36
LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA ITS 2020 Pengaruh Land Subsidence di Surabaya terhadap Sebaran Sedimen di Perairan Sekitarnya Tim Peneliti : Ira Mutiara Anjasmara (Teknik Geomatika/FTSPK) Danar Guruh Pratomo (Teknik Geomatika/FTSPK) Khomsin (Teknik Geomatika/FTSPK) Juan Pandu Gya Nur Rochman (Teknik Geofisika/FTSPK) DIREKTORAT RISET DAN PENGABDIAN KEPADA MASYARAKAT INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2020 Sesuai Surat Perjanjian Pelaksanaan Penelitian No: 817/PKS/ITS/2020

LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

i

LAPORAN KEMAJUAN

PENELITIAN UNGGULAN ITS

DANA ITS 2020

Pengaruh Land Subsidence di Surabaya terhadap Sebaran Sedimen di Perairan Sekitarnya

Tim Peneliti :

Ira Mutiara Anjasmara (Teknik Geomatika/FTSPK) Danar Guruh Pratomo (Teknik Geomatika/FTSPK)

Khomsin (Teknik Geomatika/FTSPK) Juan Pandu Gya Nur Rochman (Teknik Geofisika/FTSPK)

DIREKTORAT RISET DAN PENGABDIAN KEPADA MASYARAKAT

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

SURABAYA

2020

Sesuai Surat Perjanjian Pelaksanaan Penelitian No: 817/PKS/ITS/2020

Page 2: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

i

Daftar Isi

Daftar Isi ........................................................................................................................................................... i

Daftar Tabel ..................................................................................................................................................... ii

Daftar Gambar ................................................................................................................................................ iii

Daftar Lampiran ............................................................................................................................................. iv

BAB I RINGKASAN ...................................................................................................................................... 1

BAB II HASIL PENELITIAN ........................................................................................................................ 4

BAB III STATUS LUARAN ........................................................................................................................ 15

BAB IV PERAN MITRA (UntukPenelitian Kerjasama Antar Perguruan Tinggi) ....................................... 25

BAB V KENDALA PELAKSANAAN PENELITIAN ................................................................................ 26

BAB VI RENCANA TAHAPAN SELANJUTNYA .................................................................................... 27

BAB VII DAFTAR PUSTAKA .................................................................................................................... 28

BAB VIII LAMPIRAN ................................................................................................................................. 29

LAMPIRAN 1 Tabel Daftar Luaran .............................................................................................................. 30

Page 3: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

ii

Daftar Tabel Tabel I. 1 Target Luaran Penelitian Tahun ke-1 .......................................................................................... 3 Tabel II. 1 Waktu Pelaksanaan Pengukuran ................................................................................................. 4 Tabel II. 2 Ketersediaan Data pada Tiap Titik .............................................................................................. 5 Tabel II. 3 Daftar Set Data Citra Sentinel 1-A ............................................................................................. 5 Tabel II. 4 Nilai Kecepatan Pergeseran Titik selama Tahun 2017-2020 (mm/tahun) .................................. 8 Tabel II. 5 Nilai Kecepatan Horizontal (mm//tahun) .................................................................................... 8 Tabel II. 6 Perbandingan Nilai LOS displacement SAR dengan LOS displacement GPS ......................... 12 Tabel II. 7 Data Angin di Sekitar Teluk Lamong ....................................................................................... 14 Tabel II. 8 Debit Rata-rata Sungai di Sekitar Perairan Teluk Lamong (Perum Jasa Tirta I Surabaya,

Hutanti 2018) ............................................................................................................................ 15 Tabel II. 9 Data Pasang Surut BIG Stasiun Surabaya ................................................................................. 15 Tabel II. 10 Nilai Konstituen Pasang Surut .................................................................................................. 16 Tabel II. 11 Referensi Vertikal ..................................................................................................................... 17 Tabel II. 12 Data Pasang Surut Hasil Pemodelan ......................................................................................... 17

Page 4: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

iii

Daftar Gambar Gambar II. 1 Persebaran Titik Pengamatan .................................................................................................. 4 Gambar II. 2 Plot Kecepatan Pergeseran Horizontal .................................................................................... 9 Gambar II. 3 Plot Kecepatan Pergeseran Vertikal ...................................................................................... 10 Gambar II. 4 Mean LOS Velocity .............................................................................................................. 11 Gambar II. 5 Sebaran Stasiun GPS untuk Pengamatan Deformasi Surabaya ............................................ 12 Gambar II. 6 Residual Plot antara hasil LOS GPS dengan LOS PS-INSAR ............................................. 13 Gambar II. 7 Bidang Model (Mesh) ........................................................................................................... 14 Gambar II. 8 Diagram Mawar Kecepatan Angin ........................................................................................ 15 Gambar II. 9 Model Arus Pasang Purnama ................................................................................................ 18 Gambar II. 10 Model Arus Surut Purnama ................................................................................................... 18 Gambar II. 11 Model Arus Pasang Perbani .................................................................................................. 19 Gambar II. 12 Model Arus Surut Perbani ..................................................................................................... 20 Gambar II. 13 Model Sediment Pasang Purnama ......................................................................................... 20 Gambar II. 14 Model Sediment Surut Purnama ........................................................................................... 21 Gambar II. 15 Model Sediment Pasang Perbani ........................................................................................... 22 Gambar II. 16 Model Sediment Surut Perbani ............................................................................................. 22

Page 5: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

iv

Daftar Lampiran

Page 6: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

1

BAB I RINGKASAN 1.1 Latar Belakang

Kota Surabaya adalah ibu kota Provinsi Jawa Timur, Indonesia. Kota Surabaya juga merupakan pusat bisnis, perdagangan, industri, dan pendidikan di Jawa Timur. Ditunjukkan dengan adanya peningkatan pembangunan dan kegiatan industri dan fasilitas umum perkotaan seperti perkantoran, perdagangan, jasa, pendidikan, kesehatan serta sarana transportasi [1]. Secara topografi sebagian besar wilayahnya merupakan dataran rendah dengan ketinggian antara 3-8 meter (m) di atas permukaan laut, sedangkan di wilayah Surabaya Barat dan Surabaya Selatan terdapat 2 bukit landai yaitu di daerah Lidah dan Gayungan yang ketinggiannya antara 25-50 m di atas permukaan laut. Berdasarkan kondisi geologinya, kota Surabaya termasuk daerah dataran rendah yang memiliki jenis tanah relatif bergerak berupa tanah alluvial dan batuan sedimen. Tanah jenis alluvial akan mudah mengalami pergeseran posisi.

Fenomena land subsidence di kota Surabaya dipengaruhi oleh beberapa faktor yang terkait. Adanya proses dinamika bumi dan kondisi geologi kota Surabaya turut memicu terhadap laju kecepatan land subsidence. Hal tersebut mengakibatkan Surabaya menjadi salah satu kota besar di Indonesia yang mengalami fenomena land subsidence. Terjadinya fenomena land subsidence di kota Surabaya telah berdampak negatif terhadap perkembangan aktivitas penduduk setempat dan lingkungannya. Adanya fenomena land subsidence di Surabaya akan berpengaruh terhadap perencanaan pembangunan dan pengembangan kota Surabaya.

Selain berdampak terhadap keberlanjutan rencana pembangunan dan pengembangan kota Surabaya, fenomena land subsidence juga mengakibatkan bencana banjir bandang ketika musim hujan tiba serta meningkatnya daerah intrusi air laut kota Surabaya. Hal ini dikarenakan besar nilai land subsidence yang selalu mengalami kenaikan setiap tahunnya. Beberapa penelitian telah dilakukan untuk mengamati fenomena deformasi permukaan dan land subsidence di Surabaya [2];[3];[4];[5];[6] dan menunjukan terjadinya penurunan tanah yang cukup signifikan terutama di wilayah pesisir Surabaya.

Karena posisinya yang berada di wilayah pesisir, Surabaya juga mengalami kerentanan yang dipengaruhi oleh kenaikan permukaan laut, penurunan tanah, gelombang badai, transport sedimen, kebijakan sosial ekonomi dan manajemen pesisir. Dalam penelitian ini akan diteliti bagaimana pengaruh penurunan tanah yang terjadi di Surabaya terhadap pola transport sedimen yang terjadi di perairan sekitarnya.

1.2 Tujuan Penelitian Tujuan khusus dari penelitian ini adalah: a. Mengetahui besar fenomena land subsidence yang terjadi di Surabaya sejak tahun 2015-

2020. b. Mengetahui pengaruh fenomena land subsidence yang terjadi di Surabaya dengan pola

sebaran sedimen di perairan sekitarnya c. Mengetahui hubungan antara perubahan muka air tanah dan kondisi geologi dengan

fenomena land subsidence yang terjadi di Surabaya

Page 7: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

2

1.3 Tahapan Metode Penelitian Secara umum penelitian ini akan melalui tahap persiapan, tahap pelaksanaan dan tahap akhir.

Pada tahap persiapan dilakukan identifikasi permasalahan, antara lain dengan mencari data sebaran titik-titik pengamatan yang dapat digunakan untuk land subsidence. Dalam tahap persiapan juga dilakukan studi literatur dan pengecekan ketersediaan data.

Dalam tahap pelaksanaan dilakukan pengumpulan data (survei GNSS dan survei untuk transpor sedimen), pengolahan data, dan analisa terhadap hasil pengolahan data tersebut. Di tahap pelaksanaan dilakukan penyusunan laporan kemajuan untuk mendokumentasikan proses dan tahapan penelitian yang dilakukan. Di tahap akhir akan dilakukan penyusunan laporan akhir dan pembuatan publikasi dari hasil penelitian.

Gambar I. 1 Diagram Alir Penelitian

Page 8: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

3

1.4 Luaran Penelitian Target luaran dari penelitian ini adalah artikel jurnal internasional terindeks scopus Q2. Target luaran

lainnya adalah paten sederhana dan publikasi pada international conference yang bersifat opsional. Selain itu, dari penelitian ini akan dihasilkan juga penelitian-penelitian tugas akhir/tesis yang terkait dengan land subsidence dan transport sedimen.

Tabel I. 1 Target Luaran Penelitian Tahun ke-1 Luaran Tahun Status

Jurnal Internasional Q2 2020 Submitted International Conference 2020 Presented

Paten 2020 Persiapan

Page 9: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

4

Ringkasan penelitian berisi latar belakang penelitian,tujuan dan tahapan metode penelitian, luaran yang ditargetkan, kata kunci

BAB II HASIL PENELITIAN 2.1 Kemajuan Pelaksanaan Penelitian

Sampai laporan ini dibuat, telah dilakukan pengolahan data GPS tahun 2017-2020 dengan GAMIT/GLOBK, pengolahan citra SAR dari tahun 2017 sampai 2019 menggunakan metode PS-InSAR, dan pengolahan data hidro-oseanografi. Selanjutnya, hasil dari pengolahan data tersebut dilakukan analisis terhadap masing-masing bidang, baik mengenai analisis land subsidence ataupun analisis transport sedimen.

2.2 Data yang Diperoleh Data yang diperlukan dalam penelitian ini meliputi data untuk analisa land subsidence, data untuk

analisa transport sedimen, dan data untuk analisa perubahan air tanah dan kondisi geologi. Data-data tersebut dapat berupa data primer maupun data sekunder. Berikut rincian data yang telah diperoleh pada penelitian ini: 2.1.1 Data untuk Land Subsidence a. Data GPS pengamatan deformasi Surabaya

Data GPS yang diperoleh berasal dari hasil pengukuran langsung secara periodik selama 6 kala. Tabel II.1 berikut merupakan waktu pelaksanaan pengukuran dan persebaran titik pengamatan yang digunakan digambarkan pada Gambar II.1.

Tabel II. 1 Waktu Pelaksanaan Pengukuran KALA Pelaksanaan DOY

1 10–13 Maret 2017 069 – 072 2 11–15 September 2017 254 – 258 3 11–15 Mei 2018 131 – 135 4 26–29 Oktober 2018 299 – 302 5 5–8 Agustus 2019 217 – 220 6 8–12, 16 Februari 2020 039 – 043, 047

Gambar II. 1 Persebaran Titik Pengamatan

Titik pengamatan yang digunakan pada setiap kala berbeda-beda, sehingga pada setiap titik memiliki ketersediaan data yang berbeda pula. Tabel II.2 berikut menyajikan ketersedian data pada setiap titik.

Page 10: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

5

Tabel II. 2 Ketersediaan Data pada Tiap Titik NAMA TITIK

KALA LOKASI 1 2 3 4 5 6 (Kecamatan)

BM02 - √ √ √ √ √ Benowo BM08 √ √ √ √ √ √ Sukomanunggal BM15 - - √ √ √ √ Kenjeran BM16 √ √ √ √ √ √ Gubeng BM19 √ - - - - - Rungkut BM23 √ √ √ √ √ √ Benowo BM24 √ √ √ √ √ √ Lakarsantri BM29 √ √ √ √ √ √ Lakarsantri BM33 √ √ √ √ √ √ Lakarsantri BSBY √ √ √ √ √ √ Pabean Cantikan ITS1 √ √ √ √ √ √ Sukolilo ITSN - - √ √ √ √ Sukolilo KJRN √ √ √ √ √ √ Kenjeran RNKT √ √ √ √ √ √ Tenggilis Mejoyo SB15 √ √ √ √ √ √ Asemrowo SB18 - √ - - - - Benowo SBY3 √ √ √ √ √ √ Gunung Anyar SBY5 - √ - - - - Sukolilo SBY7 √ √ √ √ √ √ Dukuh Pakis TURI √ - √ √ √ √ Bubutan

WARU √ √ √ √ √ √ Gayungan WONO √ √ √ √ √ √ Wonokromo PKWN √ √ - - - - Sukolilo BM34 - - - - - √ Rungkut BM35 - - - - - √ Tandes BM36 - - - - - √ Pakal BM37 - - - - - √ Menganti, Gresik SBY1 - - - - - √ Karang Pilang SGKN - - - - - √ Dukuh Pakis

b. Data SAR

Data SAR yang digunakan dalam penelitian ini adalah Sentinel-1A arah Ascending dengan periode pengamatan antara Juni 2017 sampai Desember 2019. Citra Sentinel 1-A yang digunakan dapat dilihat pada Tabel II.3.

Tabel II. 3 Daftar Set Data Citra Sentinel 1-A No ID File Citra Tanggal Level Arah

1 S1A_IW_SLC__1SDV_20170619T104946_20170619T105014_017101_01

C81C_F3F2 19 Juni 2017 1.0 (Single Look

Complex) Ascending

2 S1A_IW_SLC__1SDV_20170725T104948_20170725T105016_017626_01

D806_F799 25 Juli 2017 1.0 (Single Look

Complex) Ascending

3 S1A_IW_SLC__1SDV_20170818T104949_20170818T105017_017976_01

E2A8_D480 18 Agustus 2017 1.0 (Single Look

Complex) Ascending

4 S1A_IW_SLC__1SDV_20170911T104950_20170911T105018_018326_01

ED66_E1CD

11 September 2017

1.0 (Single Look Complex) Ascending

5 S1A_IW_SLC__1SDV_20171029T104951_20171029T105019_019026_02

02C5_B8E8 29 Oktober 2017 1.0 (Single Look

Complex) Ascending

Page 11: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

6

No ID File Citra Tanggal Level Arah

6 S1A_IW_SLC__1SDV_20171122T104951_20171122T105019_019376_02

0DB3_ED28

22 November 2017

1.0 (Single Look Complex) Ascending

7 S1A_IW_SLC__1SDV_20171216T104950_20171216T105018_019726_02

189B_3505

16 Desember 2017

1.0 (Single Look Complex) Ascending

8 S1A_IW_SLC__1SDV_20171228T104949_20171228T105017_019901_02

1E06_5DF5

28 Desember 2017

1.0 (Single Look Complex) Ascending

9 S1A_IW_SLC__1SDV_20180109T104949_20180109T105017_020076_02

238D_B266 1 Januari 2018 1.0 (Single Look

Complex) Ascending

10 S1A_IW_SLC__1SDV_20180226T104948_20180226T105016_020776_02

39E1_B58C 26 Februari 2018 1.0 (Single Look

Complex) Ascending

11 S1A_IW_SLC__1SDV_20180322T104948_20180322T105016_021126_02

44EB_53F9 22 Maret 2018 1.0 (Single Look

Complex) Ascending

12 S1A_IW_SLC__1SDV_20180415T104949_20180415T105017_021476_02

4FEA_F75B 15 April 2018 1.0 (Single Look

Complex) Ascending

13 S1A_IW_SLC__1SDV_20180509T104950_20180509T105018_021826_02

5AF0_8A8C 9 Mei 2018 1.0 (Single Look

Complex) Ascending

14 S1A_IW_SLC__1SDV_20180626T104953_20180626T105021_022526_02

70AC_FB74 26 Juni 2018 1.0 (Single Look

Complex) Ascending

15 S1A_IW_SLC__1SDV_20180720T104954_20180720T105022_022876_02

7B23_B39B 20 Juli 2018 1.0 (Single Look

Complex) Ascending

16 S1A_IW_SLC__1SDV_20180801T104955_20180801T105023_023051_02

80AD_BD97 1 Agustus 2018 1.0 (Single Look

Complex) Ascending

17 S1A_IW_SLC__1SDV_20180825T104956_20180825T105024_023401_02

8BE5_6C8D 25 Agustus 2018 1.0 (Single Look

Complex) Ascending

18 S1A_IW_SLC__1SDV_20180906T104957_20180906T105025_023576_02

9179_3489

6 September 2018

1.0 (Single Look Complex) Ascending

19 S1A_IW_SLC__1SDV_20180930T104957_20180930T105025_023926_02

9CC4_86AF

30 September 2018

1.0 (Single Look Complex) Ascending

20 S1A_IW_SLC__1SDV_20181024T104958_20181024T105026_024276_02

A82F_8D1E 24 Oktober 2018 1.0 (Single Look

Complex) Ascending

21 S1A_IW_SLC__1SDV_20181129T104957_20181129T105025_024801_02

BAE6_683E

29 November 2018

1.0 (Single Look Complex) Ascending

22 S1A_IW_SLC__1SDV_20190128T104955_20190128T105023_025676_02

DA2F_5419 28 Januari 2019 1.0 (Single Look

Complex) Ascending

23 S1A_IW_SLC__1SDV_20190221T104954_20190221T105022_026026_02

E6AD_0BD6 21 Februari 2019 1.0 (Single Look

Complex) Ascending

24 S1A_IW_SLC__1SDV_20190317T104954_20190317T105022_026376_02

F36A_CEF7 17 Maret 2019 1.0 (Single Look

Complex) Ascending

Page 12: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

7

No ID File Citra Tanggal Level Arah

25 S1A_IW_SLC__1SDV_20190422T104956_20190422T105023_026901_03

0694_C823 22 April 2019 1.0 (Single Look

Complex) Ascending

26 S1A_IW_SLC__1SDV_20190528T104957_20190528T105025_027426_03

1810_B45C 28 Mei 2019 1.0 (Single Look

Complex) Ascending

27 S1A_IW_SLC__1SDV_20190621T104958_20190621T105026_027776_03

22AC_D481 21 Juni 2019 1.0 (Single Look

Complex) Ascending

28 S1A_IW_SLC__1SDV_20190715T105000_20190715T105028_028126_03

2D3E_BB0D 15 Juli 2019 1.0 (Single Look

Complex) Ascending

29 S1A_IW_SLC__1SDV_20190820T105002_20190820T105030_028651_03

3E04_352B 20 Agustus 2019 1.0 (Single Look

Complex) Ascending

30 S1A_IW_SLC__1SDV_20190925T105004_20190925T105032_029176_03

5024_1CB5

25 September 2019

1.0 (Single Look Complex) Ascending

31 S1A_IW_SLC__1SDV_20191019T105004_20191019T105032_029526_03

5C3A_5DF5 19 Oktober 2019 1.0 (Single Look

Complex) Ascending

32 S1A_IW_SLC__1SDV_20191124T105004_20191124T105032_030051_03

6E81_B39D

24 November 2019

1.0 (Single Look Complex) Ascending

33 S1A_IW_SLC__1SDV_20191218T105003_20191218T105031_030401_03

7A9E_87B5

18 Desember 2019

1.0 (Single Look Complex) Ascending

2.1.2 Data untuk Transport Sedimen

Data untuk transport sedimen yang diperoleh untuk penelitian ini terbagi kedalam data hidro-oseanografi dan data spasial sebagai berikut: a. Data hidro-oseanografi yang digunakan dalam penelitian ini:

- Data batimetri perairan Teluk Lamong, Surabaya, Jawa Timur, Indonesia tahun 2018. - Data pasang surut air laut Surabaya bulan November dan Desember tahun 2018 yang didapatkan dari

Badan Informasi Geospasial (BIG). - Data kecepatan dan arah angin perairan Alur Pelayaran Barat Surabaya bulan November dan

Desember tahun 2018 yang didapat dari website ECMWF - Data river discharge Sungai Kalimas dan sungai-sungai yang bermuara ke Selat Madura/Alur

Pelayaran Barat Surabaya dari penelitian sebelumnya b. Data spasial yang digunakan dalam penelitian ini:

- Peta Laut Pelabuhan Surabaya dan Gresik dengan skala 1:12500 tahun 2016 - Peta RBI wilayah Surabaya dengan skala 1:25000 tahun 1999

2.3 Hasil dan Analisis 2.3.1 Land Subsidence dari Data GPS

Pengolahan data GPS menghasilkan solusi koordinat beserta simpangan bakunya. Selanjutnya, dapat dilakukan perhitungan kecepatan pergeseran titik. Perhitungan ini dilakukan dengan mengikatkan posisi titik pengamatan pada kerangka stabilisasi global terlebih dahulu. Hasil yang diperoleh adalah nilai kecepatan pergeseran pada sistem koordinat kartesian dan toposentrik. Kecepatan pergeseran yang didapatkan dinyatakan dengan satuan mm/tahun. Tabel II.4 berikut adalah tabulasi hasil perhitungan kecepatan pergeseran titik pengamatan sistem koordinat toposentrik.

Page 13: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

8

Tabel II. 4 Nilai Kecepatan Pergeseran Titik selama Tahun 2017-2020 (mm/tahun)

No Titik VN s𝑣! VE s𝑣" VU s𝑣#

1 BM02 -11.91 2.95 24.42 3.72 10.73 15.11

2 BM08 -22.91 2.42 28.23 2.66 40.28 12.54

3 BM15 -2.62 16.82 -0.51 81.8 -71.49 86.32

4 BM16 -17.81 4.7 26.06 5.79 7.68 29

5 BM23 -20.57 24.38 122.42 121.64 34.88 103.24

6 BM24 -8.21 13.13 71.27 52.4 15.46 49.9

7 BM29 15.22 17.47 20.95 60.61 -7.83 80.41

8 BM33 35.29 1.73 45.38 2.28 23.13 8.73

9 BSBY -4.73 5.65 31.72 11.24 -13.58 31.47

10 ITS1 -9.67 1.49 25.98 1.98 69.92 8.51

11 ITSN -9.67 1.49 25.98 1.98 69.92 8.51

12 KJRN -27.39 7.23 27.55 17.27 -7.99 27.75

13 RNKT -19.1 1.57 15.71 1.9 10.26 8.27

14 SB15 -11.96 2.68 21.67 3.19 11.41 13.62

15 SBY3 -7.23 1.85 28.21 2.64 -27.78 9.57

16 SBY7 -18.8 2.09 33.16 2.49 -2.09 11.92

17 WARU -11.57 4.26 33.73 6.79 -10.99 27.12

18 WONO -21.54 2.21 22.58 2.35 -8.48 11.53

Tabel II.4 menunjukkan nilai kecepatan pergeseran titik pengamatan pada tahun 2017 sampai dengan

2020. VN menunjukkan kecepatan pergeseran pada komponen North, VE menunjukkan nilai kecepatan pada komponen East, dan VU menunjukkan kecepatan pada komponen Up. Tanda negatif pada tabel diatas menunjukkan arah pergeseran pada sumbu komponen. Nilai kecepatan pada sistem koordinat toposentrik yang dihasilkan oleh pengolahan GLOBK selanjutnya digunakan untuk menghitung besar dan arah kecepatan horizontal dan vertikal. Besar dan arah kecepatan horizontal didapatkan dengan menghitung resultan dari komponen Easting dan Northing. Adapun nilai resultan yang didapatkan disajikan pada Tabel II.5 berikut.

Tabel II. 5 Nilai Kecepatan Horizontal (mm//tahun) TITIK Vr s𝑣! s𝑣" q

BM02 27.17 2.95 3.72 115.99

BM08 36.36 2.42 2.66 129.06 BM15 2.67 16.82 81.8 191.02 BM16 31.56 4.7 5.79 124.35 BM23 124.14 24.38 121.64 99.54 BM24 71.74 13.13 52.4 96.58 BM29 25.90 17.47 60.61 35.99 BM33 57.49 1.73 2.28 37.87

Page 14: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

9

TITIK Vr s𝑣! s𝑣" q

BSBY 32.07 5.65 11.24 98.48 ITS1 27.72 1.49 1.98 110.42 ITSN 27.72 1.49 1.98 110.42 KJRN 38.85 7.23 17.27 134.83 RNKT 24.73 1.57 1.9 140.56 SB15 24.75 2.68 3.19 118.90 SBY3 29.12 1.85 2.64 104.38 SBY7 38.12 2.09 2.49 119.55

WARU 35.66 4.26 6.79 108.93 WONO 31.21 2.21 2.35 133.65

Adapun hasil plotting disajikan pada Gambar II.2 berikut:

Gambar II. 2 Plot Kecepatan Pergeseran Horizontal

Selain kecepatan horizontal, dihasilkan juga kecepatan vertikal (Vu) yang nilainya telah disajikan pada Tabel II.4. Pada tabel tersebut tanda negatif menunjukkan pergerakan turun atau subsidence. Sedangkan tanda positif menunjukkan pergerakan naik atau uplift. Nilai kecepatan vertikal tersebut selanjutnya dilakukan plotting pada GMT untuk menampilkan visualisasi dari nilai yang didapatkan.

Page 15: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

10

Gambar II. 3 Plot Kecepatan Pergeseran Vertikal

Kecepatan pergeseran horizontal yang dihasilkan berkisar antara 2,67 – 71,74 mm/tahun. Namun,

terdapat satu BM yang memiliki kecepatan pergeseran horizontal hingga mencapai 124 mm/tahun, yaitu BM23. Nilai kecepatan pada BM ini diiringi juga oleh besarnya simpangan baku pada komponen easting. Dari hasil plotting menunjukkan bahwa pergerakan horizontal titik-titik pengamatan cenderung mengarah ke tenggara. Pergerakan ini sejalan dengan pergerakan Sunda Shelf Block dan Lempeng Eurasia [7]. Namun, terdapat dua BM yang mengalami arah pergeseran yang berbeda yaitu BM33 dan BM 29. Kedua BM ini mengalami pergerakan yang cenderung mengarah ke timur laut. Kedua titik ini berlokasi di sekitar lintasan sesar, yaitu segmen Waru. Anomali tersebut mengindikasikan adanya pengaruh sesar yang melintas tidak jauh dari lokasi titik pengamatan tersebut, yaitu sejauh 0,34 km dari BM33 dan 0,68 km dari BM29.

Pada pergeseran vertikal, hasil perhitungan menunjukkan bahwa terdapat 10 titik yang mengalami pergerakan positif atau uplift yang ditunjukkan oleh panah berwarna putih. Titik yang mengalami kenaikan ini berada pada wilayah Surabaya Barat dan wilayah Surabaya Timur tepatnya berada di lingkungan Institut Teknologi Sepuluh Nopember. Nilai kenaikan maksimum berada di titik ITSN dan ITS1 yang mencapai 69,92 mm/tahun. Sedangkan, nilai kenaikan minimum terjadi pada BM16 sebesar 7,68 mm/tahun. Selanjutnya, terdapat 8 titik yang mengalami pergerakan negatif atau subsidence yang ditunjukkan oleh panah berwarna merah. Titik yang mengalami penurunan ini berada di wilayah Surabaya utara menuju wilayah Surabaya Pusat. Selain itu, titik di wilayah selatan juga cenderung mengalami penurunan. Nilai penurunan miminum terjadi pada titik SBY7 yang bernilai 2,09 mm/tahun. Sedangkan nilai penurunan maksimum berada di titik BM15 yang berlokasi di Kecamatan Bulak mencapai 71,49 mm/tahun. Penurunan di daerah utara Surabaya ini salah satunya dipengaruhi oleh faktor lokasi yang berbatasan dengan laut sehingga menyebabkan adanya intrusi air laut.

Page 16: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

11

2.3.2 Land Subsidence dari Data SAR Pada metode PS-InSAR, PS didefinisikan oleh stabilitas fase yang dipilih pada PS candidates

berdasarkan karakteristik fase yang mana bergantung pada amplitude dispersion, sehingga PS candidates dapat dipilih dengan menghitung amplitude dispersion index dan hanya memilih piksel dengan nilai amplitude dispersion index kurang dari nilai threshold yang telah ditentukan [8]. Dengan pengolahan menggunakan SARProz dihasilkan pola sebaran PS yang menunjukkan mean velocity dari perpindahan pada arah LOS untuk seluruh area of interest (AOI) disajikan pada Gambar II.4. Pada Gambar II.4 didapatkan rata-rata kecepatan deformasi yakni antara -50 mm/tahun dan +20 mm/tahun. Jika dilihat dari pola deformasinya, Surabaya Utara mayoritas mengalami land subsidence. Kecepatan deformasi di Asemrowo mencapai -50 mm/tahun dimana nilai ini merupakan nilai subsidence terbesar di Kota Surabaya. Karakter tanah basah yang mudah bergerak di Surabaya Utara menyebabkan mayoritas di wilayahnya terjadi land subsidence.

Gambar II. 4 Mean LOS Velocity

Selain itu daerah tersebut merupakan daerah industri dimana intensitas kendaraan berat yang melalui daerah tersebut cukup tinggi. Sedangkan Surabaya Barat mayoritas mengalami uplift. Penurunan di daerah utara Surabaya ini salah satunya dipengaruhi oleh faktor lokasi yang berbatasan dengan laut sehingga menyebabkan adanya intrusi air laut. Jika dilihat dari topografinya, antara Surabaya Utara dan Barat mempunyai karakteristik topografi yang berbeda. Perbedaan topografi tersebut yang menjadi penyebab adanya perbedaan pola deformasi dimana Surabaya Utara cenderung turun dan Surabaya Barat cenderung naik, ditambah lagi dengan sesar Kendeng yang melewati Surabaya Barat. Surabaya Selatan sebagian mengalami uplift dan sebagian subsidence namun kecil, sedangkan subsidence di Surabaya Timur sebagian besar terjadi di lokasi yang jaraknya tidak jauh dengan kawasan mangrove dan pantai.

Hasil yang didapatkan mengenai nilai mean LOS velocity untuk setiap titik PS seanjutnya digunakan untuk kebutuhan validasi titik PS dengan hasil pengolahan data titik GPS yang telah dilakukan sebanyak 4 kala (periode tahun 2017-2018). Terdapat 16 titik GPS yang digunakan dalam validasi hasil dari pengolahan data SAR ini sebagaimana ditunjukkan oleh Gambar II.5.

Page 17: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

12

Gambar II. 5 Sebaran Stasiun GPS untuk Pengamatan Deformasi Surabaya

Untuk memvalidasi, hasil dari pengolahan data GPS harus dikonversi ke dalam LOS displacement, dikarenakan vektor pergeseran SAR dalam 1D sepanjang LOS sistem radar yang terdiri dari komponen perpindahan vertikal, easting dan northing. Data cummulative displacement dari data SAR yang digunakan yaitu dalam rentang tiga tahun (2017-2019), sedangkan data displacement GPS yang digunakan untuk validasi yaitu dalam rentang dua tahun (2017-2018). Hasil konversi dan perbandingan displacement antara keduanya dapat dilihat pada Tabel II.6 berikut.

Tabel II. 6 Perbandingan Nilai LOS displacement SAR dengan LOS displacement GPS

Stasiun LOS

displacement SAR (mm)

LOS displacementG

PS (mm)

Nilai Residu

(mm) BM02 -4,159 -4,217 0,058 BM08 12,874 12,962 0,088 BM24 1,774 0,825 0,949 BM29 10,156 -6,440 16,596 BM33 -13,925 -13,297 0,628 BSBY -11,095 -6,515 4,580 KJRN -5,215 0,458 5,673 RNKT -7,465 -6,971 0,494 SB15 4,394 4,297 0,097 SBY3 -6,162 -6,038 0,124 SBY7 -1,236 -2,053 0,817

WARU -12,169 -11,575 0,594 WONO -4,013 -3,426 0,587 BITS -2,102 -1,893 0,209 BM23 -5,915 -5,136 0,779 BM16 -13,015 -12,465 0,550

Page 18: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

13

Gambar II. 6 Residual Plot antara hasil LOS GPS dengan LOS PS-INSAR

Dari hasil perbandingan pada Tabel II.6 dapat dianalisa bahwa terdapat perbedaan nilai antara data SAR dengan data GPS hasil konversi pada titik BM29 dan BSBY, dan KJRN. Hal ini dapat dianalisa bahwa pengaruh atmosfer terhadap hasil pengolahan data SAR belum dapat dihilangkan sepenuhnya. Pengaruh atmosfer yang paling berpengaruh pada hasil pengolahan adalah pengaruh akibat efek troposfer. Efek troposfer pada perambatan gelombang elektromagnetik akan menyebabkan keterlambatan phase yang akan berpengaruh terhadap penentuan jarak [10]. Namun, berdasarkan hasil validasi ke 13 titik lainnya memiliki nilai residu yang kecil, hal ini dapat dianalisa bahwa metode PS-InSAR dapat digunakan dalam pengamatan deformasi seperti pengamatan GPS. Terkait perbedaan nilai yang ditunjukkan oleh nilai residu di atas, hal tersebut dikarenakan perbedaan metode dan data yang digunakan dalam pengolahan data SAR dan GPS. 2.3.3 Tranport Sedimen 1. Bidang Model Analisis transport sedimen dilakukan melalui beberapa tahap. Pertama adalah penentuan bidang model. Penentuan bidang model ini dilakukan dengan melakukan pendefinisian batas dan kedalaman. Batas pemodelan dibuat berdasarkan data garis pantai daerah Teluk Lamong dan Pulau Madura dan garis lurus untuk batas perairan. Batas pemodelan tersebut akan digunakan untuk membedakan batas wilayah daratan dengan perairan. Selanjutnya adalah pembuatan mesh. Pada penelitian ini tipe mesh yang digunakan adalah TIN (Triangular Iregullar Network). Spesifikasi TIN yang dihasilkan pada lokasi penelitian adalah 5.751 jumlah elemen yang terbentuk dari pembuatan TIN, maksud elemen ini adalah jumlah segitiga yang terbentuk pada area pemodelan. Sedangkan 3.541 jumlah titik yang berada dalam tabel adalah jumlah titik-titik yang menghubungkan segitiga-segitiga TIN. Setelah TIN dibentuk, dilakukan pengaturan smoothing mesh untuk merapikan triangulasi dalam TIN. Setelah pengaturan triangulasi selesai, data batimetri diinterpolasi dengan cara natural neighboor untuk mengisi kekosongan data pada wilayah yang masuk dalam bidang model dengan menggunakan estimasi berdasarkan geometri. Hasil interpolasi menunjukan kedalaman dari bidang model yang ditampilkan pada Gambar II.7 berikut:

Page 19: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

14

Gambar II. 7 Bidang Model (Mesh)

2. Pemodelan Arus Selanjutnya adalah mengenai pemodelan hidrodinamika yang dilakukan dengan memasukan parameter waktu, angin, pasang surut, river discharge, dan kedalaman mesh yang telah dibentuk. Data angin yang digunakan sebagai input parameter pemodelan arus didapatkan dari ECMWF. Data angin diambil pada bulan 5 November-14 Desember 2018 setiap 6 jam. Data angin tersebut ditunjukkan oleh Tabel II.7 berikut:

Tabel II. 7 Data Angin di Sekitar Teluk Lamong Tanggal Waktu Kecepatan (m/s) Arah (Degree)

05/11/2018 00:00:00 1,853 117,768

05/11/2018 06:00:00 3,589 80,404

05/11/2018 12:00:00 3,061 61,578

05/11/2018 18:00:00 1,774 145,012

06/11/2018 00:00:00 1,558 156,942

06/11/2018 06:00:00 2,303 65,950

06/11/2018 12:00:00 2,559 129,201

06/11/2018 18:00:00 2,063 160,292

07/11/2018 00:00:00 1,476 160,815

07/11/2018 06:00:00 2,503 44,475

07/11/2018 12:00:00 3,114 98,035

07/11/2018 18:00:00 1,204 163,634

08/11/2018 00:00:00 0,876 128,250

08/11/2018 06:00:00 2,015 19,901

… … … …

14/12/2018 12:00:00 1,929 296,618

14/12/2018 18:00:00 2,028 242,853

Gambaran arah dan kecepatan angin menunjukkan bahwa arah angin setiap 6 jam mayoritas menuju ke

arah tenggara dan ke arah selatan yang ditunjukkan oleh diagram mawar pada Gambar II.8.

Page 20: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

15

Gambar II. 8 Diagram Mawar Kecepatan Angin

Secara keseluruhan, selama simulasi variasi arah angin berkisar dari 0 sampai dengan 360 derajat. Hal ini memiliki arti bahwa variasi arah angin berhembus dari Utara, Timur, Selatan, dan Barat, kemudian bergerak dengan siklus seperti itu secara ajak pada hari-hari tertentu.

Parameter selanjutnya untuk pemodelan hidrodinamika yaitu data debit sungai (river discharge) yang didapatkan berdasarkan penelitian sebelumnya yang didapat dari Perum Jasa Tirta I Surabaya. Data debit sungai ditunjukkan oleh Tabel II.8 berikut: Tabel II. 8 Debit Rata-rata Sungai di Sekitar Perairan Teluk Lamong (Perum Jasa Tirta I Surabaya, Hutanti

2018) No Nama Sungai Debit Rata-rata (m3/s) 1 Sungai Lamong 19,00 2 Sungai Sememi 4,30 3 Sungai Branjangan 3,60 4 Sungai Manukan 5,80 5 Sungai Greges 3,50 6 Sungai Kalianak 3,50 7 Sungai Kalimas 10,35

Berdasarkan data tersebut, diketahui bahwa sungai yang memiliki debit rata-rata paling tinggi adalah Sungai Lamong dengan nilai 19,00 m3/s, sedangkan sungai dengan debit paling rendah adalah Sungai Greges dan Sungai Kalianak dengan nilai 3,50 m3/s.

Analisis selanjutnya yaitu mengenai pasang surut. Data yang digunakan diperoleh dari stasiun Badan Informasi Geospasial (BIG) data pengamatan pasang surut perairan Surabaya mulai tanggal 5 November 2018 sampai dengan tanggal 14 Desember 2018. Sampel data pasang surut BIG stasiun Surabaya pada tanggal 5 November-14 Desember 2018 dapat dilihat pada Tabel II.9 berikut:

Tabel II. 9 Data Pasang Surut BIG Stasiun Surabaya

Hari Jam Elevasi BIG

(meter) 05/11/2018 01:00:00 1,410 05/11/2018 02:00:00 1,720 05/11/2018 03:00:00 1,800 05/11/2018 04:00:00 1,700 05/11/2018 05:00:00 1,490 05/11/2018 06:00:00 1,240

Page 21: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

16

Hari Jam Elevasi BIG

(meter) 05/11/2018 07:00:00 0,940 05/11/2018 08:00:00 0,660 05/11/2018 09:00:00 0,540 05/11/2018 10:00:00 0,590 05/11/2018 11:00:00 0,810 05/11/2018 12:00:00 1,150 05/11/2018 13:00:00 1,570 05/11/2018 14:00:00 1,940 05/11/2018 15:00:00 2,130 05/11/2018 16:00:00 2,130 05/11/2018 17:00:00 1,980 05/11/2018 18:00:00 1,810 05/11/2018 19:00:00 1,480 05/11/2018 20:00:00 1,120 05/11/2018 21:00:00 0,880 05/11/2018 22:00:00 0,740 05/11/2018 23:00:00 0,770

… … … 14/12/2018 22:00:00 1,340 14/12/2018 23:00:00 1,190

Berdasarkan data pasang surut pada Tabel II.9 yang kemudian diolah menggunakan metode Least Square dengan bantuan perangkat lunak MatlabR2014a hingga diperoleh hasil nilai konstituen sebagai berikut:

Tabel II. 10 Nilai Konstituen Pasang Surut Konstituen Amplitudo (m) Phase (°)

S0 1,298

K1 0,448 -1,872

K2 0,060 0,629

M2 0,388 0,754

M4 0,018 0,407

MS4 0,013 1,835

N2 0,064 1,675

O1 0,236 0,587

P1 0,155 2,840

S2 0,253 2,130 Selanjutnya setelah didapatkan nilai komponen harmonik pasang surut maka dapat dilakukan

perhitungan untuk mendapatkan nilai referensi tinggi. Berikut adalah formula yang digunakan untuk nilai MSL, HWL dan LWL [10]:

Page 22: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

17

Tabel II. 11 Referensi Vertikal

No. Referensi Tinggi

Formula Tinggi

(m) 1 MSL S0 1,298 2 LWL S0-(M2+S2+K1+O1) -0,029 3 HWL S0+(M2+S2+K1+O1) 2,624

Salah satu hasil yang didapatkan dari pemodelan adalah perubahan muka air atau pasang surut. Pasang surut hasil pemodelan ini menunjukan kenaikan muka air pada model pada waktu tertentu. Karena arus yang dimodelkan adalah arus pasang surut, maka data pasang surut hasil pemodelan ini dapat digunakan untuk melakukan validasi hasil model. Sampel data pasang surut hasil pemodelan pada tanggal 5 November-14 Desember 2018 dapat dilihat pada Tabel II.12 berikut:

Tabel II. 12 Data Pasang Surut Hasil Pemodelan

Hari Jam Elevasi Pemodelan

(meter) 05/11/2018 01:00:00 0,422 05/11/2018 02:00:00 0,502 05/11/2018 03:00:00 0,402 05/11/2018 04:00:00 0,192 05/11/2018 05:00:00 -0,058 05/11/2018 06:00:00 -0,358 05/11/2018 07:00:00 -0,638 05/11/2018 08:00:00 -0,758 05/11/2018 09:00:00 -0,708 05/11/2018 10:00:00 -0,488 05/11/2018 11:00:00 -0,148 05/11/2018 12:00:00 0,272 05/11/2018 13:00:00 0,642 05/11/2018 14:00:00 0,832 05/11/2018 15:00:00 0,832 05/11/2018 16:00:00 0,682 05/11/2018 17:00:00 0,512 05/11/2018 18:00:00 0,182 05/11/2018 19:00:00 -0,178 05/11/2018 20:00:00 -0,418 05/11/2018 21:00:00 -0,558 05/11/2018 22:00:00 -0,528 05/11/2018 23:00:00 -0,478

… … … 14/12/2018 22:00:00 0,042 14/12/2018 23:00:00 -0,108

Analisis pemodelan arus pasang surut dilakukan dalam empat kondisi, yaitu kondisi pasang dan surut

disaat spring tide dan neap tide. Spring tide atau pasang surut purnama terjadi pada tanggal 25 dan 26 November 2018 pada pukul 16:00 WIB dan 00:00 WIB untuk masing-masing pasang dan surut. Sementara

Page 23: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

18

neap tide atau pasang surut perbani terjadi pada tanggal 17 dan 18 November 2018 pada pukul 21:00 WIB untuk surut dan pukul 00:00 WIB untuk pasang. Analisis terhadap hasil pemodelan arus pasang surut dalam masing-masing kondisi adalah sebagai berikut: - Pasang Surut Purnama

Analisa pemodelan arus pada saat pasang surut purnama (spring tide), yaitu tanggal 25-26 November 2018.

a. Pasang Purnama (25 November 2018 pukul 16:00 WIB)

Gambar II. 9 Model Arus Pasang Purnama

Dari hasil pemodelan arus saat pasang purnama pada tanggal 25 November 2018 pukul 16:00 WIB, kecepatan arus di perairan Teluk Lamong didapatkan hasil berkisar 0 m/s hingga 0,200 m/s dengan memiliki rata-rata kecepatan sebesar 0,040 m/s. Untuk arah arus pada saat pasang purnama, arah arus yang bergerak dari arah utara menuju ke timur dan masuk kearah pesisir perairan Teluk Lamong. Kecepatan paling tinggi berada pada batas laut utara dan daerah dekat Pelabuhan Tanjung Perak dan Pelabuhan Teluk Lamong. Hal ini dapat disebabkan karena pada batas laut utara merupakan open boundary dengan pasang surut sebagai pembangkit dan masuk ke arah Teluk Lamong, kolam pelabuhan dan ke arah timur Selat Madura. Dan ketika masuk kearah pesisir Teluk Lamong, terdapat Pelabuhan Tanjung Perak dan Pelabuhan Teluk Lamong bentuk dermaga menjorok ke perairan sehingga menyebabkan adanya pergerakan arus pada wilayah sekitar Pelabuhan terhalang oleh dermaga. b. Surut Purnama (26 November 2018 pukul 00:00 WIB)

Gambar II. 10 Model Arus Surut Purnama

Page 24: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

19

Dari hasil pemodelan arus saat surut purnama pada tanggal 26 November 2018 pukul 00:00 WIB, kecepatan arus di perairan Teluk Lamong didapatkan hasil berkisar 0 m/s hingga 0,440 m/s dengan memiliki rata-rata kecepatan sebesar 0,040 m/s. Untuk arah arus pada saat surut purnama, arah arus yang bergerak dari arah pesisir perairan Teluk Lamong menuju ke alur pelayaran. Kecepatan paling tinggi berada pada perbatasan laut bagian utara dan daerah dekat Pelabuhan Tanjung Perak dan Pelabuhan Teluk Lamong. Hal ini dapat disebabkan karena pada batas laut utara merupakan open boundary dengan pasang surut sebagai pembangkit. Sedangkan pada daerah dekat Pelabuhan Tanjung Perak dan Pelabuhan Teluk Lamong memiliki kecepatan arus yang tinggi karena arus di daerah pesisir perairan Teluk Lamong berasal dari sumber pembangkit debit sungai-sungai yang bermuara di perairan Teluk Lamong.

- Pasang Surut Perbani Analisa pemodelan arus pada saat pasang perbani dan surut perbani, yaitu tanggal 17-18 November

2018 a. Pasang Perbani (18 November 2018 pukul 00:00 WIB)

Gambar II. 11 Model Arus Pasang Perbani

Dari hasil pemodelan arus saat pasang perbani pada tanggal 18 November 2018 pukul 00:00 WIB, kecepatan arus di perairan Teluk Lamong didapatkan hasil berkisar 0 m/s hingga 0,200 m/s dengan memiliki rata-rata kecepatan sebesar 0,020 m/s. Untuk arah arus pada saat pasang perbani bergerak dari arah timur menuju ke utara. Kecepatan paling tinggi berada pada perbatasan laut bagian selatan. Hal ini dapat disebabkan karena pada batas laut utara merupakan open boundary dengan pasang surut sebagai pembangkit. Pada daerah Pelabuhan, khususnya pada bangunan jetti Pelabuhan Tanjung Perak terjadi perputaran arus sehingga hanya sedikit arus yang menuju ke pesisir perairan Teluk Lamong.

Page 25: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

20

b. Surut Perbani (17 November 2018 pukul 21:00 WIB)

Gambar II. 12 Model Arus Surut Perbani

Dari hasil pemodelan arus saat surut perbani pada tanggal 17 November 2018 pukul 21:00 WIB, kecepatan arus di perairan Teluk Lamong didapatkan hasil berkisar 0 m/s hingga 0,150 m/s dengan memiliki rata-rata kecepatan sebesar 0,025 m/s. Untuk arah arus pada saat surut perbani, arah arus yang bergerak dari arah timur dan juga dari pesisir perairan Teluk Lamong menuju ke utara. Kecepatan paling tinggi berada pada perbatasan laut bagian timur dan daerah alur pelayaran dekat Pelabuhan Tanjung Perak dan Pelabuhan Teluk Lamong. Hal ini dapat disebabkan karena pada batas laut utara merupakan open boundary dengan pasang surut sebagai pembangkit. Sedangkan pada daerah dekat Pelabuhan Tanjung Perak dan Pelabuhan Teluk Lamong memiliki kecepatan arus yang tinggi karena arus di daerah pesisir perairan Teluk Lamong berasal dari sumber pembangkit debit sungai-sungai yang bermuara di perairan Teluk Lamong.

3. Pemodelan Pola Sebaran Sedimen Analisa pemodelan sebaran sedimen dilakukan dalam empat kondisi, yaitu kondisi pasang dan surut

disaat spring tide dan neap tide. - Pasang Purnama (25 November 2018 pukul 16:00 WIB)

Gambar II. 13 Model Sediment Pasang Purnama

Page 26: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

21

Pada Gambar II.13 menunjukan perubahan dasar laut yang terjadi ketika pasang purnama. Dari hasil pemodelan menunjukan besar perubahan dasar laut akibat pergerakan sedimen memiliki nilai penurunan hingga lebih dari -0,100 m dan kenaikan hingga lebih dari 0,800 m. Walaupun pada hasil terlihat dominan nilai penurunan dan kenaikan secara urut adalah -0,100 m dan 0,200 m. Namun dapat dilihat juga kenaikan dan penurunan tersebut terjadi di daerah Pelabuhan Tanjung Perak, Pelabuhan Teluk Lamong, alur pelayaran, dan sungai-sungai yang bermuara ke Teluk Lamong.

Dengan memperhatikan vektor arah yang dibentuk pada Gambar II.13 dapat diketahui bahwa saat pasang purnama sedimen cenderung bergerak dari arah barat (kiri) yaitu Batas Laut Utara masuk ke perairan Teluk Lamong, menuju ke arah timur (kanan). Terjadinya pasang tertinggi saat pasang purnama dan surut terendah saat surut purnama, menjadi faktor utama penyebab terbentuknya pola arah pergerakan sedimen seperti tersebut.

- Surut Purnama (26 November 2018 pukul 00:00)

Gambar II. 14 Model Sediment Surut Purnama

Pada Gambar II.14 menunjukan perubahan dasar laut yang terjadi ketika surut purnama. Dari hasil pemodelan menunjukan besar perubahan dasar laut akibat pergerakan sedimen memiliki nilai penurunan hingga lebih dari -0,100 m dan kenaikan hingga lebih dari 0,800 m. Walaupun pada hasil terlihat dominan nilai penurunan dan kenaikan secara urut adalah -0,100 m dan 0,200 m. Namun dapat dilihat juga kenaikan dan penurunan tersebut terjadi di daerah antara Pelabuhan Teluk Lamong, Pelabuhan Tanjung Perak, alur pelayaran, dan Sungai Lamong.

Dengan memperhatikan vektor arah yang dibentuk pada Gambar II.14 dapat diketahui bahwa pada saat surut purnama sedimen bergerak keluar dari sungai ke pesisir perairan Teluk Lamong, kemudian menuju ke Alur Pelayaran Barat Surabaya. Terjadinya pasang tertinggi saat pasang purnama dan surut terendah saat surut purnama, menjadi faktor utama penyebab terbentuknya pola arah pergerakan sedimen seperti tersebut, dan kondisi kecepatan debit sungai yang besar di Sungai Lamong.

Page 27: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

22

- Pasang Perbani (18 November 2018 pukul 00:00)

Gambar II. 15 Model Sediment Pasang Perbani

Pada Gambar II.15 menunjukan perubahan dasar laut yang terjadi ketika pasang perbani. Dari hasil pemodelan menunjukan besar perubahan dasar laut akibat pergerakan sedimen memiliki nilai penurunan hingga lebih dari -0,160 m dan kenaikan hingga lebih dari 0,480 m. Walaupun pada hasil terlihat dominan nilai penurunan dan kenaikan secara urut adalah -0,080 m dan 0,160 m. Namun dapat dilihat juga kenaikan dan penurunan tersebut terjadi di daerah Pelabuhan Tanjung Perak khususnya pada bangunan jetti.

Dengan memperhatikan vektor arah yang dibentuk pada Gambar II.15 dapat diketahui bahwa pada saat pasang perbani sedimen bergerak dari arah timur (kanan) yaitu Batas Laut Timur masuk ke perairan Teluk Lamong, menuju ke arah utara (kiri) yaitu Batas Laut Utara.

- Surut Perbani (17 November 2018 pukul 21:00 WIB)

Gambar II. 16 Model Sediment Surut Perbani

Pada Gambar II.16 menunjukan perubahan dasar laut yang terjadi ketika surut perbani. Dari hasil pemodelan menunjukan besar perubahan dasar laut akibat pergerakan sedimen memiliki nilai penurunan hingga lebih dari -0,160 m dan kenaikan hingga lebih dari 0,480 m. Walaupun pada hasil terlihat dominan nilai penurunan dan kenaikan secara urut adalah -0,080 m dan 0,080 m. Namun dapat dilihat juga kenaikan dan penurunan tersebut terjadi di daerah Pelabuhan Tanjung Perak, sungai lamong, dan sekitar pesisir perairan Teluk Lamong.

Page 28: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

23

Dengan memperhatikan vektor arah yang dibentuk pada Gambar II.16 dapat diketahui bahwa pada saat surut perbani sedimen bergerak keluar dari sungai ke pesisir perairan Teluk Lamong, kemudian menuju ke Alur Pelayaran Barat Surabaya dan menuju ke Batas Laut Utara. Hal ini dapat di sebabkan karena kondisi kecepatan debit sungai yang besar di Sungai Lamong.

Dari hasil pengamatan pada saat pasang dan surut purnama maupun perbani, nilai sebaran sedimen paling besar terjadi pada saat pasang surut purnama (spring tide) dengan memiliki nilai penurunan hingga lebih dari -0,100 m dan kenaikan hingga lebih dari 0,800 m, dengan nilai dominan penurunan dan kenaikan secara urut adalah -0,100 m dan 0,200 m. Faktor penyebabnya adalah kecepatan arus pada saat pasang surut purnama (spring tide) yang relatif lebih cepat dibandingkan pada saat pasang surut perbani (neap tide). Hal ini menunjukkan semakin cepat arus, maka sedimen yang terbawa dapat semakin banyak sesuai dengan teori yang dikemukakan oleh [11]

2.3.4 Analisis Dampak Land Subsidence terhadap Persebaran Sedimen

Page 29: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

24

BAB III STATUS LUARAN Status Luaran berisi status tercapainya luaran wajib yang dijanjikan dan luaran tambahan (jika ada). Uraian status luaran harus didukung dengan bukti kemajuan ketercapaian luaran di bagian bab Lampiran

Page 30: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

25

BAB IV PERAN MITRA (UntukPenelitian Kerjasama Antar Perguruan Tinggi) Berisi uraian realisasi kerjasama dan realisasi kontribusi mitra, baik in-kinddan in-cash

Page 31: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

26

BAB V KENDALA PELAKSANAAN PENELITIAN

Kendala Pelaksanaan Penelitian

Penelitian ini memerlukan data insitu yang perlu diambil melalui survei lapangan. Data-data tersebut antara lain:

- Data GPS - Data in situ untuk analisa transpor sedimen - Data geofisika

Pandemi COVID-19 membuat rencana pengukuran di lapangan menjadi tertunda dan perlu untu mencari alternatif solusi jika pengukuran di lapangan tidak mungkin dilakukan

Kendala mencapai luaran yang dijanjikan

Untuk menghasilkan publikasi yang dijanjikan diperlukan validasi yang baik untuk hasil yang telah didapatkan.

Page 32: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

27

BAB VI RENCANA TAHAPAN SELANJUTNYA Dalam penelitian masih diperlukan survei data insitu terutama untuk validasi hasil yang telah didapatkan sebelumnya. Rencana yang akan dilakukan selanjutnya adalah:

• Pemodelan subsidence

• Pengolahan dan analisa GPS dari data yang sudah ada

• Processing InSAR dengan data Sentinel 1

• Pemodelan Transpor Sedimen di Teluk Lamong

• Survei parameter geofisika

• Analisa hubungan antara land subsidence, transpor sedimen, dan paremeter geofisika di area studi

• Penulisan publikasi

Page 33: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

28

BAB VII DAFTAR PUSTAKA [1] Badan Perencanaan Pembangunan , 2013. Penyusunan Review Rencana Tata Ruang Wilayah (RTRW)

Kota Surabaya 2013, Surabaya: s.n. [2] Handoko, 2011 [3] Anjasmara, I. M. et al., 2017. Analysing surface deformation in Surabaya from sentinel-1A data using

DInSAR method. AIP Conference Proceedings, Volume 1857, p. 100013. [4] Aditiya, A., Takeuchi, W. & Aoki, Y., 2017. Land Subsidence Monitoring by InSAR Time Series

Technique Derived From ALOS-2 PALSAR-2 over Surabaya City, Indonesia. IOP Conference Series: Earth and Environmental Science, Volume 98, p. 012010 .

[5] Anjasmara, I. M., Mauradhia, A. & Susilo, 2019. Surface deformation and earthquake potential in Surabaya from GPS campaigns data. IOP Conf. Ser.: Earth Environ. Sci., Volume 389, p. 012032.

[6] Anjasmara, I. M., Yulyta, S. A. & Taufik, M., 2020. Application of Time Series InSAR (SBAS) Method using Sentinel-1A Data for Land Subsidence Detection in Surabaya City. International Journal on Advance Science Engineering Information Technology, 10(1), pp. 191-197.

[7] Bock, Y., Prawirodirdjo, L., Genrich, J.F., Stevens, C.W., McCaffrey, R., Subarya, C., Puntodewo, S.S.O., and Calais, E. 2003. Crustal motion in Indonesia from Global Positioning System measurements, J. Geophys. Res., 108(B8), 2367

[8] Harris, A. J. L., Groeve, T. d., Garel, F. & Carn, S. A. 2016. Detecting, Modelling, and Responding to Effusive Eruptions. Bath, United Kiingdom: Geological Society.

[9] Hanssen, R. F. 2001. Radar Interferometry Data Interpretation and Error Analysis. Springer Netherlands.

[10] ICSM PCTMSL. 2011. Australian Tides Manual Special Publication No 9. Intergovernmental Committee on Surveying & Mapping/Permanent Committee on Tides and Mean Sea Level: Australia.

[11] Triatmodjo, Bambang. 1999. Teknik Pantai. Yogyakarta: Beta Offset Yogyakarta.

Page 34: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

29

BAB VIII LAMPIRAN Lampiran berisi tabel daftar luaran (Format sesuai lampiran 1) dan bukti pendukung luaran wajib dan luaran tambahan (jika ada) sesuai dengan target capaian yang dijanjikan

Page 35: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

30

LAMPIRAN 1 Tabel Daftar Luaran Program : Penelitian Unggulan Nama Ketua Tim : Ira Mutiara Anjasmara Judul : Pengaruh Land Subsidence di Surabaya

terhadap Sebaran Sedimen di Perairan Sekitarnya

1.Artikel Jurnal

No Judul Artikel Nama Jurnal Status Kemajuan*) 1 Evaluation of the Effects of

Subsidence and Sediment Transport on the Teluk Lamong sedimentation rates.

Q1 persiapan

*) Status kemajuan: Persiapan, submitted, under review, accepted, published

2. Artikel Konferensi

No Judul Artikel Nama Konferensi (Nama Penyelenggara, Tempat,

Tanggal)

Status Kemajuan*)

1 Modeling Sediment Transport Using Hydrodynamic Data as Factors of Coastline Changes Based on Sentinel-2 over Lamong Bay, Surabaya

GEOICON 2020 submitted

*) Status kemajuan: Persiapan, submitted, under review, accepted, presented

3. Paten

No Judul Usulan Paten Status Kemajuan

*) Status kemajuan: Persiapan, submitted, under review 4. Buku

No Judul Buku (Rencana) Penerbit Status Kemajuan*)

*) Status kemajuan: Persiapan, under review, published

5. Hasil Lain No Nama Output Detail Output Status Kemajuan*)

Page 36: LAPORAN KEMAJUAN PENELITIAN UNGGULAN ITS DANA …

31

*) Status kemajuan: cantumkan status kemajuan sesuai kondisi saat ini

6. Disertasi/Tesis/Tugas Akhir/PKM yang dihasilkan

No Nama Mahasiswa NRP Judul Status*) 1 Cindy Nadya

Riastama 03311640000017 Monitoring Aktivitas Sesar

Kendeng Berdasarkan Pengamatan GPS Tahun 2017-2020 (Studi Kasus: Kota Surabaya)

lulus

2 Toifatul Ulma 03311640000058 Analisis Deformasi Kota Surabaya Tahun 2017-2019 Akibat Aktivitas Sesar Kendeng Dengan Metode PSInSAR dan Validasi Data GPS

lulus

3 Fransiska Widiastuti

03311640000093

PEMODELAN TRANSPOR SEDIMEN UNTUK PEMELIHARAAN KEDALAMAN PELABUHAN (Studi Kasus: Teluk Lamong, Surabaya)

lulus

*) Status kemajuan: cantumkan lulus dan tahun kelulusan atau in progress