33
Will a Bike Ride a Day Keep the Doctor Away? Evidence from the Calgary Cycle Track Pilot Project Janessa Linton University of Calgary Abstract Government spending on health care related to chronic disease caused by inactivity and obesity is growing in young adults (Macdonald, B. 2007). Studies have shown that an active cyclist commute leads to an increase in physical activity that is health enhancing. Leading to the question, does bicycle infrastructure improve health? This study decomposes this question into two segments; Will bicycle infrastructure cause an increase in bicycling? And; What are the health outcomes associated with increased bicycling? My study uses the City of Calgary Cycle Track Pilot Project as a laboratory for three reasons: 1) Prior to the pilot project Calgary had no protected bike lanes; 2) Calgary winter weather conditions are different from the existing literature; 3) Calgary has an extensive bicycle usage dataset that allows for casual estimation strategy to be used. Preliminary bicycle level calculations revealed an increase in bicycle trips of 670,113. To generate estimates that capture the casual effect of bicycle infrastructure on bicycle use in Calgary. First, I compare the weather trends before and after the Calgary pilot project, then I use a difference-in-difference (DD) estimation strategy. I find that weather was not an influencing factor on the increase in bicycle use, and the DD produced close to casual results. The DD estimated the increase in bicycle usage to be 592,119 trips which resulted in health savings of $11.8M, this was calculated from health care expenditures saved and the value of a statistical life saved. Expressed in net present value with a 5% discount, the bicycle infrastructure resulted in $237M in health benefits over an infinite time-horizon. Econ 695/697, Research Methods

Janessa Linton - Research project

Embed Size (px)

Citation preview

Page 1: Janessa Linton - Research project

WillaBikeRideaDayKeeptheDoctorAway?

EvidencefromtheCalgaryCycleTrackPilotProject

JanessaLinton

UniversityofCalgary

Abstract

Governmentspendingonhealthcarerelatedtochronicdiseasecausedbyinactivityandobesityisgrowinginyoungadults(Macdonald,B.2007).Studieshaveshownthatanactivecyclistcommuteleadstoanincreaseinphysicalactivitythatishealthenhancing.Leadingtothequestion,doesbicycleinfrastructureimprovehealth?Thisstudydecomposesthisquestionintotwosegments;Willbicycleinfrastructurecauseanincreaseinbicycling?And;Whatarethehealthoutcomesassociatedwithincreasedbicycling?MystudyusestheCityofCalgaryCycleTrackPilotProjectasalaboratoryforthreereasons:1)PriortothepilotprojectCalgaryhadnoprotectedbikelanes;2)Calgarywinterweatherconditionsaredifferentfromtheexistingliterature;3)Calgaryhasanextensivebicycleusagedatasetthatallowsforcasualestimationstrategytobeused.Preliminarybicyclelevelcalculationsrevealedanincreaseinbicycletripsof670,113.TogenerateestimatesthatcapturethecasualeffectofbicycleinfrastructureonbicycleuseinCalgary.First,IcomparetheweathertrendsbeforeandaftertheCalgarypilotproject,thenIuseadifference-in-difference(DD)estimationstrategy.Ifindthatweatherwasnotaninfluencingfactorontheincreaseinbicycleuse,andtheDDproducedclosetocasualresults.TheDDestimatedtheincreaseinbicycleusagetobe592,119tripswhichresultedinhealthsavingsof$11.8M,thiswascalculatedfromhealthcareexpendituressavedandthevalueofastatisticallifesaved.Expressedinnetpresentvaluewitha5%discount,thebicycleinfrastructureresultedin$237Minhealthbenefitsoveraninfinitetime-horizon.

Econ695/697,ResearchMethods

Page 2: Janessa Linton - Research project

2

1 Introduction

Healthresearchershavefoundthatchronicdiseaserelatedtoobesityandphysicalinactivityis

ontherise(Ojaetal.,1998).Anincreaseinphysicalactivityof30minutesadayisconsidered

healthenhancing,leadingtothepreventionofrelatedchronicdisease(Rutteretal.,2003).

Specifically,studieshaveshownthattheprimaryhealthbenefitsthatarisefromcyclist

infrastructureisreduced“mortalityduetoconditionssuchascardiovasculardiseaseandcancer

asaresultofincreasedphysicalactivity”(Rutteretal.,2003).Consequently,bicycle

infrastructureisaviablewayforcommuterstosafelyincreasetheirphysicalactivitywhichwill

leadtohealthimprovements.Therefore,itisimportanttoinvestigateifbicycleinfrastructure

improveshealth.Todothis,Iexploretwoquestions:(1)Willbicycleinfrastructurecausean

increaseinbicycleuse?(2)Whatarethehealthbenefitsassociatedwithincreasedbicycleuse?

Youngadultshavehadalargedecreaseintheirlevelofphysicalactivity,andcycling

tripshavesignificantlydeclinedasaresultofgreatercarownership(Macdonald,B.2007).Inan

efforttocurbthistrend,bicyclelaneinfrastructureinanurbancitycenterisusedby

governmentstoencouragephysicalactivityintodailyroutines.Rutteretal.(2003)referenceda

studydoneinCopenhagenthatsupportsthelinkageofincreasedbicycleuseinapopulation

andhealthbenefitsassociatedwiththis.Thestudyhadasamplepopulationof30,640;of

these,6,954adults(aged20-60years)wereregularcyclecommuters.Thestudyfollowedup

withthepopulationoveranaverageof14.4years.Themeantimeoftravelwasthreehoursa

weekforthecyclecommenters,and“theirrelativeriskofdeathwas0.72(95%CI0.57,0.91),

afteradjustmentforage,gender,educationalstatus,leisure-timephysicalactivity,BMI,blood

lipidlevels,smoking,andbloodpressure.”(Ruttereta.l,2003,p.90).Theresultssuggestedthat

Page 3: Janessa Linton - Research project

3

acyclistis28%lesslikelytodiefromanycausethananon-cyclist,inanygivenyear.Asthe

abovestudyhasshown,aswellassimilarstudies,publicfundsusedbypolicymakersto

investmentinbicycleinfrastructurecanbeoffsetbyasignificantdecreaseinhealthcarecosts

andexpenditures.Theyalsocanresultinareductioninexternalcosts,suchasinairpollution

andnoise,andpersonalsavingsinfuelconsumptionandparkingfeesassociatedwithdrivinga

motorizedvehicle.Inmystudy,Iwilldeterminetheincreasedbicycleusecausedfrom

Calgary’snewbicycleinfrastructure,andIwillapproximatethehealthcaresavingsanda

statisticallifesavedfromtheinfrastructureinvestment.

Inthispaper,IusetheCityofCalgaryCycleTrackPilotProjectasalaboratoryto

continuetheresearchintheareaofurbanbicycleinfrastructure.Thepilotprojectisanetwork

ofprotectedbikelanesinthedowntowncoreofCalgary.InApril2014,TheCityofCalgary

approvedtheCentreCityPilotCycleTrackNetworkPilotProject,whichwasdesignedtoadd

bicycleinfrastructuretodowntownCalgarystreets,wheretherehadpreviouslybeenno

designatedbikinglanes.ThesebicyclelaneswereopenedinJune,2015,afterapublic

informationcampaignadvertisingtheprojecttothepublic.Thedesignofthebicyclelanesis

intendedtoencouragemorebicycletripsintoandoutofthedowntowncore,andtoreduce

conflictsbetweenpeoplewhoarewalking,bikinganddriving.

TheCityofCalgaryCycleTrackPilotProjectisnovelforthreereasons:(1)Priortothe

pilotprojectCalgaryhadnoprotectedbicyclelaneinfrastructure;(2)Calgary’swinterweather

conditionspermitmyresultstobemoreapplicabletootherCanadianandnorthernUnited

States(U.S.)cities;(3)TheCityofCalgaryoffersauniquedatasetthatallowsmyresearchto

formulatecausalresultsthatpresentamoreaccuratevaluefortheincreasedbicyclingachieved

Page 4: Janessa Linton - Research project

4

fromthenewbicycleinfrastructure.Thus,mystudyoffersadditionalinsightsandrealistic

resultsforcitiesthatcurrentlyhavenoorlittlebicycleinfrastructureinasimilarclimate.

Theexistingliteraturethatevaluatesbicyclelaneinfrastructurefallsintothree

categories.Thefirstareaofstudylinkstheincreaseincommutecyclingwithanincreasein

healthbenefits.Thisliteratureaimstoanswerthreemainquestions:(1)“Isthereadesireto

increasecyclinginsociety?”;(2)“Willcyclingresultinhealthbenefits?”;and(3)“Howcan

cyclingbeencouraged?”Asecondareaofliteraturedevelopedtoolsthatcanbeusedinbicycle

laneinfrastructureevaluation.Thegoalofthisliteratureistostreamlinetoolsthatmakefuture

workandpolicyanalysisinbicycleinfrastructureeasierandmoreeffective.Thethirdand

largestareaofliteratureusedexistingbicycleinfrastructureinformationfromcitiesinEurope,

theUnitedKingdom(UK)andtheU.S.toestablishthecurrentandfuturebenefitsofinstalling

bicyclinginfrastructure.However,Ifindthattheliteratureinthethirdareacontainslimited

datasourcesandfocusesonspeculatingaboutfuturebicycleusebasedonhypothetical

infrastructureincreases.Theresearchersinthethirdareaalsouseddifferenttechniquesto

establishamethodthatisbasedontheirownliteraturereview,infrastructuredesign,and

requiredresearchoutcomes,thusmakingcomparisonsbetweendifferentbicycleinfrastructure

Mypaperaddressesthequestion,whatarethehealthbenefitsassociatedwithpublic

investmentinnewurbanbicyclepathinfrastructure?Asdiscussedabove,theCityofCalgary

PilotProjectisnovelintheareaofstudysurroundingurbanbicycleinfrastructure.To

determinetheincreasedbicycletrips,theCityofCalgaryinstalleddatacollectionmetersto

trackdailybicycletripsonthenewlybuiltbicyclelanes.IusetheCityofCalgarydatato

determinetheincreasedbicycleusagefromthebicyclelanepilotproject.Toestablishmore

Page 5: Janessa Linton - Research project

5

rigorousresults,Iapproachthisasacasualquestion,“Hasthebicycleinfrastructurecausedthe

increaseinbicycletripsinCalgary?”Tomakeacausallinkbetweenthebicycleinfrastructure

andincreasedbicycleusage,Iemployadifference-in-difference(DD)estimationstrategy.

IntuitivelytheDDestimationis,determiningthedifferencebetweenintersectionsonandoff

thebicycleinfrastructurebothbeforeandaftertheinfrastructureisinstalled.Onceyouknow

thedifferencesbothbeforeandafter,Ifindthedifferencebetweenthem,resultinginthevalue

ofincreasedbicycleuseaftertheinstallationofbicycleinfrastructurecausedonlybythe

intersectionsonthebicycleinfrastructureroadways.BydeterminingthatCalgary’snewbicycle

infrastructureisresponsiblefortheincreaseinbicycleuseinthedowntowncore,Ithen

approximatethehealthcaresavingsandastatisticallifesavedfromtheinfrastructure

investment.Ideterminethevalueofastatisticallifesavedandanypotentialsavingsinhealth

careexpendituresbyusingwell-establishedcalculationsandtoolsfromtheliterature.

Topreviewmymainresults,IfindoverthefirstyearoftheCalgaryCycleTrackPilot

Projectbeingopenitsawanannualincreaseinbicycleuseof592,199trips.Thisresultedinan

annualhealthcareexpendituresavingsof$441,250.32.Attheincreasedlevelofbicyclingthe

HealthEconomicAssessmentToolcalculatesthat2deathsareprevented,equatingtoan

annualvaluedof$11,408,000.Inaggregate,thenetpresentvalueofthetotalhealthbenefits

overaninfinitetimehorizonare$236,985,006fromtheincreaseinbicycleusagecausedbythe

newbicycleinfrastructureinCalgary.

Myworkfitswithinthisgrowingliteraturethatevaluatesgovernmentinvestmentin

bicyclelaneinfrastructure,mypapermakesthreemaincontributionstotheliterature.First,

typicalworkinthisareaestimateshowmuchbicyclinghasincreasedorapproximatesfuture

Page 6: Janessa Linton - Research project

6

increasesofbicycleusefromaproposedbicycleinfrastructureproject.Myworkisuniquein

thatIamabletomakeuseofarichdatasetfromtheCityofCalgary,whichcontainsdaily

bicycletripcountsandhistoriccountsofbicycletripsintoandoutofthedowntowncore.Thus,

Iamabletoprovideamoreaccurateandcasualrelationshipbetweenbicycleinfrastructureand

anincreaseinbicycling.Secondly,previousstudiesonlyexploredexpandingcurrentbicycle

infrastructure.However,myworkwiththeCalgarydatawillprovideresultsrelatedtonew

bicycleinfrastructure.Myworkwillalsoofferresultsthatarespecificforcitiesthatcurrently

donothavebicycleinfrastructureandarelookingtoinstallsuchinfrastructure.Finally,my

workisnovelbecauseCalgary’sweatherconditionsareunique1andhavethepotentialtohave

asignificanteffectontheresults,incontrasttopreviousstudiesthathaveusedcitiesthathave

abicyclefriendlyclimate.

2LiteratureReview

Thissectiondetailsthreemaincategoriesofliteratureintheareaofbicycleinfrastructure

identificationandevaluations,thatwereoutlinedintheintroduction.

2.1HealthBenefitsfromBicycling

Ojaetal.’s(1998)paperisrelevantbecauseitprovidedtheevidenceandresearchthat

validatedtheneedforfutureworkintheliteratureonthehealthbenefitsofhavingbicycling

infrastructureinplace.Ojaetal.(1998)ranthreedifferentstudiestoexaminetheutility

achievedbycommutingtoworkbywalkingorcycling.Thefirststudywasaquestionnaire

1ThroughoutthewinterCalgarycanhaveseverecoldsnaps,althoughrarelylastingmorethanaweek.Theweathercanchangeveryquickly,fromdaytodayandevenhourtohour.Wintercanbelongandautumncanshort,asCalgarycanseefrostandsnowfallsstartinginmid-September(CalgaryWeather&Climate|VisitCalgary.2016).

Page 7: Janessa Linton - Research project

7

surveyusedtoevaluatethestudypopulations’desiretowalkorcycletoworkifcycling

infrastructurewasinplace,oriftheywouldcontinuetousecurrentmodesoftransportation.

Thesafetyofpedestrianandcyclistswasfoundtobeamajorissuethatpreventspeoplefrom

anactivecommute.Thisiscategorizedasacriticalimpedimentforchangingone’sbehaviourto

includeanactivecommuteasaformofhealth-enhancingphysicalactivity(HEPA)intohisorher

routine.ThemainfocusofOjaetal.’s(1998)studywasarandomizedtrialthatdeliveredthe

followingresults:

Regularwalkingandcyclingforaone-wayaverageofabout30minutesduring

commutingtoworkwithself-pacedspeedimprovedaerobicfitness,decreased

cardiovascularstraininsubmaximalstandardwork,increasedtheuseoffatsas

anenergysourceinphysicalactivity,andcausedslightfavorablechangesin

bloodHDLcholesterolinhealthyyoungtomiddle-agedadultsoflowto

moderatephysicalfitness.(Ojaetal,1998)

Overalltheresultsshowedthatphysicalactivityfromactivecommutingisconsideredto

behealthenhancing.Thefinalsurveystudyfoundthatworkplacepromotionofanactive

commutewouldbewidelyacceptedbyemployees,butsafetyoftheseactivitieswasa

prerequisite.MypaperwillspeciallyaddressthisconcernastheCityofCalgaryprojecthas

installedprotectedbikelanes.Ojaetal.(1998)foundthatwalkingandcyclingtoworkarethe

easiestroutine-basedwaysforthecommunityandgeneralpopulationtoincreasetheirphysical

activity.Althoughthispaperdoesnotdeterminethespecificbenefitsthatareachievedbyan

increaseinbicycling,itprovidedtheunderpinningoffutureworkandthevalidityoftheresults.

Page 8: Janessa Linton - Research project

8

2.2HealthEconomicAssessmentTool(HEAT)

Rutteretal.(2003)evaluatedhowincreasedphysicalactivityfromcyclingcanchangehealth

outcomesinsocietyandfoundsimilarresultstoOjaetal(1998):notonlydoesithelpin

physicalandmentalhealthwellnessbutitalsoreducestherisksofchronichealthdiseases.In

thisliterature,Rutteretal.(2003)identifiedtheneedforeffectiveinterventionstopromotean

increaseinactivecommuting.Thetypeofpoliciesneededtointervenerequireeconomic

evolutionandasophisticatedwaytoevaluatethebenefitsrealizedfromnewbicycling

infrastructure.ThispaperdevelopedatoolcalledtheHealthEconomicAssessmentTool(HEAT)

forwalkingandcycling.Thetoolmodelstheeconomicvalueofreducedmortalityfromcycling.

AlthoughRutteretal.(2003)developedthetooltohelpcreatemorecompleteeconomiccases

usedtojustifyspendingoninfrastructurethatwouldincreasecommunityphysicalactivity,they

donotusethetoolintheirpaper.Myworkusesthetoolandidentificationstrategydescribed

byRutteretal.(2003).Thistoolisimportantasitallowsforbicycleinfrastructurestudiesto

useaconsistentapproachtoobtainingresults.Mypaperisalsoabletouseauniquedataset

andinfrastructuremodeltocomplementthisliterature.

2.3BicycleInfrastructureAnalysis

Thetwopaperintheliteraturethataremostcloselyrelatedtomypaperare,Saelensminde

(2004)andGotschi(2011).Bothpaperspresentedstudiesthatevaluatedthebenefitsofadding

additionalbicyclelanestoexistingbicyclinginfrastructure.Saelensminde(2004)studiedthree

citiesinNorway,andthegoaloftheresearchwastoinfluencegovernmentspendingonbicycle

infrastructuretopromoteaneasierandsaferwayforpeopletochoosetobicycleasameansof

transportation.Ineachofthethreecities,thebenefitssubstantiallyoutweighedthecosts.In

Page 9: Janessa Linton - Research project

9

particular,itwasseenthatthebenefitfromreducedcostsoflesssevereandseverediseases

andailmentsaresubstantial.Theresultsshowedabenefit-costratioofmagnitudesgreater

thanone,foreachindividualcity.

Gotschi(2011)isthefirststudyofitskindintheU.S.Thisstudyevaluatedthree

differentfuturebicycleinfrastructurescenariospotentiallybeingaddedtoPortland,Oregon’s

currentbicycleinfrastructure.Thisanalysiswasconductedusingdataonbicyclecountsin

Oregonandutilizedadiscretechoicemodelthatconvertedtripsintomiles.Thebenefitsthis

analysisconsidersarethehealthcaresavingsfromreducedmortalityandthesavedvalueof

statisticallives.Theresultsfromthethreedifferenceinvestmentplansallhavearatiogreater

thanone.Gotschi(2011)foundthatastheinvestmentplans’costsincreasedsignificantly

acrossthethreeplans,thebicyclemilesandannualtripsdonot.Myworkwillbuildonthis

areaofliteratureanddeterminecausallinkbetweenhealthbenefitsandbicycleinfrastructure.

3Data

Thissectionprovidesfurtherdetailsaboutthestudylocation—theCalgaryCycleTrackPilot

Project.Thisisfollowedbyapreliminarydescriptionofthedataandthedatalimitations.

3.1DescriptionofStudyArea

Thisstudyutilizestheuniquecyclist-countdatabasetheCityofCalgaryhasbeencompilingboth

beforeandaftertheCycleTrackPilotProjectimplementation.Thedatabaseconsistsofdata

collectedbyEco-Countermachines.Theseareautomatedbicyclistcountingmachinesplaced

onthecycletrack,aswellasonStephenAvenueandthePeaceBridge.Thedatabasealso

includesannualdatafromtheCityofCalgary’scordontrafficcountsthatareconductedinMay,

bicyclecounts,andcentrecitybicyclevolumemaps.ThisextensivedatabasemakesCalgarya

Page 10: Janessa Linton - Research project

10

goodlaboratorytostudythehealthoutcomesgeneratedbytheimplementationofnewbicycle

infrastructure.SimilartothemajorityofCanada’sprovincesandNortheasternU.S.states,

Calgaryexperiencescoldwinterymonthsandashortsummerseason.Unlikecurrentliterature

thatevaluatestheoutcomesofurbanbicycleinfrastructure,mystudyonCalgarywillprovide

resultsspecifictoCalgary’suniqueweatherconditionsandthecycletrackpilotprojectthathas

introducedCalgarytoitsfirstsetofprotectedbicyclelanesinthedowntownarea.

Approximatelyayearago,Calgaryimplementeditsfirstsetofphysicallyseparated

bicyclelanesinthedowntownarea.Previoustothis,Calgaryhadinstalledmanykilometersof

multiusepathwaysaroundthecityandhashadunprotecteddesignatedbikeroutesinthe

downtown,makingtheCycleTrackPilotProjectthefirstofitskindinCalgary.Thecycletrack

includesbicyclelaneson5th,St.from3rdAve.S.W.to17thS.W.,on12thAve.,from11thSt.S.W.

to4thSt.S.E.,andon8th/9thAve.,from11thSt.S.W.to3rdSt.S.W.andMacleodTrailsto4thSt.

S.E.Figure1belowshowsthenewcycletrackrouteand10Eco-Countermachinesinstalledto

collectdailybicycletripdata.Thepilotprojectcontainsover5kmofprotectbikelanes,with

the5thStreetsectionbeing1.4kmandthe12thAve.sectionbeing2.5kminlength.

Page 11: Janessa Linton - Research project

11

3.2Data

TogainanunderstandingofpreviousbiketrendsinCalgarybeforethepilotproject,Ireviewthe

censusdataandbicyclevolumemaps.Iusethe2014CivicCensustocollectdatatoformulatea

preliminaryunderstandingofbicycleuseandpatternswithinCalgaryandthedifferentwards.

Inadditiontothis,Ihaveaccesstobicyclevolumemapsthatstartedin2012until2015.The

mapsprovideindepthdetailsofthenumberofbicyclistsatmultiplecorridorsthroughoutthe

citycentre.Iextractthedatapointsonthemapsfrom2013to2015,Iusethisdatato

understandthebicycleusetrendsinCalgarybothbeforeandaftertheCalgaryCycleTrackPilot

Projectstarted.Ithenconstructapaneldatasettobeusedinthedifference-in-difference

estimation,withthe2013to2015volumemapdatapoints.

Theautomatedbicycletripcountersprovideareliablemethodformetocollectand

analyzeCalgary’sbicycleinfrastructureusageintoandoutofdowntownduringweekdayssince

thepilotprojectopeninginJune2015.Thedataispublicallyavailabledaily,andEco-Counter

saysthatthecountersare97%accurate(TheCityofCalgary-BikeData,2016).Theanalysisof

thebikedatawillincorporatedatafromJune2015untilJuly2016.Unlikeotherstudies,Iam

abletoincludewintermonthsbecausetheCityofCalgarymaintainsthebicycleinfrastructure

yearround.Boththecensusandvolumemapdatacombinedwiththerecenttripcounterdata

areusedtodeterminetheincreaseinbicycletripsachievedfromthenewinfrastructure.

InadditiontotheCityofCalgarybicycledata,IcollectandanalysisCalgary’shistoric

weatherdataprovidedbyEnvironmentandClimateChangeCanada.Icollectquarterlydatafor

Calgarybothfourquartersbeforeandafterthepilotprojectopening.ThemetricsIcollectare

rainfall(mm),snowfall(cm),precipitation(mm),meantemperature(C),snowonground(cm),

Page 12: Janessa Linton - Research project

12

numberofraindays,numberofsnowdays,numberofprecipitationdaysandnumberofwind-

chilldays.

3.3DataDescription

Figure2below,demonstratesthatbicyclingasamodeoftransportationtoworkin2014is

relativelysmall.Bicyclingaccountsfor1.39%ofcitywidemodeoftransportationtoworkin

2014,thisisupslightlyfrom0.87%in2011(2014CivicCensusResults.2014).Consequently,

thenaturalincreasefrom2011to2014isinsignificantforbicycletransportationtowork.

Figure2alsoshowsthatpeoplewhodrovealonetoworkastransportationmodeholdsthe

highestshare,at67.39%in2014,whichisdownfrom69.58%in2011(2014CivicCensusResults.

2014).Accordingly,thereissubstantialopportunityforgrowthwithinthecategoryofbicycling

toworkinCalgary.

Page 13: Janessa Linton - Research project

13

Table1representsthetopfivewardsinCalgarywherepeopleuseabicycleasthemode

oftransportationtowork.(SeeappendixAforadetailedmapofwardpositioninCalgary).The

topfivewardsoutof14totalwardsrepresents78%ofthetotalbicyclecommuters.These

areasarelocatedclosetothedowntowncoreandarelikelytobeimpactedthemostbythe

CalgaryCycleTrackPilotProject.

Figure3below,exemplifiesthesignificantincreaseinaveragedailytripsfrom2014to

2015.ThisinformationcombinedwithFigure2andTable1leadmetoconcludethattherewas

anincreaseinbicycleusefrom2014and2015becauseofthenewbicycleinfrastructure.

Page 14: Janessa Linton - Research project

14

Table2providesafewsummarystatisticsofthedatafromsixofthecountersalongthe

newbicycleinfrastructurepaths.

Page 15: Janessa Linton - Research project

15

4Methodology

Afterreviewingseveralstudiesincluding,Saelensminde(2004),Macdonald(2007),andGotschi

(2011),Ifindthathealthcaresavingsandsavedvalueofstatisticallivesaremostsignificant

outcomesachievedbybicyclinginfrastructure.Tocalculatethevalueofhealthcaresavingsand

savedvalueofstatisticallivesIwillusebothestimatesdevelopedinpreviousstudiesandthe

bicyclelevelestimatesIconstructedempirically.Ifirstbuildpreliminarybicyclelevelestimates

usingthedatadescribedintheabovesection.Leadingtotheempiricalquestiontobe

answered:Didthebicyclelaneinfrastructureactuallycausetheincreaseinbicycling?The

papersmainobjectiveistounderstandingthecausalrelationshipbetweenthebicyclelane

infrastructureandbicycletrips,thendeterminethehealthoutcomesofthisincreaseinbicycle

use.Thetwocaveatsindeterminingtheactualincreaseinbicycleusefromthebicycle

infrastructureare:weatherinfluencesandbicycletrafficbeingre-routedtothenewbicycle

lanes.Stepsareillustratedinthissection.

4.1 Estimation Strategy

To establish the preliminary levels of the increase in bike usage, I first use the bicycle volume

maps from 2012 to 2015, and collect data points from six locations on the map that match with

the current counter location along the new bicycle infrastructure. The six points are

predominantly end points of the routes, they provide an understanding of the volume coming into

or leaving the downtown core on the new bicycle infrastructure. I then determine the percentage

increase of bike trips from 2014 to 2015. I find that 2012 to 2014 showed little to no growth,

therefore I take the percentage increase from 2014 to 2015 to be exclusively because of the new

bicycle infrastructure. I then use this percentage increase, combined with the actually bike

volume from July 1st 2015 until June 30th 2016 (one full year post bicycle infrastructure opening)

Page 16: Janessa Linton - Research project

16

todeterminetheactuallyincreaseoverthistimeperiod.Thefinalstepistoaggregatethe

increasedbicycleusefromthesixcounterlocationstogetafinalvalueofincreasedbicycleuse.

Thenextstepistodetermineifweatherhadaninfluenceonthepossiblebicycleusage

increase.Toverifythis,IcomparefourquartersbothbeforeandaftertheCycleTrackPilot

Projectopened,asofJuly1st2015.Iidentifyeightmetrics:rainfall(mm),snowfall(cm),mean

temperature(C),precipitation(mm),snowonground(cm),numberofprecipitationsdays,

numberofraindaysandnumberofsnowdays.

Finally,Iuseadifference-in-difference(DD)estimationstrategytodetermineifthereis

anincreaseinbicycleusealongthenewbicycleinfrastructure,ifso,isitcausedfromthe

bicycleinfrastructureitself?Iestimateaseriesofregressionstoevaluatethedifference

betweenbicycletripsonroadswithbicycleinfrastructureandroadswithnon-bicycle

infrastructureformallyacrosstime.Theregressionsarebasedonmodelofthegeneralform,

BicycleTripsit=b0+b1Dummy_NewBikeRoutei+b2Dummy_2015t+bDDInteraction2015t_NewBikeRoutei+eit(1)

whereiindexescountlocationonvolumemap;tindexesyears(2013,2014or2015);

BicycleTripsitisdependentvariableincludedinthepaneldatasetthatIextractedfromthe

bicyclevolumemaps;Dummy_NewBikeRouteiisadummyvariablethattakesthevalueof1if

bicyclecountintersectionisonthenewbicycleinfrastructurerouteand0otherwise;

Dummy_2015tisadummyvariablethattakesthevalueof1inpostbicycleinfrastructuretime

periods(2015)and0otherwise(2013and2014);Interaction2015t_NewBikeRouteiisthe

interactionterm,generatedbymultiplyingthetwodummies;andeitistheerrorterm.

Page 17: Janessa Linton - Research project

17

IntuitivelytheDDestimationis,determiningthedifferencebetweenintersectionson

andoffthebicycleinfrastructurebothbeforeandaftertheinfrastructureisinstalled.Onceyou

knowthetwodifferencesbothbeforeandafter,Ifindthedifferencebetweenthem,resulting

inthevalueofincreasedbicycleuseaftertheinstallationofbicycleinfrastructurecausedonly

bytheintersectionsonthebicycleinfrastructureroadways.Allintersectionsthatarenot

includedonthebicycleinfrastructureroadwaysactasthecounterfactualtothetreatedpoints

afterthepilotprojectwasinitiated.TheDDcounterfactualcomesfromthestrongcommon

trendsassumptionthatImaketoimplytheDDestimationstrategy.Thispresumesthat,absent

ofbicycleinfrastructuredifference,boththebicycleinfrastructureandnon-bicycle

infrastructureintersectionsshouldfollowthesametrend.

FormyregressionsIemploybothlog-linearandnon-log-linearspecificationtotheTrips

variable,thisenablesmetofindthebestfitforthedata.Iestimateeachregressionwithonlya

simplestandarderrorformula.ThecoefficientontheinteractiontermistheDDcasualeffect,

itcapturestheeffectonnewbicycleinfrastructureonbicycletrips.Iusethispercentage

increase,combinedwiththeactuallybikevolumefromJuly1st2015untilJune30th2016(one

fullyearpostbicycleinfrastructureopening)todeterminethebicycletripincreaseoverthis

timeperiod.Similartotheaggregationinthepreliminaryresults,Iaggregatetheincreased

bicycleusefromthesixcounterlocationstogetafinalvaluefortheincreasebicycleuse.

4.2HealthCareSavings

Tocalculatethehealthcaresavings,IwillfollowGotschi(2011).First,Gotschi(2011)

formulates,anaverageestimatedhealthcarecostsperinactiveperson.Twooftheestimates

takethetotalestimatedhealthcarecostsattributedtoinactivityintheUS,dividebytotal

Page 18: Janessa Linton - Research project

18

population,divideby0.75toadjustforadultpopulation,anddivideby0.48toadjustfor

proportionofinactivepeople.Theadjustmentof48%isfortheprevalenceofinactivityand

allowsfortheresultstobemoreconservative.Theaveragecostestimateis,$544perinactive

personperyear,inflatedto2008dollars(Gotschi,2011).ForthesecondstepGotschi(2011)

assumesthatthedifferencebetweenaninactiveandactivepersonin30minutesofphysical

activityperday.Therefore,itisassumedthat30minutesofbicyclingwillgiveanannualcredit

of$544.

Inthefinalsteps,Imaketheassumptionthateachtripis15minutesinlength,basedon

thebicycletracklengthandthe2014CivicCensusResults.

Annualhealthcaresavings=[daily30-minutesegments]*$544[annualcreditfordailysegment](2)

4.3Savedvalueofstatisticallives

IwillusetheHealthEconomicAssessmentTool2(HEAT)todeterminethevalueofreduced

mortalityduetobicycling.Asdiscussedintheliteraturereviewsection2.2,HEATwas

developedtosupportbicycleinfrastructureandpolicydiscussions,makingittheappropriate

toolformystudy.Theinputsitrequiresare,annualbicycletripsandtheaveragedistance

traveled.Asstatedpreviously,Iassumethateachtripis15minutesinlength.TheHEAT

estimatestheamountofsavedlivesandthevalueassociatedwitheachsavedlifeaccordingto

theinputs.Therefore,thistoolgeneratesresultsforthevalueofastatisticallifesavedexclusive

tomystudy.

4.4Validityofresults

2 http://www.heatwalkingcycling.org/index.php?pg=cycling&act=introduction

Page 19: Janessa Linton - Research project

19

Oneimportantcaveattomentionisthatotherfactorsareinvolvedthatarecontributing

totheincreaseinbicycleusageotherthanthebicycleinfrastructure.Toeasetheseconcerns,I

usetheDDestimationstrategytoconstructbicyclelevelestimatesthatanswermoreaccurately

ifthebicyclelaneinfrastructureactuallycausedanincreaseinbicycling,unlikeotherstudies

thatguessthepercentageincreasethatwillbeachievedfrombicycleinfrastructureprojects.

ThevalidityoftheDDapproachisgovernedbythestrongcommontrendsassumption

thatismade.Signifyingthat,thebicycletripstrendinnon-bicycleinfrastructureintersectionsis

similartothebicycletripstrendinbicycleinfrastructureintersectionsbeforethebicycle

infrastructureinstallation.Ifthisholdsthennon-bicycleinfrastructureintersectionsprovidea

validcounterfactualforintersectionsonbicycleinfrastructureroadspostbicycleinfrastructure

installation.Thisassumptionisdebatableiftrajectoriespriortothenewbicycleinfrastructure

weredifferent.Thetrajectorycanbeverifiedgraphicallyorwitharegressionbasedtestusing

pre-treatmentperiods.Mydataonlyhastwopre-treatmentperiods,thereforeIamunableto

verifythecommontrendsofthetreatedandcontrolbicyclepathsinthepre-treatmentperiod.

Icanmakearealisticassumptionthatthereisnoreasontobelievethatthecontrolandtreated

pathwayswereondifferenttrajectoriespriortothenewbicycleinfrastructureimplementation.

Nevertheless,thecommontrendsassumptioncannotbeverifiedbythedata,indicatingthe

resultsmaybebiased.

Theestimatescalculatedinthisstudyforhealthcaresavingsandsavedvalueof

statisticallivesareveryconservative.Toachievetheconservativeresults,Ididacriticalreview

ofthreestudiesthatcalculatedestimatesforsimilarhealthoutcomes.Thehealthcaresavings

valueisveryconservativeandisconstructedbyaveragingthreedifferenthighqualitystudies.

Page 20: Janessa Linton - Research project

20

TheHEATiscustomizabletoindividualcasestudies,andhasbeendevelopedasanaccurateand

streamlineinterface.Overall,thecarefulconsiderationofthemethodologydesignleadstothe

generationconservativeandpracticalresults.

5ResultsandDiscussion

Toanswer,whatarethehealthbenefitsassociatedwithpublicinvestmentinnewurbanbicycle

infrastructure.First,IdeterminetheincreasedamountofbicyclinginCalgary,postbicyclelane

infrastructureinstallation.Thisisacausalquestionthatneedstobeidentified.Didthebicycle

laneinfrastructurecausetheincreaseinbicycleuseonthepilotprojectlaneways?Second,

oncethelevelsofbicyclingareknownIdeterminethehealthcaresavingsandthevalueof

statisticallivessaved.Resultsarepresentedinthefollowingsection.

5.1BicycleLevels

PreliminaryResults

Table3below,showsthereisanoverallincreaseinbicyclinglevelsfrom2014to2015,these

valuesarebasedSeptemberandOctoberaveragevolumedatafromtheCityofCalgarybicycle

volumemaps.Atsixofthecounterlocationsalongthenewbicyclepathstherehaswas

approximately1320tripsadayin2012,1840in2013andin2014asmalldecreasedownto

1780.BasedonthesevaluesIpredictedthatwithoutthebicyclelaneinfrastructurethe2015

valuewouldhavehadnogrowthfrom2014.Therefore,intable3Iwasabletoshowthatthe

sixcounterlocationalongthenewbicyclepathsallhaveovera200%increaseinbicycletrip

traffic,exceptcounter1.

Page 21: Janessa Linton - Research project

21

Table3presentsthedatacollectedfromsixoftheeco-counteronthenewbicycle

paths,andshowsanincreaseof670,113tripsabovewhatwouldbeenexpectedalongthose

routeswithoutthenewinfrastructure.Table3providesaclearunderstandingoftheincrease

bicyclelevelsoveraone-yearperiodafterthebicycleinfrastructurewasinstalledinCalgary.

AlthoughIfindthereisanincreaseinbicycleusagealongthenewbicycleinfrastructure,table3

doesnotprovideacausallinkbetweentheincreasedbicycleusageandthenewbicycle

infrastructure.

WeatherInfluence

Figure3showsthatoverallweatherfromquarterthreeandfourin2014andquarteroneand

twoin2015donotvarysignificantlyfromthefourprecedingquarters2015and2016.The

weatherdatafrombeforeandafterthepilotprojectbicyclepathopeningshowsminimal

Page 22: Janessa Linton - Research project

22

variation.Therefore,Icanconcludethatweathereffectshadminimalinfluenceonthe

increasedbicycletripsalongthenewpathsindowntownCalgary,asseenintable3.

Page 23: Janessa Linton - Research project

23

Difference-in-DifferenceEstimation

Table4representstheresultsgeneratedbyrunningtwoseparateDDregressions,(1)usesnon-

log-linearspecificationoftripsand(2)usesalog-linearspecificationoftrips.Regression(1)DD

interactioncoefficientissignificantat0.1%andthenewbicycleinfrastructurehasapositive

influenceontrips.TheDDinteractioncoefficientprovidesanaverageincreaseof455tripson

thecountlocationfoundalongthenewbicycleinfrastructureroads.Regression(2)revealsthat

theDDinteractioncoefficientissignificantat0.1%andthenewbicycleinfrastructurehasa

positiveinfluenceontrips.TheDDinteractioncoefficientinregression(2)impliesthatthereis

a219%increaseinbicycletripsontheaveragecountlocationfoundalongthenewbicycle

infrastructure.Ifindthatthetotalincreasedtripsare,592119(seeAppendixBforfull

calculation),thisiscomparableto670,113,whichIcalculatedastheincreasedtripsinthe

preliminaryanalysis.

Page 24: Janessa Linton - Research project

24

BothDDinteractioncoefficientsprovideevidencethattheincreaseinbicycleusealong

thenewbicycleinfrastructureislikelycausedbythenewbicycleinfrastructure.Althoughthe

DDestimationstrategyallowsmetomakeaclosetocausallink,thereisstillquestionofthe

validity.Mytwomainconcernsare:(1)Therobustnessoftheresultsasthestrongcommon

trendassumptionmadewiththeDDestimationisunverifiablewithmydata.Thecommon

trendassumptionintuitivelymeansthatintheabsenceofthebicycleinfrastructurethenon-

bicycleinfrastructureintersectionsfollowthesametrendasthebicycleinfrastructure

intersections.Therefore,normallytheDDcommontrendisverifiedbeforetheinstallationof

thebicycleinfrastructureandifitholds,theDDusesthenon-bicycleinfrastructure

intersectionsasareferencepointforwhatpaththebicycleinfrastructureintersectionswould

havefollowedifthebicycleinfrastructurewasn’tinstalled.Asaconsequenceofnotbeingable

toverifythecommontrendassumptionmyresultsmaybebiasedintwoways.(1)Theresults

maybeupwardbiased,ifforexample,theCityofCalgarychoose12thAvenue,5thStreet,8th

Avenueand9thAvenueasbicycleinfrastructureroadsbecausetheywereexperiencingalarger

increaseinbicycleusagethanotherroads.Conversely,iftheCityofCalgarychoose12th

Avenue,5thStreet,8thAvenueand9thAvenueasbicycleinfrastructureroadsbecausetheywere

experiencingasmallerincreaseinbicycleusagethanotherroads.(2)Therepotentiallycould

havebeenotherpoliciesduringthetimeframeofmystudythatinfluencedtheincreasein

bicycleuse.Forexample,ifworkplacessetupincentivetoencourageemployeestobicycleto

work,thiswouldcausetheresultstobeoverestimated.

Page 25: Janessa Linton - Research project

25

5.2HealthValuationResults

Twohealthoutcomesassociatedwithpublicinvestmentinnewbicycleinfrastructurearehealth

caresavingsandvalueofastatisticallifesaved.Valuingthesetwohealthoutcomesisthefinal

stepofthispaper,theresultsarepresentedintable5.Itquantitativelyprovidesmeaningto

theincreaseinbicycleusagefromthenewbicycleinfrastructureinCalgary.SeeappendixCand

Dforthedetailedcalculationofsavedhealthcareexpendituresandinputdatausedinthe

HEAT,respectively.IwilldiscussiontheresultsundertheDDestimation,astheyprovidethe

mostaccurateresultsoftheincreaseinbicycleuse.

OverthefirstyearoftheCalgaryCycleTrackPilotProjectbeingopenitsawanannual

increaseinbicycleuseof592,199trips.Thisresultsinannualhealthcareexpendituresavings

of$441,250.32,meaningtheincreasedbicycletripssavedtax-payersfromputting$441,250.32

additionalfundsintohealthcare.AtthenewcurrentincreasedlevelofbicyclingtheHEAT

calculatesthat2deathsareprevented,equatingtoanannualvaluedof$11,408,000.

Page 26: Janessa Linton - Research project

26

Overall,thenetpresentvalueofthetotalhealthbenefitsoveraninfinitetimehorizonare

$236,985,006.

5.3Discussion

Insummary,overthefirstyear,Calgaryhasseenahealthsavingsof$11.8M,byproviding

approximately5.4kmsofnewprotectbicycleinfrastructure,withaninvestmentcostof5.75M

(TheCityofCalgary-CycleTrackNetwork.2016).Icalculatedthenetpresentvalueofthetotal

healthbenefitstobe$236,985,006.Thisnetpresentvaluerepresentsthevalueofthe

infrastructureinfutureyearsinpresentdollars.Iusedadiscountfactorof5%forthe

calculation,thisdiscountalignswithSaelensminde,K.(2004),Saelensmindeuseda5%discount

butovera25-yearlifetimeoftheproject.Definingthenetpresentvalueisimportantto

recognizethefuturevalueofthebicycleinfrastructureproject.

Mostimportantly,Iwasabletodetermineaclosetocausalrelationshipbetweenthe

newbicycleinfrastructureinCalgaryandtheincreaseinbicycleusage.Ialsoverifiedthat

weatherpreandpostbicycleinfrastructurewasnotacontributingfactortotheincreasein

bicycleuse.TheDDfounda219%increaseinbicycleusagealongthebikepathsthatcontained

thenewbicycleinfrastructure.Finally,Iwasabletousethisdeterminationofthecasual

relationshiptolinkthenewbicycleinfrastructurewithhealthoutcomesandderiveamonetary

valuebetweentheoutcomesandthenewbicycleinfrastructureinCalgary.UsingtheDD

estimationstrategyistheimportantsteptoproduceresultsthatareparticularlyinfluentialfor

futurebicycleinfrastructureprojectsbothinCalgaryandothercitiesundersimilarconditions.

Page 27: Janessa Linton - Research project

27

6Conclusion

Toconclude,myresearchrevealsthatTheCityofCalgaryCycleTrackPilotProjectresultedin

betterhealththroughtheincreaseinbicycleusage.Itgeneratedanetpresentvalueof$237M

fromtwohealthbenefits,healthcareexpendituresavingsandthevalueofastatisticallife

saved.Thisstudyisabletoprovideclosetocausalresultsthattellsusthatthebicycle

infrastructurethatCalgaryinstalledcausedanincreaseinbicycleuse.Ihopethisevidencefrom

CalgarymotivatesnewpoliciesandfundingforbicycleinfrastructureinCalgaryandothercities

thatareeagertoreduceobesityandinactivity,byencouraginganactivecommute.

Page 28: Janessa Linton - Research project

28

AppendicesAppendixA.WardMapfromCalgaryCensus

Page 29: Janessa Linton - Research project

29

AppendixB.Difference-in-DifferenceAggregationResults

Notes.Detailedtableofincreasedtripspercounterlocationandaggregationoftrips.ComparingbothpreliminaryresultsandDDestimationresults.AppendixC.CalculationsforAnnualHealthCareSavings

Annualhealthcaresavings=[daily30-minutesegments]*$544[annualcreditfordailysegment](1)PreliminaryResultsStep1:AnnualIncreaseTrips:670116(15minutesegments)Step2:30minutesegments,annually:670116/2=335058segments/yearStep3:numberof30minutesegmentsdaily:[(335058segments/year)/365day/year)]=917.97Step4:eachdailysegmentgetsa$544creditannually=$499,375.68Difference-in-DifferenceEstimationResultsStep1:Healthenhancingincreasedtrips:592119Step2:30minutesegments,annually:592119/2=296056segments/yearStep3:numberof30minutesegmentsdaily:[(296056segments/year)/365day/year)]=811.11Step4:eachdailysegmentgetsa$544creditannually=$441,243.84

Route Counter location

Annual Trip (July 1st 2015-June 30th 2016)

Estimated Increased Trips (Preliminary Results)

Estimated Increased Trips (DD Estimation Results)

8th Avenue #1, West of 8th Avenue

69,577 0 37807

Stephen Avenue

#3, East of 1st Street

180,637

140135 98154

12th Avenue #5, West of 8th Street W

198,827 144354 108038

#7, West of 3rd Street E

69,004 47028 37495

5th Street #8, North of 5th Avenue

217,946 127512 118427

#9, CPR underpass

353,709 211084 192198

Aggregate trips:

670113 592119

Page 30: Janessa Linton - Research project

30

AppendixD.HEATInputData

PreliminaryResultsInputdata:Cyclingfromasinglepointintime.Totalnumberoftripsobserved:670113/365=1836,100%arecycletrips90%arereturntripsaveragedistanceof4km(15minutetrips,speedof16km/hr.)EvaluatethebenefitsofthiscurrentincreasedcyclingAveragepopulation:(about20-64Years)CrudedeathrateCanadaper100000=739(worldbank)5,800,000–valueofastatisticallife(ignoringcurrency)

Difference-in-DifferenceEstimationResultsInputdata:Cyclingfromasinglepointintime.Totalnumberoftripsobserved:592119/365=1622,100%arecycletrips90%arereturntripsaveragedistanceof4km(15minutetrips,speedof16km/hr.)EvaluatethebenefitsofthiscurrentincreasedcyclingAveragepopulation:(about20-64Years)CrudedeathrateCanadaper100000=739(worldbank)5,800,000–valueofastatisticallife(ignoringcurrency)

Page 31: Janessa Linton - Research project

31

References

2014 Civic Census Results. (2014) (1st ed.). Calgary. Retrieved from http://www.calgary.ca/_layouts/cocis/DirectDownload.aspx?target=http%3a%2f%2fwww.calgary.ca%2fCA%2fcity-clerks%2fDocuments%2fElection-and-information-services%2fCensus2014%2fFinal%25202014%2520Census%2520Results%2520book.pdf&noredirect=1&sf=1 Bidwell, S. (2012). Review of studies that have quantified the economic benefits of interventions to increase walking and cycling for transport (1st ed.). Canterbury: Community and Public Health. Retrieved from http://www.cph.co.nz/files/quanteconbenefitphysicalactive.pdf Brady, C. (2016). Decreasing Obesity and Obesity Stigma: Socio-Demographic Differences in Beliefs about Causes of and Responsibility for Obesity. Social Sciences, 5(1), 12. http://dx.doi.org/10.3390/socsci5010012 Calgary Weather & Climate | Visit Calgary. (2016). Visit Calgary. Retrieved 11 August 2016, from http://www.visitcalgary.com/visitor-information/weather-climate Calgary Weather over the Last 5 Years (quarterly data). (2016). Calgary.weatherstats.ca. Retrieved 11 August 2016, from http://calgary.weatherstats.ca/periods/5years.html Cavill, N., Kahlmeier, S., Rutter, H., Racioppi, F., & Oja, P. (2008). Economic analyses of transport infrastructure and policies including health effects related to cycling and walking: A systematic review. Transport Policy, 15(5), 291-304. http://dx.doi.org/10.1016/j.tranpol.2008.11.001 Centre City Cycle Track Network Pilot Project Update. (2015) (1st ed.). Calgary. Retrieved from http://www.calgary.ca/Transportation/TP/Documents/cycling/City%20Centre%20cycle%20track/Cycle%20Track%20Presentation%202015%20T+T%20Final.pdf Das, S., & Duncan, J. (2015). 2015 Cycle Track and Stephen Avenue Bicycle Pilot Projects Research (1st ed.). Calgary: Ipsos Public affairs. Retrieved from http://www.calgary.ca/Transportation/TP/Documents/cycling/City%20Centre%20cycle%20track/Cycletrack-stephenave-research-report.pdf Death rate, crude (per 1,000 people) | Data. (2016). Data.worldbank.org. Retrieved 11 August 2016, from http://data.worldbank.org/indicator/SP.DYN.CDRT.IN?end=2015&locations=CA&start=2015&view=bar&year_low_desc=false Frank, L., Andresen, M., & Schmid, T. (2004). Obesity relationships with community design, physical activity, and time spent in cars. American Journal Of Preventive Medicine, 27(2), 87-96. http://dx.doi.org/10.1016/j.amepre.2004.04.011

Page 32: Janessa Linton - Research project

32

García-Palomares, J. (2010). Urban sprawl and travel to work: the case of the metropolitan area of Madrid. Journal Of Transport Geography, 18(2), 197-213. http://dx.doi.org/10.1016/j.jtrangeo.2009.05.012 Gotschi, T. (2011). Costs and Benefits of Bicycling Investments in Portland, Oregon. Journal Of Physical Activity And Health, 8(1). Retrieved from http://journals.humankinetics.com/jpah-supplements-special-issues/jpah-volume-8-supplement-january/costs-and-benefits-of-bicycling-investments-in-portland-oregon Health economic assessment tool (HEAT) for cycling and walking. (2016). Euro.who.int. Retrieved 19 March 2016, from http://www.euro.who.int/en/health-topics/environment-and-health/Transport-and-health/activities/guidance-and-tools/health-economic-assessment-tool-heat-for-cycling-and-walking Macdonald, B. (2007). Valuing the benefits of cycling A report to Cycling England (1st ed.). SQW. Retrieved from http://webarchive.nationalarchives.gov.uk/20110407094607/http:/www.dft.gov.uk/cyclingengland/site/wp-content/uploads/2008/08/valuing-the-benefits-of-cycling-full.pdf Oja, P., Vuori, I., & Paronen, O. (1998). Daily walking and cycling to work: their utility as health-enhancing physical activity. Patient Education And Counseling, 33, S87-S94. http://dx.doi.org/10.1016/s0738-3991(98)00013-5 Rosin, O. (2008). THE ECONOMIC CAUSES OF OBESITY: A SURVEY. Journal Of Economic Surveys, 22(4), 617-647. http://dx.doi.org/10.1111/j.1467-6419.2007.00544.x Rutter, H., Cavill, N., Racioppi, F., Dinsdale, H., Oja, P., & Kahlmeier, S. (2013). Economic Impact of Reduced Mortality Due to Increased Cycling. American Journal Of Preventive Medicine, 44(1), 89-92. http://dx.doi.org/10.1016/j.amepre.2012.09.053 Santana, P., Santos, R., & Nogueira, H. (2009). The link between local environment and obesity: A multilevel analysis in the Lisbon Metropolitan Area, Portugal. Social Science & Medicine, 68(4), 601-609. http://dx.doi.org/10.1016/j.socscimed.2008.11.033 Sælensminde, K. (2004). Cost–benefit analyses of walking and cycling track networks taking into account insecurity, health effects and external costs of motorized traffic. Transportation Research Part A: Policy And Practice, 38(8), 593-606. http://dx.doi.org/10.1016/j.tra.2004.04.003 The City of Calgary - Bike Data. (2016). Calgary.ca. Retrieved 10 April 2016, from http://www.calgary.ca/Transportation/TP/Pages/Cycling/Bike-Data.aspx The City of Calgary - Cycle Track Network. (2016). Calgary.ca. Retrieved 19 March 2016, from http://www.calgary.ca/Transportation/TP/Pages/Cycling/Cycling-Route-Improvements/City-Centre-cycle-track-network.aspx

Page 33: Janessa Linton - Research project

33

The City of Calgary – Cycle Track Network - History and Background. (2015). Calgary.ca. Retrieved 19 March 2016, from http://www.calgary.ca/Transportation/TP/Pages/Cycling/Cycling-Route-Improvements/Cycle-Track-Network---History-and-Background.aspx The City of Calgary – Bikeway Projects. (2011). Calgary.ca. Retrieved 19 March 2016, from http://www.calgary.ca/Transportation/TP/Pages/Cycling/Cycling-Route-Improvements/Planned-Cycling-Route-Improvements.aspx