Jpl Iitb.pres2

Embed Size (px)

Citation preview

  • 8/10/2019 Jpl Iitb.pres2

    1/28

    Gate Carrier Injection and NC-Non-

    Volatile Memories

    Jean-Pierre Leburton

    Department of Electrical and Computer

    Engineering and Beckman Institute

    University of Illinois at Urbana-Champaign

    Urbana, IL 61801, USA

  • 8/10/2019 Jpl Iitb.pres2

    2/28

    Hot Carrier Effects in MOSFETs

    High-field/non-linear transport

    vx

    kBT

    c

    Fx

    Long tail energy

    distribution

    E =(1 / 2)m*v2

    *

    *After R.S. Muller and T.I Kamins, DEIC, Wiley, 3d ed.

    f(v)

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres2

    3/28

    Hot Carrier Effects: Substrate Current*

    Ec

    EG

    Ev

    SS

    SS

    S

    S

    SS

    SE>EG

    e

    ee

    h+

    Impact Ionization

    I-V characteristics

    *After R.S. Muller and T.I Kamins, DEIC, Wiley, 3d ed.J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres2

    4/28

  • 8/10/2019 Jpl Iitb.pres2

    5/28

    Tunneling Injection into the Gate*

    Direct Tunneling

    Fowler-Nordheim TunnelingTrap-Assisted Tunneling

    Electron trapping in SiO2 Hole trapping in SiO2

    *After Y.Taur and T.H. Ning, FMVD, Cambridge, 2d ed.

    JFN !exp(!4 2qm *

    3"Fox"ox

    3/ 2 )

    Fox

    !ox

    VT- Degradation

    Dissipation (gate leakage)

    JTun

    = JTun

    (tox

    ,!ox)

  • 8/10/2019 Jpl Iitb.pres2

    6/28

    Injection into Floating Gates

    n-channel

    p-channel

    Drain-avalanche

    (impact ionization)

    Injection by channel hot electrons (CHE)

    No CHEbecause largeroxide barrier

    J.P. Leburton, IWSG-2009, IITB, India

    After R.S. Muller and T.I Kamins, DEIC, Wiley, 3d ed.

  • 8/10/2019 Jpl Iitb.pres2

    7/28

  • 8/10/2019 Jpl Iitb.pres2

    8/28

    Flash Memory Device: Basic Operation*

    ETOX: Hot electron-tunneling combined VT-shift

    But leakage throughdefects!!!

    * A. Thean and J.P.Leburton, IEEE Potentials, 21(4) 35, (2002)

    !FG electrically disconnected

    !Data stored in form of charge packages

    !Transport mechanisms (CHE)!FN tunnelling (oxide damage)

    !Memory cells altered individually

    !Data storage sensed by conductance

    !Non-volatile storage

    !Down scaling X retention time

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres2

    9/28

  • 8/10/2019 Jpl Iitb.pres2

    10/28

    Nanocrystal Memories*

    * S. Tiwari et al. IEDM Tech Dig., 521, Dec. 1995.

    **

    ** Courtesy Motorola Inc.

    Single electron charging***

    "VG=e/C; C:NC capacitance

    NC memory operation principle*

    NC memory device

    structure

    "E

  • 8/10/2019 Jpl Iitb.pres2

    11/28

    NC Memory Device: QM Modeling*

    Schroedinger Equation (effective mass approx.)

    Simulated structure Crystallographic orientations

    !!2

    2("x ,"y ,"z )

    mxx!1("r ) mxy

    !1("r ) mxz

    !1("r )

    myx!1("r ) myy

    !1("r ) myz!1("r )

    mzx!1("r ) mzy

    !1("r ) mzz

    !1("r )

    #

    $%%%

    &

    '(((

    "x"y"z

    #

    $

    %%%

    &

    '

    (((+V("r )

    )

    *

    +++

    ,

    -

    ..

    ./v,n ("r ) = Ev,n/v,n("r )

    Mv,T

    !1=

    "T

    !1 Mv

    !1"T with M

    v

    !1=

    m1!1

    (!

    r ) 0 0

    0 m2!1

    (!

    r ) 0

    0 0 m3!1

    (!

    r )

    #

    $

    %%%

    &

    '

    (((

    Rotation matrix*J.S. de Sousa et al., APL 82, 2685 (2003)J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres2

    12/28

  • 8/10/2019 Jpl Iitb.pres2

    13/28

    Energy Spectra: Effective Mass Anisotropy

    Spherical nanocrystal

    D = 10 nm

    1 /miso =2 / (3m

    t) +1 / (3m

    l)

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres2

    14/28

    Energy Spectra: Size and Shape Effects *

    Spherical Quantum Dots Truncated Nanocrystals

    ! Degeneracy among energy valleys

    ! Orbitals orientation follow the rotation of

    the effective mass tensor

    ! Lifting of energy valleys degeneracy

    ! Accidental degeneracies

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres2

    15/28

    Crystallographic Orientation Effects*

    ! Different crystalline orientations are

    responsible for accidental degeneracy

    ! !En< kBT (room temperature) for the [010]orientation

    ! Minibands appear for the [110] orientation

    ! Despite of the non-symetrical shape, energy

    valleys degeneracy is recovered for the

    [111] orientationJ.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres2

    16/28

  • 8/10/2019 Jpl Iitb.pres2

    17/28

  • 8/10/2019 Jpl Iitb.pres2

    18/28

    Data Operation Modeling: Dynamics*

    Data programming

    Data erase and retention

    groundstate

    Bardeen Hamiltonian approach

    J.P. Leburton, IWSG-2009, IITB, India *J. S. de Sousa et al, J. Appl. Phys. 92, 6182 (2002)*J. S. de Sousa et al, Appl. Phys. Lett. 82, 2685 (2003)

  • 8/10/2019 Jpl Iitb.pres2

    19/28

    Charging Time Dynamics*

    !Practical programming times ("100 ns) are only achieved by combining very thinoxide barriers ("20) and VG>2.0V (consistent with experiment)!Correlation between the average charging time and the number of electrons in thechannel

    *J. S. de Sousa et al, J. Appl. Phys. 92, 6182 (2002)

    Tunneling barrierthickness

    D=7nm

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres2

    20/28

    *

    1st consequence: redistribution of the

    electrostatic potential (EP) across thedevice

    EP drop in the oxide layer islarger forSiO2than for HfO2

    Smaller HfO2!ECmay favor FNtunneling through the gate

    compromising data write and retentionfor VG>2.5V. Thus, TCmust be

    increased (>20nm)

    Concerns on the dielectric

    breakdown: F(HfO2)=10MV/cm

    and F(SiO2)=20 MV/cm. Quality of

    the oxide becomes crucial !!

    High-K Oxides: Electrostatics

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres2

    21/28

    High-k materials increases writeperformance, but also decreaseretention time (device reliability).

    Strategy: increase tunneling oxidethickness !

    Main advantage: we can increase

    the tunneling oxide and still obtaingood performances because of the

    smaller !EC!

    High-K Oxides: Programming

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres2

    22/28

    10 YearsSphere

    3 MonthsTrunc. Sphere

    11 DaysHemisphere

    Retention TimeShapes

    D= 70 TOX= 35

    A. Thean et al., Proc. Nonvolatile Memory Technology Symp., 2000, pp.1621.

    VG= 2.0V TOX= 15

    The faster data are written ...

    ... the faster they are lost !

    J. S. de Sousa et al, J. Appl. Phys. 92, 6182 (2002)J. S. de Sousa et al, Appl. Phys. Lett. 82, 2685 (2003)

    A tough problem: Data retention

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres2

    23/28

  • 8/10/2019 Jpl Iitb.pres2

    24/28

  • 8/10/2019 Jpl Iitb.pres2

    25/28

  • 8/10/2019 Jpl Iitb.pres2

    26/28

  • 8/10/2019 Jpl Iitb.pres2

    27/28

    Optical Programming*

    *J. S. de Sousa et al., Appl. Phys. Lett. 92, 103508 (2008)J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres2

    28/28