5
High-Efficiency Concepts for Photovoltaics based on Silicon Quantum Structures Bert Stegemann , Thomas Lußky, Andreas Schöpke, Manfred Schmidt Helmholtz Center Berlin for Materials and Energy GmbH* Department of Silicon Photovoltaics (SE1) * formerly Hahn-Meitner-Institute Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt Silicon Quantum Structures for Photovoltaics 2 Is it possible to enhance solar energy conversion efficiencies by utilization of quantum size effects ? Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt Silicon Quantum Structures for Photovoltaics 3 Si Nanostructures for PV – Research at Helmholtz Center Berlin Nano-Physics Æ exploring atomic scale matter Æ basic material research Nano-Geometry Æ nano-composite structures Æ nanostructured solar cells Quantum-Technology Æ reduction of thermalization Æ utilization of quantum size effects Æ realization of high-efficiency concepts First BMBF joint project (2006 – 2008): Band Structure Design: Charge Carrier Transport in Silicon-based quantum structures for high-efficiency solar cellsNew BMBF joint project (2009 – 2011) SINOVA: Silicon-based nanostructured thin-film materials as innovative functional elements in next generation solar cells“ 20… ? Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt Silicon Quantum Structures for Photovoltaics 4 Outline 1. Introduction - loss mechanisms - beyond Shockley Queisser - tandem cell concept 2. Si/SiO 2 Multi Quantum Wells - quantum size effect - structure and photoconductivity 3. High Quality Si/SiO 2 Single Quantum Wells - preparation - interface gap state spectroscopy - in situ interface passivation - photoelectrical properties 4. Conclusions and Outlook Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt Silicon Quantum Structures for Photovoltaics 5 Loss mechanisms in photovoltaic energy conversion Aim of 3rd generation concepts: Æ exceeding the Shockley Queisser limit (single junction efficiency) Æ transform excess energy into electrical rather than thermal energy 0 20 40 60 80 100 hν > E g % usable energy hν < E g excess energy further losses > 50 % Shockley-Queisser limit: max. single bandgap efficiency: 32.7 % Record cell: 24.7 % (mono-Si, „PERL“, UNSW 1994) W. Shockley and H.J. Queisser, J. Appl. Phys. 32 (1961), 51 Zhao J, Wang A and Green M 1999 Prog. Photovolt. 7 471 Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt Silicon Quantum Structures for Photovoltaics Beyond Shockley-Queisser : Approaches Energy bandgap engineering ÆTandem Cells Hot Carrier Conversion - Extraction, collection, and utilization of hot carriers - Impact ionization / multiple exciton generation Intermediate Band Solar Cell Thermophotonic Solar Cells Down-Conversion and Up-Conversion See: M. Green: Third Generation Photovoltaics, Springer, 2003 P. Würfel: Solarzellen der dritten Generation, Phys. J., 2003 A. Marti / A. Luque: Next Generaton Photovoltaics, 2002 6 Quantum Structures

Is it possible to enhance solar energy conversion ... · GaInP/GaAs/Ge 32.0 % 1.5AM Spectrolab 2003 GaInP/GaInAs/GaAs 40.8 % 326 suns NREL 2008 a-Si/µc-Si 11.7 % 1.5AM Kaneka 2004

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • High-Efficiency Concepts for Photovoltaicsbased on Silicon Quantum Structures

    Bert Stegemann, Thomas Lußky, Andreas Schöpke, Manfred Schmidt

    Helmholtz Center Berlin for Materials and Energy GmbH* Department of Silicon Photovoltaics (SE1)

    * formerly Hahn-Meitner-InstituteBert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    2

    Is it possible to enhance

    solar energy conversion efficiencies by

    utilization of quantum size effects ?

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    3

    Si Nanostructures for PV – Research at Helmholtz Center Berlin

    Nano-Physicsexploring atomic scale matterbasic material research

    Nano-Geometrynano-composite structuresnanostructured solar cells

    Quantum-Technologyreduction of thermalizationutilization of quantum size effectsrealization of high-efficiency concepts

    First BMBF joint project (2006 – 2008): „Band Structure Design: Charge Carrier Transport in Silicon-based quantum structures for high-efficiency solar cells“

    New BMBF joint project (2009 – 2011) SINOVA:„Silicon-based nanostructured thin-film materials asinnovative functional elements in next generation solar cells“

    20… ?

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    4

    Outline1. Introduction

    - loss mechanisms- beyond Shockley Queisser- tandem cell concept

    2. Si/SiO2 Multi Quantum Wells- quantum size effect- structure and photoconductivity

    3. High Quality Si/SiO2 Single Quantum Wells- preparation- interface gap state spectroscopy- in situ interface passivation- photoelectrical properties

    4. Conclusions and Outlook

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    5

    Loss mechanisms in photovoltaic energy conversion

    • Aim of 3rd generation concepts: exceeding the Shockley Queisser limit (single junction efficiency)

    transform excess energy intoelectrical rather than thermal energy

    0

    20

    40

    60

    80

    100

    hν > Eg

    %

    usable energy

    hν < Eg

    excess energy

    further losses

    > 50 %

    Shockley-Queisser limit: max. single bandgap efficiency: 32.7 %

    Record cell: 24.7 %(mono-Si, „PERL“, UNSW 1994)

    W. Shockley and H.J. Queisser, J. Appl. Phys. 32 (1961), 51 Zhao J, Wang A and Green M 1999 Prog. Photovolt. 7 471

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for PhotovoltaicsBeyond Shockley-Queisser : Approaches

    • Energy bandgap engineering Tandem Cells• Hot Carrier Conversion

    - Extraction, collection, and utilization of hot carriers- Impact ionization / multiple exciton generation

    • Intermediate Band Solar Cell• Thermophotonic Solar Cells• Down-Conversion and Up-Conversion• …

    See:

    • M. Green: Third Generation Photovoltaics, Springer, 2003

    • P. Würfel: Solarzellen der dritten Generation, Phys. J., 2003

    • A. Marti / A. Luque: Next Generaton Photovoltaics, 2002

    6

    Quantum Structures

  • Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    7

    Multijunction Solar Cells

    wavelength / nm

    spec

    tral

    irrad

    ianc

    e/ W

    /m2 µ

    m

    • Multiple junctions (tandems or stacks)Jackson, E. D., Proc. Conf. on the Use of Solar Energy, Tuscon, AZ, (1955),122

    solar cells with decreasing bandgap are stacked on each othereach of the cells converts photons from a certain energy rangetheoretical limits: N = 2: 42%, N = 3: 49%, …, N = ∞: 68%

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    8

    Multijunction Solar Cells

    Considerations

    • match the terrestrial solar spectrum

    • match the current throughput

    • control of band offsets

    • matching of the lattice constants

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    9

    Multijunction Solar CellsRealizations

    GaInP/GaAs/Ge 32.0 % 1.5AM Spectrolab 2003GaInP/GaInAs/GaAs 40.8 % 326 suns NREL 2008

    a-Si/µc-Si 11.7 % 1.5AM Kaneka 2004a-Si/a-SiGe/a-SiGe 10.4 % 1.5AM USSC 1998

    III-V based Multijunctions:

    a-Si based Multijunctions:

    ☺ highest efficiencies, light weightcomplex, expensive, > 20 layers/ interfaces, need high concentration

    ☺ abundent material, large scale productionlow efficiencies

    energy band gap engineering by making use of quantum size effects ?

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    10

    Size QuantizationIncrease of bandgap by decrease of Si layer thickness

    spatial carrier confinementquantization of wave functionsincrease of effective bandgap

    c-Si

    SiO2 3.2 eV

    1.1 eV

    4.7 eV

    SiO2

    bandgap tuningincreased absorptionindirect to direct conversion

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    11

    Silicon Based Tandem Cell

    Si Quantum Well Solar Cell:⇒ Si/SiO2 superlattices with absorberstacks of different thickness and size-dependent bandgap energy

    cf. M.A. Green: Third Generation Photovoltaics(Springer, Berlin, 2005).

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    12

    Outline1. Introduction

    - loss mechanisms- beyond Shockley Queisser- tandem cell concept

    2. Si/SiO2 Multi Quantum Wells- quantum size effect- structure and photoconductivity

    3. High Quality Si/SiO2 Single Quantum Wells- preparation- interface gap state spectroscopy- in situ interface passivation- photoelectrical properties

    4. Conclusions and Outlook

  • Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    1313

    Si/SiO2 Multi-QWs by R-PECVD

    4 nm Si-QWs / 3 nm SiO2 Superlattice, RTA: 30‘ @ 1000°C

    TEM cross-section

    1.0 1.2 1.4 1.6 1.80.0

    0.2

    0.4

    0.6

    0.8

    1.0

    20 x 1 nm

    10 x 2 nm

    7 x 3 nm

    PL in

    tens

    ity [a

    .u.]

    Photon energy [eV]

    T = 75 K

    5 x 4 nm

    Photoluminescence

    R. Rölver , B. Berghoff, D. Bätzner, B. Spangenberg, H. Kurz, M. Schmidt, B. Stegemann: Thin Solid Films 516, 6763 (2008)

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    14

    Lateral vs. vertical transport in QWs

    14

    Dark I-V characteristics of 20x 3 nm/3 nm Si/SiO2 MQWs

    0 5 10 15 201E-9

    1E-8

    1E-7

    1E-6

    1E-5

    1E-4

    1E-3

    curr

    ent d

    ensi

    ty [A

    /cm

    ²]

    voltage [V]

    vertical

    lateral

    ~3 orders of magnitude higher conductivity in the lateral configuration

    R. Rölver , B. Berghoff, D. Bätzner, B. Spangenberg, H. Kurz, M. Schmidt, B. Stegemann: Thin Solid Films 516, 6763 (2008)

    interface recombination

    tunneling

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    15

    Photocurrent Measurements

    ⇒ Determination of quantum efficiencies:• Yint (hν) ~ η · μ · τeff• YextR (hν) ~ α (hν) , δn, δp = const

    main onset of PC at bandgap of a-Si

    a-Si

    Spectral dependence of Yint

    1 2 3 4 5

    10-8

    10-7

    10-6

    10-5

    Intern-Yield-LateV.OPJ

    Y int

    .PC

    hν / eV

    10x MQW: 5nm Si / 5nm SiO2, (1000°C, 30s)

    M. Schmidt, R. Rölver , B. Stegemann: in prep.

    IphU

    T

    RΦ0 hν

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    16

    Crystallinity

    Zacharias et. al. Phys. Rev. B, 62 (2000) 8391

    low crystallinity: < 25%decreasing crystallinity with decreasing a-

    Si layer thickness

    in accordance with Zacharias Model:

    „thin Si layers are more difficult to crystallize, due to increased interface binding energies“

    data from: R.Roelver, PhD thesis RWTH Aachen

    0 2 4 6

    0

    20

    40

    60

    80

    100

    Ram

    an c

    ryst

    allin

    ity /

    %

    QW thickness

    Si/SiO2-MQW - R-PECVD, RTA

    / nm

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    17

    Summing up: MQWs by R-PECVD ... so far

    Photoconductivity:a-Si contribution dominates transportno quantum size effect

    Photoluminescence:blue shift of PL signal due to quantum size effectoriginates from Si nano-crystals

    Raman:crystalline fraction: < 25%nano-crystals embedded in a-Si matrix

    complementaryprocesses !

    need high-quality material

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    18

    Outline1. Introduction

    - loss mechanisms- beyond Shockley Queisser- tandem cell concept

    2. Si/SiO2 Multi Quantum Wells- quantum size effect- structure and photoconductivity

    3. High Quality Si/SiO2 Single Quantum Wells- preparation- interface gap state spectroscopy- in situ interface passivation- photoelectrical properties

    4. Conclusions and Outlook

  • Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    19

    ultrahigh vacuum preparation and analysis of thebuilding block of multiple-quantum wells and superlattices:

    SiO2/Si/SiO2 single quantum well

    B. Stegemann, A. Schoepke, M. Schmidt: J. Non-Cryst. Sol. 354 (2008) 2100

    room temperature1 Å / sec.

    300°Cneutral atomic oxygenwith thermal impact

    crystallization

    1000°C anneal

    Si/SiO2 Quantum Wells: UHV Preparation

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    2020

    • Si single QW 7SiO2 barrier (7 nm / 2 nm)• uniform layers• structurally abrupt interfaces• atomic resolution of the QW

    • nano-crystalline structure• high crystallinity: ~80%

    TEM Raman

    Si/SiO2 Single Quantum Wells: Characterization

    B. Stegemann, A. Schoepke, M. Schmidt: J. Non-Cryst. Sol. 354 (2008) 2100

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    2121

    • photocurrent detectable in Si QWs

  • Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    25

    0.0 0.5 1.0

    10-10

    10-9

    10-8

    10-7

    0.0 0.5 1.0

    EV

    EF

    E - EV / eV

    SiO2/Si(111) +energetic H plasma +1000°C annealing

    Yin

    t

    SiO2/Si(111) +thermal H plasma +1000°C annealing

    EV

    EF

    Si/SiO2 Interface Defect Passivation

    Thermal impact:• decrease of midgap states

    passivation of dangling bonds• no interface degradation

    Energetic impact:• increase of interface states

    generation of interface defectstates due to bond breaking

    B. Stegemann, A. Schoepke, D. Sixtensson, B. Gorka, T. Lussky, M. Schmidt: Physica E (2008) doi:10.1016/j.physe.2008.08.012 Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    26

    1 2 3 4 5 6

    10-8

    10-7

    10-6

    10-5

    10-4

    Y in

    t, P

    C

    hν / eV

    after hydrogen passivation without hydrogen passivation

    a-Sic-Si

    Photoconductivity of Si/SiO2 QWs: Hydrogen Passivation

    26

    Spectral dependence of Yint

    • UHV H-plasma treatment improves Yint ~10× due to passivation of defect states (dangling bonds) at Si/SiO2 interfaces (and at intralayer grain boundaries)• db passivation results in increased carrier lifetimes and lower recombination velocity

    B. Stegemann, D. Sixtensson, T. Lussky, A. Schoepke, I. Didschuns, B. Rech, M. Schmidt: Nanotechnology 19 (2008) 424020

    µ · τeff ≈ 2×10-7 cm2V-1

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    27

    Outline1. Introduction

    - loss mechanisms- beyond Shockely Queisser- tandem cell concept

    2. Si/SiO2 Multi Quantum Wells- quantum size effect- structure and photoconductivity

    3. High Quality Si/SiO2 Single Quantum Wells- preparation- interface gap state spectroscopy- in situ interface passivation- photoelectrical properties

    4. Conclusions and Outlook

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    28

    • complete UHV cycle for producing high-qualitiy ultrathin-SiO2/Si interfaces

    • key point: RF plasma oxidation and H passivation with nearly thermalimpact energies (< 1eV)

    98 100 102 104 106

    XPS

    Si 2

    p si

    gnal

    / a.

    u.

    EB / eV

    Si(100)

    0.0 0.5 1.0

    10-10

    10-9

    10-8

    10-7

    Yin

    t

    E-EV / eV

    Si(111)7x7 SiO2/Si(111) SiO

    2/Si(111):H thermal plasma (UHV)

    SiO2/Si(111):H energetic plasma (CVD)EV

    EF

    • abrupt interfaces:

    electronicallychemicallystructurally

    preparation interfacepassivationgap state

    spectroscopyinterface

    passivationgap state

    spectroscopy

    Conclusions I

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    2929

    • successful preparation of

    Si/SiO2 single/multi quantum wells (and quantum dots)

    ultra-thin SiO2 layers

    • correlation of structural

    chemical and

    electronic Si/SiO2 interface properties

    • detection of lateral photocurrents in single QWs (and QD layers)

    • determination of µ·τeff product ⇒ strong influence of Si/SiO2 interfaces

    • improvement by passivation with hydrogen

    SummaryConclusions II

    Bert Stegemann 30.10.2008 Photovoltaics meets Microtechnology, Erfurt

    Silicon Quantum Structures for Photovoltaics

    3030

    • B. Rech• D. Sixtensson, D. Patzek, • L. Korte, M. Schulz, B. Gorka, I. Didschuns, K. Jacob, A. Scheu• U. Bloeck, P. Schubert-Bischoff• Financial Support: BMBF 03SF0308

    Acknowledgements

    Project partners• IHT - RWTH Aachen (Prof. H. Kurz, Dr. B. Spangenberg)• IEF5-PV - FZ Jülich (Prof. J.H. Werner, Prof. U. Rau)• BTU Cottbus (Prof. M. Kittler)• ERC/GfE Jülich/Aachen (Prof. J. Mayer)• IFTO - FSU Jena (Prof. F. Bechstedt)• IZM-MLU Halle (Dr. H. Leipner)

    Coorperations:• Center of Excellence, UNSW, Australia (Prof. M. Green)• Academy of Science, Czech Republic (Prof. Dr. J. Kocka)

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /CreateJDFFile false /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice