide display)To increase number of panels takenfrom a mother sheet(cost reduction)

Process requirementsLarge area and uniform

-. Area size > 2 meters-. Uniformity 5-10 %High throughput

Trend of substrate size for FPD(LCD) process

Glass Substrate

Large area deposition

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

80 / 89

� Uniformity over large-area standing-wave free controllability of power deposition profile

� Low plasma potential (low electron temperature) high quality processing (suppressed plasma damage)

� High-density plasma production high throughput (production efficiency)

� Low-pressure processing enhanced utilization efficiency of materials gas controllability of plasma and radical production suppression of dust-particle formation

Major specifications required for the plasma sources to be employed in advanced large-area processing

Large area deposition

Page 41: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

81 / 89

Large area magnetron sources

Substrate : 2060 1240

• Large area In-line sputtering system

width : 100 or 340 mmlength : 500 ~ 4000 mm

width : 100 mm 2length : 500 ~ 4000 mm

diameter : 143 ~ 160 mmlength : 100 ~ 3850 mm

diameter : 143 ~ 160 mmlength : 100 ~ 3850 mm

Single Magnetron sputtering source

Dual Magnetron sputtering source

Single/Dual CylindricalMagnetron sputtering sourcewww.vonardenne.biz

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

82 / 89

High target efficiency

� Circular moving magnetron (FLATRON –CAPST/SKKU)

� Rotation of magnet on the circumference� Cyclical movement of plasma on the target by control of electromagnetic fields� Target efficiency : up to 80%

Magnetron discharge

Page 42: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

83 / 89

High Power Pulsed Magnetron Sputtering

� Improving the purity of thin films deposited at a large flux of sputtered vapors (reduced contamination by rest gases)

� The possibility of conducting high purity processes during sustained self-sputtering

� Potential for new geometrical deposition(e.g. metallization into deep holesand trenches in VLSI applications)

� Versatile variation of the texture of thin films sputtered at high rates

� Possibility for new reactive sputtering processes (higher sputtering efficiency as a result of destroying reactive films of low sputtering coefficient)

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

84 / 89

Voltage-current waveforms for pulsed sputtering

0 1000

13

0 15000

25

0 15000

35

0 5000

41

0 1000

45

0 1000

510 10 20 30 40 50 60 70 80 90 100

0

500

1000

1500

2000

0

100

200

300

400

Current ( A

)

Volta

ge (

V )

Time ( �s )

Discharge voltage

Discharge current

Page 43: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

85 / 89

0 20 40 60 80 100 120 140 160 180 200109

1010

1011

1012

1013

0

500

1000

1500

Target voltage (V) and current ( A )

Time (�s)

Plas

ma

dens

ity (c

m-3)

ne

Target voltage Tatget cuttent x 4

Time dependence of plasma parameters

0 20 40 60 80 100 120 140 160 180 2000

2

4

6

8

10

0

400

800

1200

1600

Elec

tron

Tem

pera

ture

(eV)

Te

Voltage (V)

Time (ms)

Target voltage

0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

50

60

0

400

800

1200

1600 Potential difference

V p - V

f ( V

)

Time ( �s )

Target voltage

Voltage ( V )

�� Electron temp.Electron temp.�� Electron densityElectron density �� Potential difference (Potential difference (VVpp--VVff))

� Max. ne � 5 x 1012 cm-3

(9 cm below the target)� DC mode � ~109 - 1010 cm-3

� Peak Te � 9.7 eV(9 cm below the target)

� DC mode � 2~4 eV

� Floating substrate

� Peak (Vp-Vf) � 50 V

(9 cm below the target)

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

86 / 89

Ionized Sputter DepositionDC target bias

RF substrate bias

Inductivelycoupled RF

antenna

Al � Al+ + e-

Al target

• the depositing atoms themselves can be highly ionized with sppecifiedsource or system design. An RF coil around the plasma typically induces collisions in the plasma creating high density ions (50-85% ionized).

• This provides a narrow distribution of arrival angles which may be useful when filling or coating the bottom of deep contact hole.

a) b)

Highlydirectional fluxBetter solution than a collimator (holes)

SILICON VLSI TECHNOLOGYFundamentals, Practice and ModelingBy Plummer, Deal & Griffin

Magnetron sputter

Page 44: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

87 / 89

Al doped ZnO Indium tin Oxide

0.5

AZO filmITO film

0.2

� Transparent Conductive Oxide Films on Polymer

Low temperature processingmetallization on polymer below 50 C

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

88 / 89

Low temperature processing

N-

Po

le

S-

Po

le-500V

,5m

Torr

300 400 500 600 700 800

0

10k

20k

30k

40k

50k

Inte

nsity

(arb

. uni

t)

Wavelength

Ti+, Ti0, Ar+ Ar0

2 3 4 50.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Dep

ositi

on ra

te ( �m

/min

)

Discharge power ( kW )12.8 19.1 31.8

Power density ( W/cm2)

�Magnetic flux of facing configuration � high ionization potential � High rate deposition

� Reduction of substrate damage by ion bombardment� Low temperature process� Low discharge impedance� Low pressure process ( < 1 mTorr )

� Facing target sputtering

Page 45: Magnetron Sputtering Technology - ispc- · PDF filere-radiated heat U-factor. ... 10 / 89. Basics for magnetron sputtering. Ion-surface interaction ... Magnetron Sputtering Technology

Center for Advanced Plasma Surface Technology

http://www.capst.re.krMagnetron Sputtering Technology

89 / 89

Acknowledgement forFinancial Support from MOST & KOSEFResearch contribution from all CAPST members