32
量子ドット超格子型中間バンド太陽電池 Quantum Dot Superlattice IntermediateBand Solar Cells 岡田至崇 Yoshitaka Okada RCAST The University of Tokyo nature photonics Technology Conference, 1921/10/2010

Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

  • Upload
    others

  • View
    21

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

量子ドット超格子型中間バンド太陽電池Quantum Dot Superlattice 

Intermediate‐Band Solar Cells

岡田至崇Yoshitaka Okada

RCASTThe University of Tokyo

nature photonics Technology Conference, 19‐21/10/2010

Page 2: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

2

Scope

What kind of high‐efficiency solar cell are we aiming to build?

Basic principle of intermediate‐band solar cell (IBSC)

Efficiency analysis and material choice

Fabrication technique of quantum dot (QD) superlattice IBSC

How far have we reached?

Photoabsorption by QD superlattice 

(1) VB→QD (IB) absorption 

(2) QD (IB) →CB absorption : Proof of Concept

Page 3: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

3

AM1.5

Wavelength

Efficient absorption by using multiple bandgaps

AM1.5

Wavelength

Efficient absorption by using multiple bandgaps

Efficient use of high-energysolar radiation

AM1.5

Wavelength

Efficient use of high-energysolar radiation

AM1.5

Wavelength

Hot carriers

3 V

Multiple junctions(Quantum size effect)

Eg

Intermediate band(QD superlattice)

Multiple excitongeneration (MEG)

3 I

nanoscaleformats

Innovative PV : > 50% Efficient Solar Cells

Page 4: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

4

Intermediate Band Solar Cell:Principle

A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997) 

Conduction Band

Intermediate Band (IB)

p –type Host Semiconductor

n‐type HostSemiconductor

IB material

Valence BandCurrent‐matching

Page 5: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

5

Intermediate Band Solar Cell:Theoretical Efficiencies

η = 47% (1sun)η = 63% (Maximum concentration)

Maximum concentration1sun

5010Efficiency (%)

47%Eg=2.4 eVECI=0.9 eV

45

40

20

35

3025

15

1.5 2 2.5 30

0.5

1

E IV

(eV)

Eg (eV)

CB

-IB e

nerg

y ga

p(e

V)

CB-VB energy gap (eV)

Efficiency (%)

63%Eg=1.9 eVECI=0.7 eV

30

60

7010

5040

20

1.5 2 2.5 30

0.5

1

EIV

(eV)

Eg (eV)

CB

-IB e

nerg

y ga

p(e

V)

CB-VB energy gap (eV)

S. Yagi and Y. Okada, 2nd Innovative PV (Tsukuba, 2009) 

Page 6: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

6

Intermediate Band Realized with Quantum dot Superlattice

VB

CB

miniband

InAs QD

GaAs

VB

CB

InAs QD

GaAs GaAs

GaAs

InAs QD

Single QDSingle QD QD SuperlatticeQD Superlattice

Page 7: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

7

Frank‐van der Merwe Volmer‐Weber Stranski‐Krastanov (S‐K)

2D Growth 3D Growth 2D→3D

Self‐Assembled Growth of Quantum Dots

Page 8: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

8

InGaAs on (311)BInAs on (100)

K. Akahane et al, APL 73 (1998) 3411

Self‐Organized InGaAs Quantum Dots on (311)B Substrate

QDs on (311)B substrate show;(1) Better size homogeneity(2) Higher in‐plane density(3) Ordered periodic structure(4) Better heterointerface quality

Page 9: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

9

Z.R. Wasilewski et al. JCG 201 (1999) 1131

Fabrication of 3D Quantum Dot Superlattice: Strain‐Balancing

Accumulation of lattice strainin conventional approach

Strain‐compensation growth: Strain/layer is balanced out

QD

SpacerStrainfield

Page 10: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

10

InGaAlAs

III‐V multijunction solar cells

GaAsP

Strain‐Compensation Materials

Page 11: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

11

Intermediate Band Solar Cell:Common Materials

Efficiency (%)

63%Eg=1.9 eVECI=0.7 eV

30

60

7010

5040

20

1.5 2 2.5 30

0.5

1

EIV

(eV)

Eg (eV)

CB

-IB e

nerg

y ga

p(e

V)

CB-VB energy gap (eV)

In(Ga)As/(Al)GaAs

InAs/GaAsP

Page 12: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

12

Multi‐Stacked InGaAs QDs on InP (311)B Substrate

Spacer thickness d = 20 nmNumber of stacked QDs = 30 layers

Average diameter = 63.2nmIn‐plane dot density = 2.7×1010cm‐2

Size uniformity ~ 12.3% Y. Okada et al, EU‐PVSEC, Barcelona (2005)

Page 13: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

13K. Akahane et al, APL 89 (2006) 151117

Demonstration of 3D Quantum Dot Superlattice

Number of stacked QDs = 150 layers!

Page 14: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

14

on GaAs (311)B

InGaAs/GaNAs Quantum Dot Solar Cell : 1sun

ISC(mA/cm2)

VOC(V)

FF Efficiency(%)

QD solar cell on GaAs(311)B 24.26 0.791 0.840 16.12

Page 15: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

15R. Oshima et al, Physica E, in press.

Multi‐Stacked QDSCs: Dependence on number of QD layers 

Cell size 3mm × 5mm

10 layersi-GaAs i-GaAs

InAs/GaNAsQDs

400nm200nm400nm

200nm600nm

200nm

1000nm

1μm thick-intrinsic layer

p-GaAs

n-GaAs

30 layers

50 layers

10 layersi-GaAs i-GaAs

InAs/GaNAsQDs

400nm200nm400nm

200nm600nm

200nm

1000nm1000nm

1μm thick-intrinsic layer

p-GaAs

n-GaAs

30 layers

50 layers

20 nm GaNAs layer

10, 20, 30, 50 stacked 2.0 MLs InAs QDs/ 20 nm GaNAs spacer layer

n+ - GaAs (001) substrate

250 nm n+ - GaAs buffer layer

1000 nm n - GaAs base layer

20 nm GaNAs layer

50 nm p+ - GaAs contact layer

150 nm p - GaAs emitter layer

Ti/Pt/Au

AuGeNi/Au

SiO2

20 nm GaNAs layer

10, 20, 30, 50 stacked 2.0 MLs InAs QDs/ 20 nm GaNAs spacer layer

n+ - GaAs (001) substrate

250 nm n+ - GaAs buffer layer

1000 nm n - GaAs base layer

20 nm GaNAs layer

50 nm p+ - GaAs contact layer

150 nm p - GaAs emitter layer

Ti/Pt/Au

AuGeNi/Au

SiO2

Page 16: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

16

Multi‐Stacked QDSCs: Dependence on number of QD layers 

1.5 mA/cm2

for 50 stacks

Current increase solely due to InAs QD absorption is linear up to ~ 50 layers. 

Page 17: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

17

Multi‐Stacked QDSCs: Dependence on number of QD layers 

VOC(V)

ISC(mA/cm2)

FF (%)

η(%)

Diode factor

20 stacks

0.72 21.04 70.0 10.63 1.65

30 stacks

0.67 22.33 70.76 10.59 1.67

50 stacks

0.68 26.36 70.24 12.44 1.59

GaAs SC

0.94 20.26 77.74 14.80 2.00

VOC(V)

ISC(mA/cm2)

FF (%)

η(%)

Diode factor

20 stacks

0.72 21.04 70.0 10.63 1.65

30 stacks

0.67 22.33 70.76 10.59 1.67

50 stacks

0.68 26.36 70.24 12.44 1.59

GaAs SC

0.94 20.26 77.74 14.80 2.00

Isc increases linearly up to ~ 50 layers. Drop in Voc tends to saturate. 

Page 18: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

18

Stacking up to 100 InAs/GaNAs Strain‐Compensated QDs Layers

SF0

F-1

F+1

F+2

F-2

[001]

[110]

SF0

F-1

F+1

F+2

F-2

[001]

[110]

[001]

[110]Upper region Middle region Lower regionUpper region Middle region Lower region

i - GaAs (001) substrate

250 nm GaAs buffer layer

20 nm GaNAs layer

i - GaAs (001) substrate

250 nm GaAs buffer layer

20 nm GaNAs layer

Up to 100 layers

100 layers of multi‐stacked 2.0 monolayers of InAs QDs  and 20 nm of GaN0.01As0.99 SCL 

A. Takata et al, 35th IEEE PVSC, Honolulu (2010)

Page 19: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

19

Measurement at room temperature

Optical density = -log (T/(1‐R))

T : TransmittanceR : Reflectance 

Stacking of up to 100 InAs/GaNAs Strain‐Compensated QDs Layers

Halogenlamp

Monochro‐meter

Sample

Polarizer

InGaAsphotodiode

Chopper

Lock‐inamplifier

Long passfilters

Off‐axis parabolicmirror

Halogenlamp

Monochro‐meter

Sample

Polarizer

InGaAsphotodiode

Chopper

Lock‐inamplifier

Long passfilters

Off‐axis parabolicmirror

Page 20: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

20

Stacking of up to 100 InAs/GaNAs Strain‐Compensated QDs Layers

VB→QD(IB) absorption increases linearly with number of QD stacks.

VB→QD(IB) absorption reaches  ~ 20% in 100 layer stacked sample.

Further increase of QD density and photon management are helpful. 

Page 21: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

21

Size Requirement for InAs QDs

10K Large QD Small QDMiddle QD

S. Tomic et al, APL 93 (2008) 263105

InAs/GaNAs QDSC on GaAs (311)B

Page 22: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

22

Intermediate Band Solar Cell:Technical Issues

IB

CB

VB

Monochromatic

White bias

IB

CB

VB

Monochromatic

White biasProblem_1: Transition rate is small

Problem_2: Recombination is large

Increase in Isc may not outweigh drop in Voc

Page 23: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

23

Conditions for Achieving High Efficiencies

Maximize

Increase of efficiency in IB solar cells

Constant

Constant

Small absorption via IB states

Larger absorption via IB states

Under concentration

① ②

Page 24: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

24

Self‐consistent Analysis

• Material parameters: GaAs (300K) except for absorption coefficients.

• Carrier Mobility ModelingElectrons in CB: Negative differential resistance

Dependence on impurity densityHoles in VB : Velocity saturation

Dependence of impurity density

• Boundary ConditionsIdeal Ohmic contacts and Infinite surface recombination velocities

• Effective Density of State for IB (QDs are uniformly distributed)

• Absorption coefficients

Non-Overlap absorption spectrum are assumed.

• Temperatures of the Sun and the cell

• Radiative recombination rates are included.

• Carrier flux in IB state is neglected.

VB

CB

IB

p‐type emitter (0.5μm)

IB region (2μm)

ND = NI /2

n‐type Base (1μm)

Calculated Structure

Case 1. Undoped (intrinsic)       Case 2. n‐type doped 

[3] A. S. Lin and J. D. Phillips, IEEE Trans. Elec. Dev. 56, 3168 (2009).

K. Yoshida et al, 35th IEEE PVSC, Honolulu (2010)

Page 25: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

25

Effect of Doping, Photofilling

Doping in IB region is better to realize a high efficiency.

K. Yoshida et al, APL 97 (2010) 133503

Page 26: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

26

Direct Doping of QDs

• Modulation doping

Band diagram Band diagram

Dopant (Si)Quantum dot

Barrierlayer

Dopant (Si)

• Direct doping

Modulation dopingNon‐doped layer 10nmSi‐doped layer 5nm

Barrier  15nmWell In0.4Ga0.6As 5nmSi‐doped to 1018 cm‐3

Page 27: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

27

Direct Doping of QDs

• S‐K mode growth (by MBE)

Doping at the self assembling stage enables direct doping

(QD growth step is observed by RHEED pattern)

T. Inoue et al, J. Appl. Phys. 108 (2010) 063524

Page 28: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

28

QD solar cell with Direct Si‐doped QDs

T. Morioka et al, 35th IEEE PVSC, Honolulu (2010)

• Strain‐compensated growth by H‐MBE

Page 29: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

29

(1) (2) (3)(1) (2) (3)

QD solar cell with Direct Si‐doped QDs

(1)

(2) (3)

GaNAs barrier InAs QDs(1)

(2) (3)

GaNAs barrier InAs QDs

Isc is significantly increased.24.11 mA/cm2 → 30.57 mA/cm2

Non‐doped Direct‐doped

Isc  (mA/cm3) 24.11  30.57

Voc  (V) 0.480 0.540

FF 0.463 0.656

Efficiency (%) 5.36 10.81

Non‐doped Direct‐doped

Isc  (mA/cm3) 24.11  30.57

Voc  (V) 0.480 0.540

FF 0.463 0.656

Efficiency (%) 5.36 10.81

Page 30: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

30

Photocurrent Production due to IB → CB Optical Transition

Y. Okada, 2010 ssdm, Tokyo (2010)

Page 31: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

31

Room temperature

IB→CB optical transition : Thermal escape rate ≈ 1 : 20

Photocurrent Production due to IB → CB Optical Transition

Y. Okada, 2010 ssdm, Tokyo (2010)

Page 32: Nature Conference 20101018(Okada) · 21.10.2010  · Intermediate Band Realized with Quantum dot Superlattice VB CB miniband InAs QD GaAs VB CB InAs QD GaAs GaAs GaAs InAs QD Single

33

Summary

Strain‐compensation (Strain‐balanced) growth technique is very effective in stacking multiple layers of QDs to form QD superlattice and solar cells.

For 100‐layer stacked InAs/GaNAs QD superlattice sample, optical absorption is ~ 20%.

In present QD solar cells, electrons generated by VB→QD (IB) absorption escape out of QDs by thermal or field‐assisted tunneling. Electrons are not likely in electrochemical equilibrium within QD states.

QD (IB) →CB absorption is observed at room temperature under IR light illumination of AM1.5 solar spectrum for the first time.

Higher QD density (small QDs) Increased photon absorption by control of quasi‐Fermi level of IBOperation under concentrated sunlightcan significantly improve the efficiency of QD‐IBSC.