52
LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS 2020 (Biojetfuel Range Alkanes Production From Minyak Kemiri Sunan (Reutealiss trisperm Oil) Via Hydrodeoxygenation Reaction By Metal/Aluminosilicates From Local Source) Tim Peneliti : Prof. Didik Prasetyoko, M.Sc (Kimia/FSAD) Dr. Yuly Kusumawati, M.Si (Kimia/FSAD) DIREKTORAT RISET DAN PENGABDIAN KEPADA MASYARAKAT INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2020 Sesuai Surat Perjanjian Pelaksanaan Penelitian No: 836/PKS/ITS/2020

LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

i

LAPORAN KEMAJUAN

PENELITIAN HI-IMPACT

DANA ITS 2020

(Biojetfuel Range Alkanes Production From Minyak Kemiri Sunan

(Reutealiss trisperm Oil) Via Hydrodeoxygenation Reaction By

Metal/Aluminosilicates From Local Source)

Tim Peneliti :

Prof. Didik Prasetyoko, M.Sc (Kimia/FSAD)

Dr. Yuly Kusumawati, M.Si (Kimia/FSAD)

DIREKTORAT RISET DAN PENGABDIAN KEPADA MASYARAKAT

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

SURABAYA

2020

Sesuai Surat Perjanjian Pelaksanaan Penelitian No: 836/PKS/ITS/2020

Page 2: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

i

Daftar Isi

Daftar Isi .......................................................................................................................................................... i

Daftar Tabel .................................................................................................................................................... ii

Daftar Gambar ............................................................................................................................................... iii

Daftar Lampiran ............................................................................................................................................. iv

BAB I RINGKASAN ..................................................................................................................................... 1

BAB II HASIL PENELITIAN ........................................................................................................................ 3

BAB III STATUS LUARAN ........................................................................................................................ 10

BAB IV PERAN MITRA (UntukPenelitian Kerjasama Antar Perguruan Tinggi) ...................................... 11

BAB V KENDALA PELAKSANAAN PENELITIAN ............................................................................... 12

BAB VI RENCANA TAHAPAN SELANJUTNYA ................................................................................... 13

BAB VII DAFTAR PUSTAKA ................................................................................................................... 14

BAB VIII LAMPIRAN ................................................................................................................................. 15

LAMPIRAN 1 Tabel Daftar Luaran ............................................................................................................. 46

Page 3: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

ii

Daftar Tabel

Page 4: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

iii

Daftar Gambar

Hal

Gambar 1. Spektra IR katalis aluminosilikat dari redmud (a) aluminosilikat H+-

Ni, (b) aluminosilikat H+, (c) aluminosilikat Na+Ni, (d) aluminosilikat

Na+

4

Gambar 2. Difraktogram katalis aluminosilikat dari redmud (a) aluminosilikat H+-

Ni, (b) aluminosilikat H+, (c) aluminosilikat Na+Ni, (d) aluminosilikat

Na+

5

Gambar 3. N2 adsorpsi-desorpsi katalis aluminosilikat redmud (a) dan distribusi

ukuran pori menggunakan metode DFT (b)

6

Gambar 4. Foto TEM katalis aluminosilikat redmud

6

Gambar 5. Komposisi Produk Biojetfuel Minyak Kemiri Sunan dengan Reaksi

Hidrodeoksigenasi menggunakan katalis Aluminosilikat redmud

7

Gambar 6. Distribusi Produk Biojetfuel Minyak Kemiri Sunan dengan Reaksi

Hidrodeoksigenasi menggunakan katalis Aluminosilikat redmud

7

Page 5: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

iv

Daftar Lampiran

Lampiran 1 . Abstrak Submitted pada Seminar ICCME 2020…………………………………

Lampiran 2. Draft paper publikasi jurnal internasional ……………………………………….

Page 6: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

1

BAB I RINGKASAN

.

Penelitian yang dilakukan memiliki tujuan untuk menghasilkan produk senyawa alkana

dalam range bio jet-fuel dari bahan baku minyak nabati non-edible Kemiri Sunan (Reutealis

trisperm) menggunakan material katalis aluminosilikat dari sumber alam lokal dalam rangka

mendukung subtitusi bahan bakar yang berkelanjutan. Bio jet-fuel dari konversi minyak nabati

non-edible Reutealis trisperm atau Kemiri Sunan merupakan alternatif pengganti bahan bakar

fosil yang potensial untuk dikembangkan karena faktor kelimpahan yang tinggi dan tidak

menimbulkan persaingan dengan sektor pangan dan pertanian. Dengan meningkatnya

kebutuhan energi dalam bidang transportasi dari tahun ke tahun, mengakibatkan penelitian

tentang teknologi subtitusi bahan bakar maupun pengembangan material maju sebagai katalis

reaksi konversi minyak nabati menjadi bio jet-fuel menjadi perhatian banyak peneliti.

Peningkatan performa bahan bakar jenis biodiesel menjadi bio jet-fuel karena keunggulan sifat

fisik dan kimianya untuk aplikasi pada mesin kendaraan darat dan udara, melibatkan

penggunaan katalis yang spesifik dan selektif dalam reaksi konversi energi baru terbarukan.

Inovasi modifikasi katalis konversi untuk menghasilkan senyawa hidrokarbon alkana

dalam range bio jet-fuel sangat berperan untuk mencapai hasil akhir reaksi konversi katalitik

dengan tingkat selektifitas dan konversi yang tinggi. Dalam usulan penelitian ini modifikasi

permukaan katalis aluminosilikat dilakukan dengan penambahan logam aktif nikel dan kobalt

serta variasi interaksi logam dan support dalam framework aluminosilikat. Material

aluminosilikat dalam penelitian ini disintesis dari sumber alam lokal seperti limbah bauksit (Red

mud) dan kaolin juga merupakan keterbaruan dalam penelitian produksi bio jet-fuel melalui

reaksi hidrodeoksigenasi. Selain itu pemanfaatan limbah bauksit juga menjadi salah satu solusi

permasalahan lingkungan yang dapat diintegrasikan dengan pemngembangan material untuk

energi dan lingkungan.

Sintesis aluminosilikat dilakukan dengan metode hidrotermal dengan tahapan dua kali

kristalisasi (two steps crystallization) melalui proses alkali fusi yang ditambahkan dengan

logam aktif Ni dan Cu sebagai katalis reaksi hidrodeoksigenasi minyak Kemiri Sunan.

Karakterisasi fisika dan kimia katalis dalam penelitian ini dilakukan dalam rangka mengetahui

efektivitas dan selektivitas katalis berbasis sumber lokal pada produksi senyawa alkana dalam

range bio jet-fuel. Uji katalitik reaksi hidrodeoksigenasi selanjutnya dilakukan dalam skala

laboratorium menggunakan feedstock minyak Kemiri Sunan dalam reaktor batch dengan variasi

Page 7: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

2

parameter reaksi jenis katalis, suhu dan waktu reaksi untuk mendapatkan data tentang konversi

dan selectivitas produk senyawa alkana range bio jet-fuel.

Luaran yang ditargetkan dalam penelitian ini yaitu artikel ilmiah yang disubmit pada jurnal

internasional teindeks Scopus Q1 yaitu Journal of The Energy Institute dengan H Index Jurnal 31,

Impact factor 3,774, citation score 4,10 dan luaran tambahan adalah seminar internasional.

Page 8: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

3

Ringkasan penelitian berisi latar belakang penelitian,tujuan dan tahapan metode

penelitian, luaran yang ditargetkan, kata kunci

BAB II HASIL PENELITIAN

Hasil penelitian yang telah dilakukan meliputi sintesis katalis aluminosilikat berbasis

sumber lokal red mud/kaolin, karakterisasi katalis aluminosilikat, uji aktivitas katalis melalui reaksi

hidrodeoksigenasi minyak kemiri sunan.

1. Sintesis aluminosilikat

Sintesis aluminosilikat dengan sumber alumina redmud pulau Bintan dilakukan dengan metode

hidrotermal melalui 2 tahap kristalisasi pada suhu 80 °C selama 24 jam dan 28 °C selama 4 jam serta dan

sumber silika kaolin Bangka Belitung yang dilakukan dengan metode hidrotermal melalui 2 tahap kristalisasi

pada suhu 80 °C selama 12 jam dan 150 °C selama 24 jam . Padatan aluminosilikat yang terbentuk

selanjutnya dicuci dengan aquades hingga pH netral. Katalis aluminosilikat selanjutnya dilakukan proses

kalsinasi untuk menghilangkan template CTABr yang berperan dalam proses pembentukan mesopori. Katalis

yang terbentuk selanjutnya dimodifikasi struktur permukaannya untuk mengetahui sisi aktif yang berperan

dalam reaksi hidrodeoksigenasi melalui beberapa cara yaitu impregnasi logam Ni menghasilkan katalis

aluminosilikat bentuk Na+-Ni, pertukaran kation Na+ pada aluminosilikat dengan H+ menghasilkan katalis

aluminosilikat H+, serta pertukaran kation dan impregnasi logam Ni menghasilkan katalis aluminosilikat H+-

Ni. Masing-masing katalis selanjutnya dikarakterisasi menggunakan FTIR, XRD, N2 adsorpsi-desorpsi,

TEM.

Modifikasi sintesis aluminosilikat selanjutnya dilakukan untuk meningkatkan luas mesopori dan

terbentuknya pori intrapartikel yang teratur seperti Al-MCM-41. Sintesis dilakukan dengan rasio molar

10Na2O:xSiO2: 2Al2O3:1800H2O, dimana x adalah 60, 100, 140 dan 180 Penambahan CTABr dilakukan

sebagai template mesopori. Kaolin Bangka Belitung digunakan sebagai sumber silika dan alumina dalam

sintesis Al-MCM-41. Sintesis dilakukan dengan dua tahap kristalisasi yakni pada temperatur 80 ℃ selama

12 jam dan 150 ℃ selama 24 jam. Padatan selanjutnya dicuci dengan aqudes hingga pH netral dan

dikeringkan pada temperatur 60 ℃ selama 24 jam. Padatan dikalsinasi pada temperatur 550 ℃ dengan

kecepatan pemanasan 2℃/menit menggunakan aliran gas N2 selama 1 jam dan aliran udara selama 6 jam.

Katalis selanjutnya ditukar kation menggunakan ammonium asetat untuk menukar kation Na+ menjadi H+.

Katalis dikarakterisasi menggunakan XRD.

2. Karakterisasi FTIR

Katalis aluminosilikat dikarakterisasi dengan FTIR untuk mengetahui gugus fungsional dari material

yang telah disintesis. Gambar 1 menunjukkan spektra FTIR dari katalis aluminosilikat awal dan yang telah

dimodifikasi struktur permukaannya. Seluruh katalis yang telah disintesis menunjukkan puncak serapan

karakteristik dari aluminosilikat, yaitu puncak serapan pada bilangan gelombang 3452, 3525, dan 3622

cm-1 yang merupakan puncak serapan khas dari vibrasi ulur –OH [1], sedangkan puncak serapan

Page 9: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

4

pada bilangan gelombang 1629 cm-1 menandakan adanya vibrasi tekuk –OH. Puncak serapan khas

untuk vibrasi tekuk Si-O-Si, dan Si-O-Al terlihat pada daerah bilangan gelombang 1012, dan 1031

cm-1. Vibrasi ulur Si-O pada tetrahedral SiO4 menunjukkan puncak serapan pada bilangan

gelombang 746, 798, dan 914 cm-1 [2]. Puncak serapan pada bilangan gelombang 450 cm-1 yang

dihasilkan karena adanya vibrasi ikatan T-O-T (T adalah atom Al atau Si). Pada bilangan gelombang 550

cm-1 menunjukkan adanya vibrasi stretching asimetri dari D5R (double five-membered ring) yang merupakan

karakteristik dari struktur zeolite pentasil tipe MFI. Sedangkan pada bilangan gelombang 795 dan 1225 cm-

1 merupakan vibrasi streching eksternal simetri dan asimetri dari T-O-T.

Gambar 1. Spektra IR katalis aluminosilikat dari redmud (a) aluminosilikat H+-Ni, (b) aluminosilikat H+,

(c) aluminosilikat Na+Ni, (d) aluminosilikat Na+

3. Karakterisasi XRD

Katalis aluminosilikat dikarakterisasi menggunakan XRD untuk mengetahui fasa yang terbentuk dari

material yang telah disintesis. Gambar 2 menunjukkan difraktogram dari katalis yang telah disintesis. Pola

difraktogram pada aluminasilika hasil sintesis (ASM) menunjukkan adanya hump (gundukan) pada

range 2θ = 15-30° tanpa adanya puncak. Menurut Xu dkk., (2011) adanya hump merupakan

karakteristik dari fasa amorf suatu padatan, sehingga dapat disimpulkan bahwa ASM hasil sintesis

memiliki fasa amorf [3]. Hasil yang sama juga dilaporkan oleh Qoniah dkk., [4]); dan Hartati,

a

b

c

d

Page 10: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

5

Prasetyoko, dkk., [5]. Berdasarkan hasil tersebut, dapat disimpulkan bahwa ASM telah berhasil

disintesis dari red mud dan fasa yang dihasilkan adalah amorf.

Gambar 2. Difraktogram katalis aluminosilikat dari redmud (a) aluminosilikat H+-Ni, (b) aluminosilikat H+,

(c) aluminosilikat Na+Ni, (d) aluminosilikat Na+

Al-MCM-41 yang telah disintesis dengan variasi rasio Si/Al selanjutnya dikarakterisasi menggunakan XRD

seperti yang ditampilkan pada Gambar 3. Difraktogram Al-MCM-41 (Si/Al= 10) menunjukkan terbentuknya

kristalin material dengan intensitas yang tajam pada 2θ= 12,15; 17,66; 21,32; 27,83 dan 33⁰. Hasil analisis

menggunakan software match menunjukkan Terbentuknya fasa Quartz, SiO2 dan kristobalit. Hal ini

menunjukkan bahwa fase amorf dari Al-MCM-41 tidak terbentuk pada rasio Si/Al=10. Selanjutnya pada Al-

MCM-41 dengan variasi Si/Al= 30, 50, 70 dan 90 menunjukkan terbentuknya hump/gundukan pada 2θ= 15-

30⁰ yang merupakan karakteristik dari aluminosilikat amorf.

a

b

c

d

Page 11: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

6

Gambar 3. Difraktogram Al-MCM-41 dengan variasi Si/Al

4. Karakterisasi N2 adsorpsi-desorpsi

Karakterisasi menggunakan N2 adsorpsi-desorpsi dilakukan pada sampel katalis aluminosilikat dari redmud

awal. Karakterisasi ini bertujuan untuk mengetahui sifat textural dari material yang telah disintesis seperti

luas permukaan meso, mikro, ukuran pori dan volume pori. Gambar 4 menunjukkan grafik isoterm dan

distribusi ukuran pori katalis aluminosilikat. Pola isoterm ASM hasil sintesis menunjukkan pola isoterm

tipe IV dimana terjadi adsorpsi molekul nitrogen dalam jumlah rendah pada tekanan relatif (P/P0)

0,0 sampai 0,3 yang ditandai dengan pola isoterm yang naik. Hal ini disebabkan pada tekanan relatif

0,01 – 0,3 molekul nitrogen yang teradsorp memenuhi permukaan padatan sehingga terbentuk

lapisan tunggal atau monolayer. Pada tekanan relatif (P/P0) 0,4 – 0,9 mengindikasikan terbentuknya

multilayer dengan adanya penambahan volume molekul nitrogen yang teradsorpsi (Chorkendorff

dan Niemantsverdriet, 2017). Data distribusi ukuran pori dari sampel aluminosilikat mesorpori

dengan metode BJH (Barret, Joiner, Halenda). Berdasarkan gambar tersebut terlihat bahwa

Page 12: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

7

distribusi pori sampel aluminosilikat memiliki ukuran pori pada radius sekitar 1,53 – 15,57 nm

(diameter pori 3,1 – 31 nm) (Tabel 4.2) dengan luas permukaan total 404 m2/g.

Gambar 4. N2 adsorpsi-desorpsi katalis aluminosilikat redmud (a) dan distribusi ukuran pori menggunakan

metode DFT (b)

Berdasarkan analisis N2 adsorpsi- desorpsi dapat dsimpulkan bahwa katalis aluminosilikat dari

sumber redmud memiliki karakteristik padatan mesopri interpartikel.

5. Karakterisasi TEM

Karakterisasi TEM pada katalis aluminosilikat dilakukan untuk mengetahui sebaran pori meso dan

ukuran pori katalis. Gambar 5 menunjukkan hasil foto TEM katalis aluminosilikat dari redmud.

Berdasarkan gambar TEM terlihat bahwa pori dari ASM memiliki bentuk pori spherical dan tidak

teratur dengan ukuran pori ~1 nm. Hal ini dapat dilihat dari pembentukan sistem penghubung yang

terjadi secara acak. Hasil yang sama juga dilaporkan oleh Qoniah dkk., (2015) dimana dihasilkan

aluminosilikat dengan bentuk pori yang tidak teratur pada material aluminosilikat. Hasil analisa

TEM ini juga mengkonfirmasi adanya mesopori yang terbentuk pada interpartikel.

Page 13: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

8

Gambar 5. Foto TEM katalis aluminosilikat redmud

6. Uji Aktivitas Katalitik dengan Minyak Kemiri Sunan

Uji aktivitas katalitik katalis aluminosilikat dilakukan pada reaksi hidrodeoksigenasi minyak kemiri

sunan dengan kondisi reaksi 3% katalis, temperatur reaksi 300 oC, waktu reaksi 1 jam, dan aliran gas

hydrogen 50 dan 100 mL/menit sebagai studi pendahuluan. Hasil analisis biojetfuel dari reaksi

hidrodeoksigenasi minyak kemiri sunan dengan instrument GC-MS menunjukkan hasil komposisi produk

biojetfuel meliputi, aromatic, siklik, oksigenate dan

Gambar 6. Komposisi Produk Biojetfuel Minyak Kemiri Sunan dengan Reaksi Hidrodeoksigenasi

menggunakan katalis Aluminosilikat redmud

Page 14: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

9

Gambar 6. Distribusi Produk Biojetfuel Minyak Kemiri Sunan dengan Reaksi Hidrodeoksigenasi

menggunakan katalis Aluminosilikat redmud

Berdasarkan hasil analisis terhadap aktivitas katalitik katalis aluminosilikat dari sumber alam,

menunjukkan bahwa hasil produk biojetfuel yang dihasilkan didominasi oleh senyawa aromatic yang

sesuai dengan karakter jet fuel yang ditetapkan oleh IATA dan standar jet A. Komposisi senyawa

aromatic telah memenuhi range standar senyawa aromatic untuk jetfuel. Oleh karena itu penelitian ini

memiliki potensi untuk pengembangan biojetfuel dari minyak kemiri sunan menggunakan katalis

aluminosilikat berbasis sumber alam lokal.

Page 15: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

10

BAB III STATUS LUARAN

Status luaran yang ditargetkan pada penelitian ini yaitu luaran wajib pada jurnal ilmiah internasional

masih dalam penyelesaian data dan tahap penyusunan draft artikel. Luaran tambahan yaitu seminar

internasional akan dilaksanakan pada 6-7 Oktober 2020 pada forum ICCME 2020 (The 4th International

Chemical Conference on Material and Engineering) yang diselenggarakan oleh Universitas Diponegoro

(UNDIP)

Page 16: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

11

BAB IV PERAN MITRA (UntukPenelitian Kerjasama Antar Perguruan Tinggi)

Penelitian ini tidak memiliki mitra.

Page 17: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

12

BAB V KENDALA PELAKSANAAN PENELITIAN

Kendala yang dihadapi selama pelaksanaan penelitian adalah adanya pandemi Covid-19 di Indonesia

yang menyebabkan kegiatan penelitian di laboratorium sedikit terhambat dan terkendala layanan analisis

instrument untuk karakterisasi material dan uji aktivitas katalitik yang belum beroperasi maksimal sehingga

data eksperimen belum mencapai target. Hambatan lainnya yaitu keterbatasan alat yang digunakan untuk

reaksi hidrodeoksigenasi yang membuthkan waktu lama untuk membuat reaktor. Lamanya waktu yang

diperlukan untuk analisa material, hal ini dikarenakan terbatasnya jumlah instrument analisis material di

Indonesia untuk karakterisasi seperti N2 adsorpsi desorpsi dan TEM, banyaknya antrian menyebabkan waktu

yang diperlukan untuk analisis menjadi lama. Karakterisasi material menggunakn N2 adsorpsi dilakukan di

UII dan ITS diperlukan waktu 1-2 bulan. Karakterisasi material menggunakan TEM di Indonesia hanya bisa

dilakukan di ITB, waktu tunggu hingga mendapat jadwal karakterisasi antara 2 minggu – 1 bulan. Penelitian

tentang produksi biojetfuel dari minyak kemiri sunan ini termasuk topik penelitian baru di dalam Grup Riset

Material dan Energi, sehingga diperlukan setting alat dan pemahaman mengenai desain dan rangkaian

reaktor. Banyak kendala yang dialami dalam tahapan ini, diantaranya kesulitan dalam menyusun rangkaian

alat hingga kendala kebocoran gas.Kesulitan lain yang dihadapi adalah dalam penulisan paper publikasi,

dikarenakan kurangnya media yang dapat memfasilitasi dalam penulisan artikel ilmiah yang baik.

Page 18: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

13

BAB VI RENCANA TAHAPAN SELANJUTNYA

Rencana tahapan penelitian selanjutnya adalah melanjutkan sintesis katalis dari sumber kaolin serta

uji aktivitas katalitik enggunakan minyak kemiri sunan dengan variasi parameter kondisi reaksi yang

berbeda. Selain itu juga akan dilakukan penyempurnaan penyusunan draf artikel imiah untuk publikasi pada

jurnal internasional .

Page 19: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

14

BAB VII DAFTAR PUSTAKA

1. Sushil, S., dan Batra, V.S. (2012), “Modification of Red Mud by Acid Treatment and Its

Application for CO Removal.” Journal of Hazardous Materials, Vol. 203–204, No.

Februari, Hal. 264–273

2. Liu, W., Yang, J., dan Xiao, B. (2009), “Application of Bayer Red Mud for Iron Recovery

and Building Material Production from Alumosilicate Residues.” Journal of Hazardous

Materials, Vol. 161, No. 1, Hal. 474–78.

3. Xu, L., Liu, Z., Li, Z., Liu, J., Ma, Y., Guan, J., dan Kan, Q. (2011), “Non-Crystalline

Mesoporous Aluminosilicates Catalysts: Synthesis, Characterization and Catalytic

Applications.” Journal of Non-Crystalline Solids, Vol. 357, No. 4, Hal. 1335–1341.

4. Qoniah, I., Prasetyoko, D., Bahruji, H., Triwahyono, S., Jalil, A.A., Suprapto, Hartati, dan

Purbaningtias, T.E. (2015), “Direct Synthesis of Mesoporous Aluminosilicates from

Indonesian Kaolin Clay without Calcination.” Applied Clay Science, Vol. 118, No.

Desember, Hal. 290–294.

5. Hartati, Didik Prasetyoko, Mardi Santoso, Hasliza Bahruji, dan Sugeng Triwahyono (2014),

“Highly Active Aluminosilicates with a Hierarchical Porous Structure for Acetalization of

3,4-Dimethoxybenzaldehyde.” Jurnal Teknologi (Science & Engineering, Vol., Mei, Hal,

25–30

Page 20: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

15

BAB VIII LAMPIRAN

1. Abstrak tersubmit pada ICCME

Mmllml

Biojetfuel Production From Reutealis Trisperm Oil Over Indonesian Red Mud Based

Catalyst

D. Prasetyoko a*, D.K.Maharani a, Y. Kusumawati a

a Department of Chemistry, Faculty of Science and Analytical Data, Sepuluh Nopember Institute of

Technology , Surabaya, East Java, 59323, Indonesia. (Email:[email protected];

[email protected]; [email protected]; [email protected]

*Corresponding author

D.Prasetyoko, Department of Chemistry, Faculty of Science and Analytical Data, Sepuluh Nopember

Institute of Technology, Surabaya, East Java, 59323, Indonesia. (Email: [email protected])

Abstract

Redmud is one of caustic waste generated from by product of alumina by production. Composition

of redmud are Fe2O3, SiO2, Al2O3, TiO2 and other minor components [1-3]. Indonesian redmud

has been studied for hydrodeoxygenation reaction (HDO) of Reutalis trisperm oil which is non-

edible feedstock as potential catalyst for bio jet-fuel production. Aluminosilicates were synthesized

from Indonesian redmud has mesoporous structure with uniform particle size as confirmed by

TEM image and nitrogen adsorption isotherm data. Catalytic study of aluminosilicates mesopore

on HDO of Reutealis trisperm oil resulted in jetfuel range liquid product consist of hydrocarbon,

aromatic, cyclic and oxygenates component. Change in HDO liquid product composition were

confirmed on different structure of aluminosilicates mesopore form. At H+ form of aluminosilicates

mesopore catalyst, oxygenates product yield were 54.1% indicating slight decreased compared

to that 66.1% Na form. Ni loading on aluminosilicates mesopore of H+ form increase the aromatic

product into 31.8% and also reduce oxygenates content. This result was in accordance with

previouse study that state increasing Ni loading on redmud catalyst produced higher hydrocarbon

component in HDO of Pinyon janiper oil. Aromatic content in biojetfuel produced from this

research was fulfill the standart of JetA (ASTM) and JetA (IATA) which mean it has a possibility

for jet fuel commercial uses.

Keywords: biojetfuel; hydrodeoxygenation; redmud; aluminosilicates mesopore; Reutealis

trisperm oil

Fig.1. TEM images of Aluminosilicates mesopores synthesized from Indonesian Redmud .

ICCME 2020 Abstract Template

Page 21: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

16

Fig.2. Liquid product distribution from HDO reactionof Reutealis of trisperm oil with different

Aluminosilicates mesopores catalysts at temperature of 300 oC and time of 1 h.

Fig.3. Hydrocarbon composition of liquid product by various Aluminosilicate mesopore catalyst

from HDO reaction of Reutealis trisperm Oil

Table 1. Nitrogen Adsorption Isotherm Data of Aluminosilicate mesopores

Page 22: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

17

2. Draft Paper

Solvent-free selective deoxygenation of Jatropha Curcas oil to green diesel on Al-MCM-41 from kaolin

with suppressed hydrocracking activity

Reva Edra Nugraha1, Nurul Asikin-Mijan2, Suprapto Suprapto1, Yun Hin Taufiq-Yap3,4, Aishah Abdul

Jalil5,6, Hasliza Bahruji7, Didik Prasetyoko1,*

1Department of Chemistry, Faculty of Sciences, Institut Teknologi Sepuluh Nopember, Keputih Sukolilo,

Surabaya 60111, Indonesia

2Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,

43600 UKM Bangi, Selangor, Malaysia

3Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor,

Malaysia

4Chancellery Office, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah

5Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi

Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia

6Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai,

Johor Bahru, Johor, Malaysia

7Centre of Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, BE

1410, Brunei

*Corresponding author: [email protected]; [email protected]

Abstract

Solvent-free selective deoxygenation of Jatropha Curcas oil (JCO) provides a green catalytic pathway for

conversion of non-edible oil into value added green diesel. Selective deoxygenation reaction was carried out

in N2 using porous aluminosilicate as acid catalysts. Hierarchical ZSM-5 and Al-MCM-41 were synthesised

from kaolin at similar Si/Al ratios. The effect of mesoporosity, pore structure and acidity of aluminosilicate

catalysts were investigated on the conversion and the selectivity towards long-chain (C11-C18) hydrocarbon.

JCO deoxygenation reaction occurred via decarboxylation/decarbonylation pathway. Deoxygenation was

also in competition with hydrocracking reaction that produced short-chain hydrocarbons (C8-C10). This study

Page 23: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

18

demonstrates the importance of high strength Lewis acidity and one-dimensional mesopores channel of Al-

MCM-41 to enhance the mass transfer and the diffusion of products/reactant in order to increase conversion

and to suppress the secondary hydrocracking reaction. Although hierarchical ZSM-5 contained mesopores

with parallel pore channel, the low concentration of Lewis acidity reduced the JCO conversion.

Keyword: ZSM-5, Al-MCM-41, deoxygenation, hydrocarbon, kaolin

1. Introduction

Development of renewable energy is recognised as route to fulfil the increasing energy demand and to tackle

the environmental issue associated with the fossil fuel consumption. Integrated catalytic conversion of

biomass as carbon feedstock to fuel has received tremendous attention since the development of the first

generation biodiesel in 2008 [1]. Biodiesel is consisted of fatty acid methyl ester (FAME) produced from

transesterification reaction of oil from plant or animal [2]. However, FAME consisted of high oxygen content

that contributed to the low heat value of biodiesel (HV) [3–7]. Biodiesel also exhibited poor oxidation and

cold-flow properties that affected the performance in the conventional engine [8,9]. Green diesel with

petrodiesel-like structures with C12-22 of hydrocarbons composition exhibits enhanced properties than

biodiesel [1]. Green diesel was produced from deoxygenation reaction via elimination of carboxyl group in

fatty acid. The reaction occurred under H2-free atmosphere and produced hydrocarbon with one atom carbon

shorter than the corresponded fatty acid (C(n-1)) [10,11]. Jathropa curcas oil (JCO) as non-edible oil can be

cultivated on marginal land with low rainfall areas, and showed high durability to withstand pest and drought

[12]. JCO is consisted of saturated and unsaturated long chain fatty acids that was ideal for deoxygenation

to green diesel [13,14]. Deoxygenation reaction were often performed in the presence of organic solvent like

decalin, dodecane, hexane and methanol [13,15–19]. Solvent free deoxygenation reaction reduced the cost

of product purification and waste disposal. Activated carbon [4,20], multi-walled carbon nanotube

(MWCNT) [10,16,21], mesoporous SiO2 [22,23], mesoporous TiO2 [24,25], ZrO2 [26], CaO [3,27], Al2O3

[15], Al-MCM-41 [5,11,28], SBA-15 [1,29], ZIF-67 [30] and zeolites [2,31–35] have been investigated as

catalysts for deoxygenation reaction. However porous aluminosilicates catalysts such as zeolite and

mesoporous alumina/silica were the ideal candidates due to the synergistic effects between porosity and

acidity [35–38]. Microporous zeolite as catalysts for deoxygenation reaction suffered from steric hindrance

Page 24: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

19

and diffusion limitation that reduced the accessibility of large molecules reactant towards the acid sites [39].

Hierarchical ZSM-5 zeolite exhibited two levels of porosity i.e. micropore and mesopore that enhanced the

diffusion and reduced the mass transfer limitation of products and reactants. Conventional method for the

synthesis of hierarchical zeolite employed the desilication or the dealumination of the microporous zeolite,

that often contributed to the destruction of zeolite framework and altered the acidity of the zeolite [40–43].

Two-step crystallization method with the presence of mesopore template provided efficient route for the

formation of hierarchical zeolite. Utilization of naturally occurring mineral as silica and alumina sources

such fly ash, rice husk and clay reduced the carbon footprint of catalyst production [44,45]. Clay minerals

like montmorilonite [46], palygorskite [47], bentonite [48], perlite [49], illite [50] and halloysite [51]

required pretreatment meanwhile kaolin can be directly used for synthesis aluminosilicate materials [52–54].

Kaolin is a sedimentary rock consisted of primarily a hydrated aluminosilicate kaolinite, Al4(OH)8(Si4O10)

with high Si/Al ratios and has been explored as starting material for zeolite synthesis [55].

Catalyst design holds the key for efficient deoxygenation of oil into green diesel. Deoxygenation reaction

required the catalysts to selectively produced hydrocarbon olefin through the removal of carbonyl group in

fatty acid, while simultaneously inhibited the secondary cracking reaction. Catalytic cracking reaction

produced short-chain hydrocarbon that compromised the selectivity towards large hydrocarbons. This

research aimed to investigate the activity of ZSM-5 and Al-MCM-41 toward deoxygenation of JCO in order

to form hydrocarbon with green diesel composition (C11-C18). Al-MCM-41 is a mesoporous aluminosilicate

consisted of one-dimensional cylindrical mesopores, synthesized using CTABr as mesopore template. The

effect of large mesopore and unidirectional channel of Al-MCM-41 was compared with microporous ZSM-

5 and hierarchical ZSM-5. ZSM-5 consists of zigzag pore channel with narrow intersection was synthesized

using TPAOH as template. Hierarchical ZSM-5 with enhanced mesoporosity was synthesized using silicate

as structure directing agent in order to increase the pore diameter that ideally will enhance the diffusion of

reactants and products. The competition between deoxygenation and secondary hydrocracking reactions

were correlated with the aluminosilicate framework structure, the mesoporosity and the acidity of the

catalysts.

2. Experimental

2.1 Materials

Page 25: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

20

Kaolin Al4(OH)8(Si4O10) was obtained from Bangka Belitung consisted of 57% SiO2 and 22% Al2O3 [56].

Jatropha curcas oil (JCO) was purchased from Bionas Sdn Bhd, Malaysia. NaOH (assay 99%) was obtained

from Merck, Germany. LUDOX® HS-40 colloidal silica (30% silica in water) and TPAOH (40%) were

purchased from Sigma Aldrich, Germany. CTABr (C19H42BrN, assay 99%) was purchased from Applichem.

All materials used in this work were analytical grade. Silicalite was synthesized in the laboratory prior to

the ZSM-5 synthesis.

2.2 Synthesis of hierarchical aluminosilicate

Hierarchical ZSM-5 was synthesized following the modified method [57,58] at molar composition of

10Na2O:100SiO2: 2Al2O3:1800H2O. CTABr was added at SiO2/CTABr ratio of 3.85 in order to form

mesopore structure. NaOH was dissolved in demineralized water and stirred for 30 min. Kaolin as alumina

and silica sources was added gradually into NaOH with continuous stir. Ludox was added slowly into the

mixture to form gel under vigorous stirring. Demineralized water was added into the mixture and stirred for

another 8 h. The gel was left to age for 6 h at 70 ℃ followed by the addition of silicalite at 1% w/w to the

solution and stirred for another 30 min. The first hydrothermal process was carried out at 80 ℃ for 12 h and

then the autoclave was cooled down under water to stop the crystallization process. CTABr

(SiO2/CTABr=3.85) was added slowly to the synthesis mixture and stirred for 1 h. Hydrothermal process

was continued at 150 ℃ for 24 h. The resulting solid was washed thoroughly with distilled water until the

pH reached 7 and then dried in air oven at 60 ℃ for 24 h. The dried solid was then calcined at 550 ℃ under

N2 flow (flow rate of 2 ℃/min) for 1 h followed by air flow for 6 h. The catalyst obtained denoted as S-

ZSM-5. Similar procedure was repeated however silicalite was replaced with TPAOH and the product was

denoted as T-ZSM-5. The third sample was synthesized without the addition of both TPAOH and silicalite

seed, however following the similar method and denoted as Al-MCM-41.

2.3 Catalyst characterization

The phase transformation of kaolin to aluminosilicate structure was analysed by wide angle X-Ray

Diffraction (XRD) characterization using PHILIPS-binary XPert with MPD diffractometer with Cu Kα

radiation operated at 30 mA and 40 kV. Low angle X-Ray Diffraction (XRD) was carried out using Bruker

type D2 Phaser using KFL Cu 2K radiation at 10 mA and 30 kV. Fourier Transform Infra-Red (FTIR) (ranges

Page 26: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

21

400 – 1400 cm-1) measurement was recorded using FTIR Shimadzu Instrument Spectrum One 8400S. The

specific surface area of each catalyst was determined by N2 Adsorption Desorption by Quantachrome

Touchwin v1.11 instrument at 363 K using Brunauer–Emmet–Teller (BET) method. The pore size

distributions further determined by DFT method using Quantachrome ASiQwin instrument. The Brønsted

and Lewis acidity were measured by pyridine adsorption using FTIR spectrometer. Approximately, 14 mg

of catalyst was pressed to form pellet and placed in the homemade glass transmmission cell and calcined at

400 °C for 4 h under N2 flow. The cooled to ambient temperature prior to contact with ca. 2 mbar of pyridine.

Physically adsorbed pyridine was removed by degassing at 150 ℃ for 3 h. The low resolution and high

resolution transmission electron microscope (TEM) images of all catalysts were recorded using Hitachi HT-

7700 TEM and Hitachi HR-9500 TEM. The acceleration voltage of 100 kV and 300 kV were applied at HT-

7700 TEM and Hitachi HR-9500 TEM respectively. The catalyst further analyzed using 29Si MAS NMR

coupled with Varian Unity INOVA 400 MHz spectrometer, at pulse length of 3.0 µs, recycle delay of 12 s

and spinning rate of 9 kHz. The Si/Al framework ratio were quantified from the integrated areas of the

deconvoluted peak by using Eq. 1

𝑆𝑖

𝐴𝑙= ∑ 𝐼𝑆𝑖(𝑛𝐴𝑙)/ ∑

𝑛

4[𝐼𝑆𝑖(𝑛𝐴𝑙)]4

𝑛=04𝑛=0

The carbonaceous coke formation on spent catalysts were determined using thermogravimetric analysis

(TGA) by Linseis STA PT-1000. The analysis was carried out under air atmosphere from room temperature

up to 900 ℃ with heating rate 10 ℃/min. The functional group and physical changes on spent catalyst also

further observed by FTIR and low angle XRD analysis. The analysis was conducted within IR range of 500-

4000 cm-1 and the resolution was 4 cm-1. Low angle-XRD was carried out using Bruker type D2 Phaser using

KFL Cu 2K radiation at 10 mA and 30 kV.

2.4 Catalytic deoxygenation of JCO

Deoxygenation reaction of JCO was performed in 100 mL three-necked flask connected with distillation

step-up equipped with stirred heating mantle. 3% wt/wt of catalyst was added into 10 g JCO and purged with

N2 gas prior to the reaction to provide inert environment during the reaction. Subsequently, the mixture was

stirred and heated to 350 ℃ and the reaction was maintained for 1 h under constant flow of N2 at flow rate

of 20 cc/min. Liquid product was collected in a cold vessel at 18 oC to facilitate the condensation. The

Eq. 1

Page 27: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

22

deoxygenated liquid product was further analysed using GC-FID, GC-MS and FTIR spectroscopy. The

gaseous products were collected by gas sampling bag and analysed using offline GD-TCD (Shimadzu GC-

8 A) with molecular sieve packed column.

2.5 Deoxygenated liquid product and gas analysis

Liquid product obtained from deoxygenation reaction was analysed using gas chromatography equipped

with FID detector (Shimadzu GC-14B) and capillary column HP-5MS (length: 30 m × inner diameter: 0.32

mm × film thickness: 0.25 µm). Hydrocarbons were identified using alkane and alkene standard (C8-C20)

obtained from Sigma Aldrich, and 1-bromohexane was used as internal standard for the quantitative analysis.

1 µL of liquid sample was injected into GC column with N2 as carrier gas. The initial temperature was set

for 40 ℃ and held for 6 min, then increase to 270 ℃ at heating rate of 7 ℃. The liquid product distribution

was qualitatively identified using gas chromatography-mass spectroscopy (HP 6890 GC) with capillary

column HP-5MS (length: 30 m × inner diameter: 0.25 mm × film thickness: 0.25 µm). The hydrocarbon

yield (X) was calculated by GC-FID using Eq. 2.

𝑋 =∑ 𝑛𝑜+∑ 𝑛𝑖

∑ 𝑛𝑧× 100% (Eq. 2)

where, no = peak area of alkanes, ni= peak area of alkenes, nz= peak area of the total products. The selectivity

of the hydrocarbon products was determined by Eq. 3.

𝑆 =𝐶𝑖

∑ 𝑛𝑧× 100% (Eq.3)

where, ci= peak area of desired hydrocarbon, nz= peak area of total hydrocarbon.

The functional group of deoxygenated liquid products were identified using FTIR spectrometer (Perkin

Elmer (PC) Spectrum 100). The spectra were recorded within IR range of 500-4000 cm-1 and the resolution

was 4 cm-1.

3. Results and Discussion

3.1 Characterization of catalysts

XRD analysis

XRD analysis in Fig 1a-b showed the low and wide angles diffraction pattern of the catalysts. Kaolin showed

the presence of kaolinite phase with high intensity peaks appeared at 2θ = 12.4°, 23.7°, 24.9° and 38.4°

(JCPDS No. 14-0164) (Fig. 1a). Significant changes on the diffraction pattern were observed following

Page 28: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

23

hydrothermal synthesis, with both S-ZSM-5 and T-ZSM-5 showed the diffraction peaks corresponded to the

ZSM-5 at 2θ = 7.8°, 8.7°, 23.0°, 23.8° and 24.0° (JCPDS No. 44-0003). For Al-MCM-41, a broad diffraction

peak appeared at 2θ = 15-30° corresponded to the amorphous phase of Al-MCM-41 [59]. The low angle

XRD analysis (Fig. 1b) of Al-MCM-41 showed three diffraction peaks within 2θ = 2-6° corresponded to the

(100), (110) and (200) diffraction planes. The peaks confirmed the formation of highly ordered hexagonal

mesostructures of Al-MCM-41 [11,60]. S-ZSM-5 synthesized using silicalite as structure directing agent

showed a weak diffraction peak at 2θ=2.1o that corresponded to the (100) diffraction plane. The presence of

this peak implied the formation of a lower ordered mesostructure within the ZSM-5 framework [60]. When

T-ZSM-5 was synthesized using TPAOH, the peaks associated with the ordered mesostructure were

negligible. In general, the mesoporosity of ZSM-5 was enhanced when silicalite was used as seeding template

during the two-steps crystallization of kaolin. The mesoporosity of aluminosilicate was further enhanced

when the synthesis was carried out in the absence MFI as structure directing agent, however the framework

structure was transformed into Al-MCM-41.

Fig. 1a-b

3. FTIR analysis

FTIR analysis of kaolin showed the absorption bands at 538 cm-1, 789 cm-1 and 914 cm-1 that were

corresponded to the vibrations of Al-O and (Al-O)-H bonds in Al[O(OH)]6 (Fig. 2a). Kaolin also showed

absorption bands at 430, 470, 752, 795, 1032 and 1114 cm-1, which were assigned to the Si-O bonds from

SiO4. The absence of absorption band associated with kaolin on S-ZSM-5, T-ZSM-5 and Al-MCM-41

indicated the phase transformation of kaolinite to silica-based materials framework. All the catalysts derived

from kaolin showed the characteristics absorption of zeolite framework at 450 cm-1 due to the vibration of

T-O-T (T is Al or Si atom). The catalysts also showed the adsorption bands at 795 and 1225 cm-1 assigned

to the internal and the external asymmetric stretching, respectively; and the band at 1100 cm-1 ascribed to

internal asymmetric stretching mode of T-O-T (between TO4 tetrahedral) [61]. S-ZSM-5 and T-ZSM-5

catalysts showed the formation of 550 cm-1 band which was the characteristic of MFI structure [62].

Meanwhile the absence of 550 cm-1 band on Al-MCM-41 further confirmed the formation of Al-MCM-41

framework [63]. The vibrational peak appeared at 960 cm-1 from Al-MCM-41 corresponded to Si-O

stretching vibration of Si-O-H group [64].

Page 29: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

24

Fig. 2a-b

Surface acidity of the catalysts were analyzed using FTIR spectroscopy while employing pyridine as probe

molecule (Fig 2b). Pyridine was adsorbed onto the catalysts at room temperature and subsequently evacuated

at 150 ℃ and 300 ℃ in order to provide information on the acidity strength and the number of Brønsted (B)

and Lewis (L) sites. The absorption band appeared at 1450 cm-1 was corresponded to the Brønsted acidity,

meanwhile the band at 1540 cm-1 was assigned to the Lewis acidity [65]. The adsorption band observed at

1488 cm−1 was originated from adsorbed pyridine on both types of acidity [52]. Table 1 summarized the

calculated acidity of aluminosilicate catalysts. Al-MCM-41 showed the highest number of Lewis acid at

0.296 mmol/g followed by T-ZSM-5 at 0.284 mmol/g and S-ZSM-5 at 0.158 mmol/g. The number of Lewis

and Brønsted acid sites were reduced following evacuation at 300 ℃, which implied the presence of both

weak and medium strength acidity on the catalysts. T-ZSM-5 showed a higher Brønsted sites at 0.108

mmol/g followed by S-ZSM-5 at 0.072 mmol/g and Al-MCM-41 at 0.054 mmol/g. ZSM-5 produced from

TPAOH and silicalite seed showed a different concentration of acid sites despite similar initial Si/Al ratios.

The results implied the influence of organic template TPAOH for the formation of surface acidity in ZSM-

5. TPA+ was reported to facilitate the formation of zeolite-like aluminium sites via the arrangement of tiny

aluminosilicate clusters with tetrahedrally coordinated aluminium, which in return significantly enhanced

the acidity of ZSM-5 [66,67].

Table 1

N2 adsorption-desorption analysis

The textural properties of the catalysts were analyzed using nitrogen adsorption-desorption method (Fig. 3a

and Table 2). N2 adsorption analysis also provided evidences on the presence of both microporous and

mesoporous characteristics of hierarchical zeolite. All the catalysts exhibited different type of isotherms.

However, at low relative pressure (P/P0<0.1), all the catalysts showed significant increase of N2 adsorption

that was due to the presence of micropores. Similar trend was also observed at high relative pressure

(0.9<P/P0<1), due to the multilayer adsorption and capillary condensation of N2. For Al-MCM-41, a sharp

increase of N2 uptake at P/P0= 0.3-0.4 was observed as the typical characteristic of Al-MCM-41

mesoporosity. Al-MCM-41 also exhibited the largest surface area of 739 m2/g with the total pore volume of

0.85 cc/g. Al-MCM-41 also showed narrow distribution of mesopores with a very intense N2 adsorption

Page 30: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

25

volume centered at 3.8 nm due to the formation of intra-particle mesopores [50] (Fig. 3b). T-ZSM-5

synthesized using TPAOH exhibited type I isotherm corresponded to the microporous zeolite. The pore size

was also measured at ~ 4.5-6.0 nm, however the mesopores were originated from inter-particles interaction.

S-ZSM-5 produced using silicalite showed the combination of type I and type IV isotherms suggesting the

formation of hierarchical structures of ZSM-5. The presence of intra-particle mesopores in S-ZSM-5 was

confirmed by the increased of N2 adsorption at P/P0= 0.3-0.4. However, the N2 volume was significantly

lower than Al-MCM-41. The surface area of T-ZSM-5 was determined at 220 m2/g with the total pore volume

was measured at 0.37 cc/g. When ZSM-5 was synthesized using silicalite as a seed, the surface area of S-

ZSM-5 was significantly enhanced to 439 m2/g and the total pore volume increased to 0.52 cc/g.

Fig. 3a-b

Table 2

Morphology analysis using SEM and TEM

SEM analysis provided information on the morphology of the catalysts synthesized using different types of

structure directing agent. S-ZSM-5 (Fig 4a) showed the formation of agglomerated particles that were

dominated by the prismatic structures with the particle size of 0.86-1.09 µm. Meanwhile, T-ZSM-5 catalyst

(Fig. 4b) showed the formation of cubic-shaped structure with the particle size of 0.90-1.04 µm. The

synthesis of porous Al-MCM-41 in the absence of structure directing agent showed the formation of non-

uniform crystallite structures with the average particle size of 0.50-1.05 µm (Fig. 4c).

Fig. 4a-c

HR-TEM analysis of S-ZSM-5 (Fig 5a) revealed the formation of hexagonal crystallite structures with

corrugated surfaces in agreement with the SEM analysis. The presence of well-ordered parallel mesopores

channel was observed with the pore diameters were estimated at 3.32 nm (Fig 5b). TEM analysis of T-ZSM-

5 showed the formation of cubical crystalline structure with the size was determined at ~ 400 nm (Fig 5c).

The presence of mesoporous channel in T-ZSM-5 was less evident in comparison to the S-ZSM-5, which

confirmed the results from N2 adsorption-desorption and low angle XRD (Fig. 5d). TEM analysis of Al-

MCM-41 exhibited the formation of intra-particulate one dimensional mesopores with the average pore size

of 3.49 nm (Fig 5e-f). The formation of parallel mesopore channel was more pronounced in Al-MCM-41

that indicated the highly-ordered mesopore channel was developed during the synthesis without the use of

Page 31: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

26

MFI structure directing agent. The presence of CTABr as mesopore template controlled the growth of

parallel mesopores in Al-MCM-41.

Fig. 5a-f

29Si MAS NMR analysis

29Si MAS NMR analysis provided information of the silica environment in aluminosilicate at molecular level.

29Si MAS NMR spectra of S-ZSM-5 showed three deconvoluted peaks centered at -86, -97 and -110 ppm

(Fig 6a). The signal appeared at -110 and -97 ppm were corresponded to the Q4 linkage of Si(SiO)4 [68] and

Si(OSi)3OAl sites, respectively [69,70]. In T-ZSM-5, these peaks were slightly shifted to -111 and -101 ppm

presumably due to the high crystallinity of T-ZSM-5 compared to S-ZSM-5 [71]. S-ZSM-5 showed the

presence of weak resonance peak at -86 ppm, which was corresponded to the Q3 Si(OSi)3(OH) sites from the

amorphous phase of ZSM-5. The 29Si MAS NMR signal for Al-MCM-41 appeared at chemical shift of -83

and -89 ppm which were assigned to Q3 Si(OSi)3(OH) and Q4 Si(OSi)3OAl sites, respectively. The presence

of Q3 resonances implied the partial transformation of Si(SiO)3OAl to Si(SiO)3(OH). Al-MCM-41 also

showed a broad resonance peak due to the overlapping of multiple peaks at chemical shift of -97 and -108

ppm corresponded to the silicon sites Q4 Si(OSi)4 unit. The elemental composition of Si and Al determined

from 29Si MAS NMR deconvoluted data (Table 3) showed the Si/Al ratios of the catalysts were determined

at ~22 – 26.

Fig. 6a-c

Table 3

3.2 Catalytic deoxygenation of JCO

Deoxygenation of JCO was carried out at 350 ℃ for 1 h under N2 flow using S-ZSM-5, T-ZSM-5 and Al-

MCM-41 (Table 4). Al-MCM-41 showed high oil conversion at 20.04%, which was significantly higher

than T-ZSM-5 at 9.97% and S-ZSM-5 at 6.73%. Analysis of the liquid products from S-ZSM-5 revealed the

selectivity of hydrocarbon at 45.94% and oxygenates compound at 48.16%. Oxygenates were consisted of

carboxylic acid, aldehyde and ether compounds. Cycloalkane was also observed at 3.25% selectivity. The

selectivity of hydrocarbon was increased to 65.78% when using T-ZSM-5 with significant reduction of

oxygenates compound to 26.37%. When Al-MCM-41 was used as catalyst, hydrocarbons was produced at

83.68% of selectivity, and the formation oxygenates was significantly reduced to 4.77%. It is interesting to

Page 32: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

27

note that increasing the mesoporosity of ZSM-5 when using silicalite as template was detrimental towards

deoxygenation reaction evident by the low conversion of oil at 6.73%. S-ZSM-5 also exhibited low

concentration of acidity in comparison to T-ZSM-5 and Al-MCM-41. The results suggested that the

deoxygenation of JCO is an acid catalyzed reaction and therefore the number of acid sites significantly

enhanced the conversion of oil to hydrocarbon.

Table 4.

Analysis of JCO composition showed the presence of 70% of unsaturated fatty acid which was consisted of

a mixture of oleic acid (C18:1) and linoleic acid (C18:2); with another 20% was saturated fatty palmitic acid

(C16:0) [10]. Therefore, detail analysis of the hydrocarbon resulted from the reaction provided insight into

the pathway of deoxygenation reaction. Fig 7 showed the distribution of hydrocarbon based on the number

of carbon chain, in which Al-MCM-41 showed high selectivity towards n-C15+n-C17 hydrocarbons.

Deoxygenation produced oxygen-free hydrocarbons with one atom carbon shorter than the parent fatty acid.

The formation of n-C15+n-C17 hydrocarbons indicated that the JCO oil underwent deoxygenation reaction

when using Al-MCM-41. The formation of light hydrocarbons fraction (C8-C14) were observed on S-ZSM-

5 and T-ZSM-5 catalysts that reduced the selectivity of deCOx products (n-C15+n-C17 hydrocarbons). Light

hydrocarbon was produced presumably due to the secondary hydrocracking reaction of the resulting

hydrocarbons or the fatty acids in JCO.

Fig. 7

3.2 Effect of reaction time on deoxygenation of JCO over Al-MCM-41

The effect of reaction time on the conversion and the selectivity of hydrocarbon was investigated using Al-

MCM-41 catalysts. The conversion was increased from 20% to 45% in 4h (Fig 8a). The composition of

hydrocarbon was further divided into n-C11-18 which was within the diesel hydrocarbon range, and n-C8-10 for

gasoline range (Fig. 8b). n-C11-18 hydrocarbon n was dominated the product throughout the reaction at ~

90% of selectivity. The appearance of n-C8-10 fraction was corresponded to the competing hydrocracking

reaction of JCO or the resulted hydrocarbon with acid sites on the catalysts [72].

Fig. 8a-b

JCO and liquid product from deoxygenated reaction were further characterised using FTIR analysis in order

to provide insight into the mechanistic steps of the reaction (Fig. 9a). The FTIR spectra of JCO showed the

Page 33: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

28

presence of –CH stretching of the aliphatic chain absorption band at 2925 cm-1, the –C=O stretching of ester

at 1735 cm-1, the C-O-C stretching at 1161 cm-1, the –CH alkane and the =CH alkene bending vibrations at

1453 and 717 cm-1 respectively. The absorption band of –C=O (ester) and C-O-C (carbonyl) stretching were

the characteristics of oxygenates species in triglycerides that were used to evaluate the progress of

deoxygenation reaction [20]. The stretching vibration of –C=O in liquid product was slightly shifted from

1735 cm-1 (ester group) to 1700 cm-1 (carboxylic acid group) after 1h of reaction, indicated the dissociation

of ester bond to form intermediates fatty acid [73]. The observation was also supported by the elimination

of C-O-C band of the carbonyl group in JCO evident by the disappearance of the absorption band at 1161

cm-1 [74]. FTIR analysis indicated that the first step of reaction involved the transformation of triglycerides

to fatty acids that occurred on acid catalysts. As the reaction time increased to 4 h, the reduction of–C=O

peak intensity was observed which confirmed the elimination of carboxylate fragments of the free fatty acids.

It is also interesting to see that the C-O adsorption band was disappeared within the first 1h of the reaction,

meanwhile the C=O band only showed significant reduction after 4h of reaction. Considering the

deoxygenation involved removal of OCO group, we believe the differences of the intensity of the C-O and

C=O absorption bands provided crucial information on the mechanism of the reaction that will be discussed

in section 3.5.

Fig. 9a-b

3.4 Reusability and stability Al-MCM-41 catalyst

The stability Al-MCM-41 were evaluated based on the reusability of the catalyst and the formation of coke

deposits. The catalyst was filtered of 2h of reaction and reactivated by washing with hexane until the filtration

become colourless. The reactivated catalyst was subsequently used under similar reaction condition for five

times. Fig. 10 showed the conversion and the selectivity hydrocarbon that indicated the Al-MCM-41 catalyst

was active up to five reaction cycles with consistent hydrocarbon selectivity ~91%. However, hydrocarbon

selectivity reduced after 5th cycle at 80%, and therefore the catalyst was further characterized using TGA and

XRD analysis to provide information on the cause of deactivation (Fig. 11a-c). TGA-DTG-DSC analysis

showed the presence of 28% of coke on the catalysts that may have blocked the active sites of the reaction

[75]. TGA-DTG-DSC analysis also indicated the decomposition of carbon to CO2 at 300-500 ℃ in which

suggested the coke was consisted of a mixture of soft and hard carbon. Coke can be classified into

Page 34: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

29

soft/thermal coke deposit which decomposed at temperature below 400 ℃, and hard/catalytic coke that

decomposed at temperature above 400 ℃ [14,76,77]. XRD analysis of the used catalysts showed the

hexagonal porous characteristic peak at 2θ= 2.3o (100) was slightly reduced (Fig. 11c) that suggested the

coke deposited within the hexagonal pores array of Al-MCM-41 framework and reduced the diffusion of

molecules reactant [78].

Fig. 10

Fig. 11a-c

3.5 Discussion

Selective deoxygenation of JCO under inert condition eliminated the carboxylate fragments of fatty acid via

decarboxylation and/or decarbonylation pathways. JCO was consisted of 20 % of free fatty acid and 70% of

triglycerides. In the presence of acid catalysts, triglycerides was hydrolysed to form palmitic acid, oleic acid,

stearic acid and linoleic acid (C16 and C18 fatty acids) [14]. The resulting fatty acids were further

deoxygenated to form n-C15 and n-C17 hydrocarbons. The presence of strong acid sites was important due to

the deoxygenation reaction was carried out at high temperatures ~350 oC. Pyridine adsorption analysis

showed that Al-MCM-41 has high number of Lewis acid sites in comparison to the ZSM-5. S-ZSM-5 showed

approximately 43% reduction of Lewis acidity at temperature above 300 oC meanwhile Al-MCM-41 only

showed 20 % reduction of Lewis acidity. Although the mesoporosity of S-ZSM-5 was significantly improved

when using silicate as template, the deficiency of high strength Lewis acid sites significantly reduced the

conversion of oil into hydrocarbons.

Analysis of the hydrocarbons composition from Al-MCM-41 and ZSM-5 indicated that the deoxygenation

reaction of JCO was in competition with hydrocracking reaction. Deoxygenation eliminated carbonyl group

in the fatty acid in order to form hydrocarbon with one atom carbon shorter than the parent structures (C15

and C17 hydrocarbons). Both deoxygenation and hydrocracking reactions required an acid catalyst to

dissociate the C-C bond for high conversion of oil to hydrocarbon. Cracking reaction of hydrocarbon

generally required a strong acid catalyst with high concentration of Brønsted acidity [31,79], meanwhile

deoxygenation occurred predominantly on Lewis acidity [72]. The ratio between Lewis to Brønsted acidity

indicated that Al-MCM-41 have a high number of Lewis acidity than the S-ZSM-5 and T-ZSM-5. However,

the porosity of catalysts also affected the conversion towards deoxygenation reaction. High selectivity

Page 35: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

30

towards short-chain hydrocarbons fraction (C8-10) were observed when using S-ZSM-5 and T-ZSM-5. The

result indicated the reaction underwent secondary cracking pathway on S-ZSM-5 and T-ZSM-5. Catalytic

cracking into short-chain hydrocarbon can occur on the fatty acids, or the resulting hydrocarbons from

deoxygenation reaction, which consequently reduced the selectivity of hydrocarbon within the green diesel

composition (C11-18). The confined spaces of the zigzag pore structure and the narrow channel intersection

of ZSM-5 restricted the diffusion of molecular substrate, hence prolonged the interaction between acid sites

and hydrocarbon for secondary cracking reaction. Al-MCM-41 catalyzed deoxygenation reaction of JCO to

favor high production of nC15+17 hydrocarbon and simultaneously suppressed the formation of light chained

hydrocarbon from secondary hydrocracking reaction. Efficient diffusion of hydrocarbons prevented further

cracking reaction to light chained hydrocarbon. The narrow diameter of ZSM-5 pores that was generally

consisted of a zigzag and a straight channel connected via a narrow intersection restricted the diffusion of

fatty acids into the pores and therefore it can be suggested that catalytic cracking reaction may utilized acid

sites on the surface of the catalyst.

Fig. 12 illustrated the proposed mechanism of deoxygenation reaction of JCO over Al-MCM-41 catalyst.

Deoxygenation of JCO occurred via decarboxylation of fatty acid evident by the production of CO2 gas.

Analysis of the gas product from deoxygenation of JCO using GC-TCD (Fig 9b) indicated the domination

of CO2 with 100% selectivity within 1h of reaction. Increasing the reaction time significantly reduced the

selectivity of CO2 but enhanced the formation of CO suggested that fatty acids underwent decarbonylation

reaction to release CO. Traces amount of CH4 was also observed presumably due to the methanation reaction

between CO and CO2 gas under the presence of H2. Since the reaction was carried out in the absence of H2,

there is a possibility that H2 was produced from the catalytic cracking reaction.

Fig. 12

4. Conclusions

Kaolin was transformed into highly selective Al-MCM-41 catalysts for deoxygenation of Jatropha Curcas

oil into green diesel. Al-MCM-41 activity was compared with microporous ZSM-5 and hierarchical ZSM-5

in order to elucidate the effect of porosity towards the formation of green diesel hydrocarbon. High

conversion and selectivity towards deoxygenation reaction was observed on Al-MCM-41 meanwhile ZSM-

5 showed the competition between deoxygenation and catalytic hydrocracking reaction. Lewis acidity was

Page 36: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

31

responsible for high conversion of JCO. Highly ordered mesoporous Al-MCM-41 with one-dimensional

hexagonal pore arrays facilitated the diffusion of deoxygenated products that prevented the secondary

cracking reaction, consequently enhanced the n-C15+n-C17 hydrocarbon yield. Al-MCM-41 also displayed

high stability and reusability up to five cycles with consistent hydrocarbon selectivity.

Acknowledgement

The authors would like to acknowledge The Ministry of Research, Technology and Higher Educaction of

Republic Indonesia under PMDSU scholarship with contract number 1290/PKS/ITS/2020 and local ITS

grant no. 836/PKS/ITS/2020 for funding the research.

References

[1] M.F. Kamaruzaman, Y.H. Taufiq-Yap, D. Derawi, Biomass and Bioenergy 134 (2020) 105476.

[2] M. Choo, L.E. Oi, T.C. Ling, E. Ng, Y. Lin, G. Centi, J.C. Juan, J. Anal. Appl. Pyrolysis (2020)

104797.

[3] N. Asikin-Mijan, H. V. Lee, J.C. Juan, A.R. Noorsaadah, G. Abdulkareem-Alsultan, M.

Arumugam, Y.H. Taufiq-Yap, J. Anal. Appl. Pyrolysis 120 (2016) 110–120.

[4] G.A. Alsultan, N. Asikin-Mijan, H. V. Lee, A.S. Albazzaz, Y.H. Taufiq-Yap, Energy Convers.

Manag. 151 (2017) 311–323.

[5] C. Hu, X. Du, D. Li, H. Xin, W. Zhou, R. Yang, K. Zhou, Energy Technol. 7 (2019).

[6] B.P. Pattanaik, R.D. Misra, Renew. Sustain. Energy Rev. 73 (2017) 545–557.

[7] R.W. Gosselink, S.A.W. Hollak, S.W. Chang, J. Van Haveren, K.P. De Jong, J.H. Bitter, D.S. Van

Es, ChemSusChem 6 (2013) 1576–1594.

[8] I.M. Monirul, H.H. Masjuki, M.A. Kalam, N.W.M. Zulkifli, H.K. Rashedul, M.M. Rashed, H.K.

Imdadul, M.H. Mosarof, RSC Adv. 5 (2015) 86631–86655.

[9] K.A. Sorate, P. V. Bhale, Renew. Sustain. Energy Rev. 41 (2015) 777–798.

[10] N. Asikin-Mijan, H. V Lee, G. Abdulkareem-alsultan, A. Afandi, J. Clean. Prod. 167 (2017) 1048–

1059.

[11] F.C.M. Silva, M.S. Lima, C.O.C. Neto, J.L.S. Sá, L.D. Souza, Biomass Convers. Biorefinery 8

(2018) 159–167.

[12] M. Romero, A. Pizzi, G. Toscano, A.A. Casazza, G. Busca, B. Bosio, E. Arato, Fuel Process.

Page 37: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

32

Technol. 137 (2015) 31–37.

[13] A. Ramesh, P. Tamizhdurai, P. Santhana Krishnan, V. Kumar Ponnusamy, S. Sakthinathan, K.

Shanthi, Fuel 262 (2020) 116494.

[14] N. Asikin-Mijan, J.M. Ooi, G. AbdulKareem-Alsultan, H. V. Lee, M.S. Mastuli, N. Mansir, F.A.

Alharthi, A.A. Alghamdi, Y.H. Taufiq-Yap, J. Clean. Prod. 249 (2020).

[15] R. Loe, E. Santillan-Jimenez, T. Morgan, L. Sewell, Y. Ji, S. Jones, M.A. Isaacs, A.F. Lee, M.

Crocker, Appl. Catal. B Environ. 191 (2016) 147–156.

[16] E. Santillan-Jimenez, T. Morgan, J. Lacny, S. Mohapatra, M. Crocker, Fuel 103 (2013) 1010–

1017.

[17] T. Danuthai, T. Sooknoi, S. Jongpatiwut, T. Rirksomboon, S. Osuwan, D.E. Resasco, "Appl. Catal.

A, Gen. 409–410 (2011) 74–81.

[18] M. Jin, M. Choi, Mol. Catal. 474 (2019) 110419.

[19] J.M. Crawford, C.S. Smoljan, J. Lucero, M.A. Carreon, Catalysts 9 (2019).

[20] M. Safa Gamal, N. Asikin-Mijan, M. Arumugam, U. Rashid, Y.H. Taufiq-Yap, J. Anal. Appl.

Pyrolysis 144 (2019).

[21] S. Popov, S. Kumar, Energy and Fuels 29 (2015) 3377–3384.

[22] V.O.O. Gonçalves, P.M. de Souza, V.T. da Silva, F.B. Noronha, F. Richard, Appl. Catal. B

Environ. 205 (2017) 357–367.

[23] Y. Zheng, N. Zhao, J. Chen, Appl. Catal. B Environ. 250 (2019) 280–291.

[24] L.E. Oi, M.Y. Choo, H.V. Lee, Y.H. Taufiq-Yap, C.K. Cheng, J.C. Juan, Int. J. Hydrogen Energy

(2019).

[25] T. Hengsawad, T. Jindarat, D.E. Resasco, S. Jongpatiwut, Appl. Catal. A Gen. 566 (2018) 74–86.

[26] C. Miao, O. Marin-Flores, S.D. Davidson, T. Li, T. Dong, D. Gao, Y. Wang, M. Garcia-Pérez, S.

Chen, Fuel 166 (2016) 302–308.

[27] N. Asikin-Mijan, H. V. Lee, J.C. Juan, A.R. Noorsaadah, Y.H. Taufiq-Yap, RSC Adv. 7 (2017)

46445–46460.

[28] S. Zhao, Z. Zhang, K. Zhu, J. Chen, Appl. Surf. Sci. 404 (2017) 388–397.

[29] K.B. Baharudin, Y.H. Taufiq-Yap, J. Hunns, M. Isaacs, K. Wilson, D. Derawi, Microporous

Page 38: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

33

Mesoporous Mater. 276 (2019) 13–22.

[30] L. Yang, M.A. Carreon, ACS Appl. Mater. Interfaces 9 (2017) 31993–32000.

[31] A. Veses, B. Puertolas, J.M. Lopez, M.S. Callen, B. Solsona, T. García, ACS Sustain. Chem. Eng.

4 (2016) Publication Date:January 27, 2016 https://doi.org/.

[32] T. Du, H. Qu, Q. Liu, Q. Zhong, W. Ma, Chem. Eng. J. 262 (2015) 1199–1207.

[33] J. Zhang, B. Fidalgo, A. Kolios, D. Shen, S. Gu, Chem. Eng. J. 336 (2018) 211–222.

[34] F.P. Sousa, L.N. Silva, D.B. de Rezende, L.C.A. de Oliveira, V.M.D. Pasa, Fuel 223 (2018) 149–

156.

[35] J.M. Gómez, E. Díez, A. Rodríguez, M. Calvo, Microporous Mesoporous Mater. 270 (2018) 220–

226.

[36] S. Karnjanakom, T. Suriya-umporn, A. Bayu, S. Kongparakul, C. Samart, C. Fushimi, A. Abudula,

G. Guan, Energy Convers. Manag. 142 (2017) 272–285.

[37] S. Xing, P. Lv, C. Zhao, M. Li, L. Yang, Z. Wang, Y. Chen, S. Liu, Fuel Process. Technol. 179

(2018) 324–333.

[38] S. Zulkepli, J.C. Juan, H.V. Lee, N.S.A. Rahman, P.L. Show, E.P. Ng, Energy Convers. Manag.

165 (2018) 495–508.

[39] Hartati, W. Trisunaryanti, R.R. Mukti, I.A. Kartika, P.B. Dea Firda, S.D. Sumbogo, D. Prasetyoko,

H. Bahruji, J. Energy Inst. (2020).

[40] Y. Jun, S. Lee, K. Lee, M. Choi, Microporous Mesoporous Mater. 245 (2017) 16–23.

[41] A. Shahid, S. Lopez-Orozco, V.R. Marthala, M. Hartmann, W. Schwieger, Microporous

Mesoporous Mater. 237 (2017) 151–159.

[42] L. Xing, Z. Wei, Z. Wen, X. Zhu, Pet. Sci. Technol. 35 (2017) 2235–2240.

[43] R. Feng, X. Yan, X. Hu, Y. Wang, Z. Li, K. Hou, J. Lin, J. Porous Mater. 25 (2018) 1743–1756.

[44] A. Bazargan, M. Bazargan, G. McKay, Renew. Energy 77 (2015) 512–520.

[45] L. Yang, X. Qian, P. Yuan, H. Bai, T. Miki, F. Men, H. Li, T. Nagasaka, J. Clean. Prod. 212

(2019) 250–260.

[46] B. Jiang, B. Dou, K. Wang, Y. Song, H. Chen, C. Zhang, Y. Xu, M. Li, Fuel 183 (2016) 170–176.

Page 39: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

34

[47] L. Fu, C. Huo, X. He, H. Yang, RSC Adv. 5 (2015) 20414–20423.

[48] X.N. Pham, B.M. Nguyen, H.T. Thi, H. Van Doan, Adv. Powder Technol. 29 (2018) 1827–1837.

[49] H. Chen, S. Fu, L. Fu, H. Yang, D. Chen, Minerals 9 (2019) 1–11.

[50] S. Chen, D. Guan, Y. Zhang, Z. Wang, N. Jiang, Microporous Mesoporous Mater. 285 (2019)

170–177.

[51] Y. Xie, A. Tang, H. Yang, Nano 10 (2015) 1–6.

[52] I. Qoniah, D. Prasetyoko, H. Bahruji, S. Triwahyono, A.A. Jalil, Suprapto, Hartati, T.E.

Purbaningtias, Appl. Clay Sci. 118 (2015) 290–294.

[53] V.N. Iftitahiyah, D. Prasetyoko, H. Nur, H. Bahruji, Hartati, Malaysian J. Fundam. Appl. Sci. 14

(2018) 414–418.

[54] D. Hartanto, R. Kurniawati, A.B. Pambudi, W.P. Utomo, W. Loon, H. Nur, Solid State Sci. 87

(2019) 150–154.

[55] D. Veselý, A. Kalendova, P. Kalenda, Prog. Org. Coatings 68 (2010) 173–179.

[56] T. Wahyuni, D. Prasetyoko, S. Suprapto, I. Qoniah, H. Bahruji, A. Dawam, S. Triwahyono, A.A.

Jalil, Bull. Chem. React. Eng. Catal. 14 (2019) 502–512.

[57] G.A. Eimer, I. Díaz, E. Sastre, S.G. Casuscelli, M.E. Crivello, E.R. Herrero, J. Perez-Pariente,

Appl. Catal. A Gen. 343 (2008) 77–86.

[58] A. Hamid, D. Prasetyoko, S. Suprapto, Proceeding Int. Conf. Res. Implement. Educ. Math. Sci.

(2015) 17–19.

[59] N.T.T. Tran, Y. Uemura, S. Chowdhury, A. Ramli, Appl. Catal. A Gen. 512 (2016) 93–100.

[60] D. Li, H. Min, X. Jiang, X. Ran, L. Zou, J. Fan, J. Colloid Interface Sci. 404 (2013) 42–48.

[61] Y. Yue, Y. Kang, Y. Bai, L. Gu, H. Liu, J. Bao, T. Wang, P. Yuan, H. Zhu, Z. Bai, X. Bao, Appl.

Clay Sci. 158 (2018) 177–185.

[62] O.G. Somani, A.L. Choudhari, B.S. Rao, S.P. Mirajkar, Mater. Chem. Phys. 82 (2003) 538–545.

[63] E.G. Vaschetto, G.A. Pecchi, S.G. Casuscelli, G.A. Eimer, Microporous Mesoporous Mater. 200

(2014) 110–116.

[64] E.G. Vaschetto, G.A. Monti, E.R. Herrero, S.G. Casuscelli, G.A. Eimer, Appl. Catal. A Gen. 453

(2013) 391–402.

Page 40: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

35

[65] H. Li, Y. Wang, F. Meng, H. Chen, C. Sun, S. Wang, RSC Adv. 6 (2016) 99129–99138.

[66] X. Gu, T. Jiang, H. Tao, S. Zhou, X. Liu, J. Ren, Y. Wang, G. Lu, W. Schmidt, J. Mater. Chem. 21

(2011) 880–886.

[67] C. Zhang, H. Chen, X. Zhang, Q. Wang, Mater. Lett. 197 (2017) 111–114.

[68] T.C. Hoff, D.W. Gardner, R. Thilakaratne, J. Proano-Aviles, R.C. Brown, J.P. Tessonnier, Appl.

Catal. A Gen. 529 (2017) 68–78.

[69] E.C. Santos, L.S. Costa, E.S. Oliveira, R.A. Bessa, A.D.L. Freitas, C.P. Oliveira, R.F. Nascimento,

A.R. Loiola, J. Braz. Chem. Soc. 29 (2018) 2378–2386.

[70] A. V. Vutolkina, A.P. Glotov, A. V. Zanina, D.F. Makhmutov, A.L. Maximov, S. V. Egazar’yants,

E.A. Karakhanov, Catal. Today 329 (2019) 156–166.

[71] S. Mintova, V. Valtchev, T. Onfroy, C. Marichal, H. Knözinger, T. Bein, Microporous

Mesoporous Mater. 90 (2006) 237–245.

[72] H. Wang, H. Lin, Y. Zheng, S. Ng, H. Brown, Y. Xia, Catal. Today 319 (2019) 164–171.

[73] M.A. Kamboh, A.S. Chang, W.A. Wan Ibrahim, M.M. Sanagi, S.A. Mahesar, Sirajuddin, S.T.

Hussain Sherazi, RSC Adv. 5 (2015) 50591–50596.

[74] N. Aliana-Nasharuddin, N. Asikin-Mijan, G. Abdulkareem-Alsultan, M.I. Saiman, F.A. Alharthi,

A.A. Alghamdi, Y.H. Taufiq-Yap, RSC Adv. 10 (2019) 626–642.

[75] M.S. Zanuttini, M.A. Peralta, C.A. Querini, Ind. Eng. Chem. Res. 54 (2015) 4929–4939.

[76] P. Reangchim, T. Saelee, V. Itthibenchapong, A. Junkaew, N. Chanlek, A. Eiad-Ua, N. Kungwan,

K. Faungnawakij, Catal. Sci. Technol. 9 (2019) 3361–3372.

[77] A. Eschenbacher, F. Goodarzi, A. Saraeian, S. Kegnæs, B.H. Shanks, A.D. Jensen, J. Anal. Appl.

Pyrolysis 145 (2020) 104712.

[78] X.Y. Ooi, L.E. Oi, M.Y. Choo, H.C. Ong, H.V. Lee, P.L. Show, Y.C. Lin, J.C. Juan, Fuel Process.

Technol. 194 (2019) 106120.

[79] D. Kubic, I. Kubic, (2010) 293–308.

Page 41: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

36

Table 1. Number of Brønsted and Lewis acid sites of the catalysts from pyridine adsorption

Sample

Number of acid site (mmol/g)

B/L L/B Brønsted Lewis B+L

S-ZSM-5 (150 0C) 0.072 0.158 0.230 0.455 2.194

S-ZSM-5 (300 0C) 0.038 0.089 0.127 0.426 2.342

T-ZSM-5 (150 0C) 0.108 0.284 0.392 0.380 2.629

T-ZSM-5 (300 0C) 0.073 0.198 0.271 0.369 2.712

Al-MCM-41 (150 0C) 0.054 0.296 0.350 0.182 5.481

Al-MCM-41 (300 0C) 0.014 0.234 0.248 0.059 16.710

Table 2. Physicochemical properties of all samples

No Template

SBET

(m2/g)a

Surface

area

(m2/g)

Pore volume (cc/g)

Dmeso (nm) d Product

e

Smeso

Smic

c Vmesob Vmic

c Vtotal

1 Silicalite+

CTABr 439 149 289 0.38 0.14 0.52 3.6; 5.6 ZSM-5

2 TPAOH

+CTABr 220 118 102 0.34 0.03 0.37 5.1 ZSM-5

3 CTABr 739 260 478 0.56 0.29 0.85 3.8

Al-

MCM-

41

a SBET (Total surface area) by BET method.

b Vmeso by DFT method

c Smicro and Vmicro (micropore volume) by t-plot method

d Dmeso by DFT method

Page 42: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

37

e Product by XRD technique

Table 3. Chemical shifts and Si/Al ratio from 29Si NMR

Samples

Chemical shift (ppm) and area (%) deconvoluted peak

Si/Al Q4 (4Si, 0Al) Q4 (4Si, 0Al) Q4 (3Si, 1Al) Q3 (3Si, 1OH)

S-ZSM-5 -110 (84.87)

- -97 (13.09) -86 (2.04) 26.44

T-ZSM-5

-111 (83.65)

-

-101 (16.35) - 24.46

Al-MCM-41 -108 (42.86) -97 (28.95) -89 (14.92) -83 (13.27) 22.61

Table 4. Conversion and selectivity of liquid products from catalytic deoxygenation of JCO

Catalysts Xoils, %

Selectivity

Hydrocarbon, %

Selectivity

Cycloalkane,

%

Oxygenates compound, %

S-ZSM-5 6.73 45.94 3.25 48.19

T-ZSM-5 9.97 65.78 6.35 26.37

Al-MCM-41 20.04 83.68 11.52 4.77

Page 43: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

38

Fig 1. (a) Wide angle and (b) low angle XRD analysis of kaolin, Al-MCM-41, ZSM-5

synthesized using TPAOH (T-ZSM-5) and hierarchical ZSM-5 synthesized using silicate (S-

ZSM-5).

Fig 2. FTIR framework (a) and pyridine adsorption (b) spectra of kaolin, Al-MCM-41, ZSM-5

synthesized using TPAOH (T-ZSM-5) and hierarchical ZSM-5 synthesized using silicate (S-

ZSM-5).

Page 44: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

39

Fig 3a. N2 adsorption-desorption isotherm; b. pore size distribution by DFT method of Al-

MCM-41, ZSM-5 synthesized using TPAOH (T-ZSM-5) and hierarchical ZSM-5 synthesized

using silicate (S-ZSM-5).

Page 45: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

40

Fig 4. SEM images of the S-ZSM-5 (a), T-ZSM-5 (b) and Al-MCM-41 (c)

Page 46: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

41

Fig 5. TEM images of the S-ZSM-5 (a,b), T-ZSM-5 (c,d) and Al-MCM-41 (e,f)

Page 47: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

42

4. Fig 6. 29Si NMR deconvoluted spectra of S-ZSM-5 (a), T-ZSM-5 (b) and Al-MCM-41 (c)

Page 48: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

43

Fig 7. Hydrocarbon distribution from catalytic deoxygenation reaction of JCO on Al-MCM-41,

ZSM-5 synthesized using TPAOH (T-ZSM-5) and hierarchical ZSM-5 synthesized using

silicate (S-ZSM-5).

Fig 8a. Conversion of JCO and b. Selectivity of hydrocarbon on Al-MCM-41 catalyst as a

function of time. Hydrocarbon composition was divided into gasoline fractions (C8-10) and

diesel fraction (C11-18)

Page 49: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

44

Fig 9a. FTIR spectra of JCO and liquid deoxygenated products over 4h of reaction, and b. Gas

products analyzed from JCO reaction.

Fig 10. Reusability investigation of JCO deoxygenation reaction over Al-MCM-41 using 3

wt.% catalyst loading at 350 ℃ within 2 h under inert atmosphere. (a) Conversion of JCO, and

(b) selectivity of hydrocarbon from liquid product

Page 50: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

45

Fig 11. TG-DTG-DSC profile of fresh (a) and spent catalyst (b) and low angle XRD pattern of

fresh and spent catalyst (c)

Fig 12. Reaction pathway of JCO deoxygenation

Page 51: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

46

LAMPIRAN 1 Tabel Daftar Luaran

Program : H-IMPACT - PENELITIAN HIGH IMPACT

Nama Ketua Tim : Prof. Dr. Didik Prasetyoko

Judul : Bio-Jetfuels Range Alkanes Production from Kemiri Sunan

Oil (Reutalis Trisperma Oil) via Hydro/-Deoxygenation

Reaction by Metal/Mesoporous Aluminosilicates from local

sources

1.Artikel Jurnal

No Judul Artikel Nama Jurnal Status Kemajuan*)

1. Solvent-free selective

deoxygenation of Jatropha Curcas

oil to green diesel on Al-MCM-41

from kaolin with suppressed

hydrocracking activity

Journal of The Energy

Institute

Draft

*) Status kemajuan: Persiapan, submitted, under review, accepted, published

2. Artikel Konferensi

No Judul Artikel Nama Konferensi (Nama

Penyelenggara, Tempat,

Tanggal)

Status Kemajuan*)

1 Biojetfuel Production From

Reutealis Trisperm Oil Over

Indonesian Red Mud Based

Catalyst

ICCME 2020, Undip

Semarang, 6-7 Oktober

2020

Terdaftar

*) Status kemajuan: Persiapan, submitted, under review, accepted, presented

3. Paten

No Judul Usulan Paten Status Kemajuan

*) Status kemajuan: Persiapan, submitted, under review

4. Buku

No Judul Buku (Rencana) Penerbit Status Kemajuan*)

*) Status kemajuan: Persiapan, under review, published

5. Hasil Lain

No Nama Output Detail Output Status Kemajuan*)

Page 52: LAPORAN KEMAJUAN PENELITIAN HI-IMPACT DANA ITS …

47

*) Status kemajuan: cantumkan status kemajuan sesuai kondisi saat ini

6. Disertasi/Tesis/Tugas Akhir/PKM yang dihasilkan

No Nama Mahasiswa NRP Judul Status*)

*) Status kemajuan: cantumkan lulus dan tahun kelulusan atau in progress