46
MAKALAH KIMIA DASAR IODOMETRI DAN REDOKS Disusun Oleh : ~ Ery Budiani ~ Farisah Adlina ~ Fatimah Amaliah ~ Helmiyati ~ Lia Angelina Simbolon ~ Marzukoh ~ Nanda Asih ~ Nizah Wahyu

Iodometri Dan Redoks - Kelompok B

Embed Size (px)

Citation preview

Page 1: Iodometri Dan Redoks - Kelompok B

MAKALAH KIMIA DASAR

IODOMETRI DAN REDOKS

Disusun Oleh :

~ Ery Budiani

~ Farisah Adlina

~ Fatimah Amaliah

~ Helmiyati

~ Lia Angelina Simbolon

~ Marzukoh

~ Nanda Asih

~ Nizah Wahyu

~ Pinka Rizky

Page 2: Iodometri Dan Redoks - Kelompok B

BAB II

PEMBAHASAN

IODOMETRI

Iodometri adalah analisa titrimetrik yang secara tidak langsung untuk zat yang bersifat oksidator seperti besi III, tembaga II, dimana zat ini akan mengoksidasi iodida yang ditambahkan membentuk iodin. Iodin yang terbentuk akan ditentukn dengan menggunakan larutan baku tiosulfat .

Oksidator + KI → I2 + 2eI2 + Na2 S2O3 → NaI + Na2S4O6

Sedangkan iodimetri adalah merupakan analisis titrimetri yang secara langsung digunakan untuk zat reduktor atau natrium tiosulfat dengan menggunakan larutan iodin atau dengan penambahan larutan baku berlebihan. Kelebihan iodine dititrasi kembali dengan larutan tiosulfat.

Reduktor + I2 → 2I-Na2S2 O3 + I2 → NaI +Na2S4 O6

Istilah oksidasi mengacu pada setiap perubahan kimia dimana terjadi kenaikan bilangan oksidasi, sedangkan reduksi digunakan untuk setiap penurunan bilangan oksidasi.Berarti proses oksidasi disertai hilangnya elektron sedangkan  reduksi memperoleh elektron. Oksidator adalah senyawa di mana atom yang terkandung mengalami penurunan bilangan oksidasi. Sebaliknya pada reduktor, atom yang terkandung mengalami kenaikan bilangan oksidasi. Oksidasi-reduksi harus selalu berlangsung bersama dan saling menkompensasi satu sama lain. Istilah oksidator reduktor mengacu kepada suatu senyawa, tidak kepada atomnya saja (Khopkar, 2003).

Oksidator lebih jarang ditentukan dibandingkan reduktor. Namin demikian, oksidator dapat ditentukan dengan reduktor. Reduktor yang lazim dipakai untuk penentuan oksidator adalah kalium iodida, ion titanium(III), ion besi(II), dan ion vanadium(II). Cara titrasi redoks yang menggunakan larutan iodium sebagai pentiter disebut iodimetri, sedangkan yang menggunakan larutan iodida sebagai pentiter disebut iodometri (Rivai, 1995).

Dalam proses analitik, iodium digunakan sebagai pereaksi oksidasi (iodimetri) dan ion iodida digunakan sebagai pereaksi reduksi (iodometri). Relatif beberapa zat merupakan pereaksi reduksi yang cukup kuat untuk dititrasi secara langsung dengan iodium.  Maka jumlah penentuan iodimetrik adalah sedikit. Akan tetapi banyak pereaksi oksidasi cukup kuat untuk bereaksi sempurna dengan ion iodida, dan ada banyak penggunaan proses iodometrik. Suatu kelebihan ion iodida ditambahkan kepada pereaksi oksidasi yang ditentukan, dengan pembebasan iodium, yang kemudian dititrasi dengan larutan natrium

Page 3: Iodometri Dan Redoks - Kelompok B

tiosulfat.  Reaksi antara iodium dan tiosulfat berlangsung secara sempurna (Underwood, 1986).

Iodium hanya sedikit larut dalam air (0,00134 mol per liter pada       25 0C), tetapi agak larut dalam larutan yang mengandung ion iodida.  Larutan iodium standar dapat dibuat dengan menimbang langsung iodium murni dan pengenceran dalam botol volumetrik.  Iodium, dimurnikan dengan sublimasi dan ditambahkan pada suatu larutan KI pekat, yang ditimbang dengan teliti sebelum dan sesudah penembahan iodium.  Akan tetapi biasanya larutan distandarisasikan terhadap suatu standar primer, As2O3 yang paling biasa digunakan. (Underwood, 1986).

Larutan standar yang dipergunakan dalam kebanyakan proses iodometrik adalah natrium tiosulfat. Garam ini biasanya tersedia sebagai pentahidrat Na2S2O3.5H2O. Larutan tidak boleh distandarisasi dengan penimbangan secara langsung, tetapi harus distandarisasi terhadap standar primer. Larutan natrium tiosulfat tidak stabil untuk waktu yang lama. Sejumlah zat padat digunakan sebagai standar primer untuk larutan natrium tiosulfat. Iodium murni merupakan standar yang paling nyata, tetapi jarang digunakan karena kesukaran dalam penanganan dan penimbangan. Lebih sering digunakan pereaksi yang kuat yang membebaskan iodium dari iodida, suatu proses iodometrik (Underwood, 1986).

Titrasi iodometri

Metode titrasi iodometri langsung (kadang-kadang dinamakan iodimetri) mengacu kepada titrasi dengan suatu larutan iod standar. Metode titrasi iodometri tak langsung (kadang-kadang dinamakan iodometri), adlaah berkenaan dengan titrasi dari iod yang dibebaskan dalam reaksi kimia. Potensial reduksi normal dari sistem reversibel:

I2(solid) 2e                  2I-

adalah 0,5345 volt. Persamaan di atas mengacu kepada suatu larutan air yang jenuh dengan adanya iod padat; reaksi sel setengah ini akan terjadi, misalnya, menjelang akhir titrasi iodida dengan suatu zat pengoksid seperti kalium permanganat, ketika konsentrasi ion iodida menjadi relatif rendah. Dekat permulaan, atau dalam kebanyakan titrasi iodometri, bila ion iodida terdapat dengan berlebih, terbentuklah ion tri-iodida:

I2(aq) + I- I3-

Karena iod mudah larut dalam larutan iodida. Reaksi sel setengah itu lebih baik ditulis sebagai:

I3- + 2e               3I-

Dan potensial reduksi standarnya adalah 0,5355 volt. Maka, iod atau ion    tri-iodida merupakan zat pengoksid yang jauh lebih lemah ketimbang kalium permanganat, kalium dikromat, dan serium(IV) sulfat (Bassett, J. dkk., 1994).

Page 4: Iodometri Dan Redoks - Kelompok B

Dalam kebanyakan titrasi langsung dengan iod (iodimetri), digunakan suatu larutan iod dalam kalium iodida, dan karena itu spesi reaktifnya adalh ion tri-iodida, I3

-. Untuk tepatnya, semua persamaan yang melibatkan reaksi-reaksi iod seharusnya ditulis dengan I3

- dan bukan dengan I2, misalnya:

I3- + 2S2O3

2- = 3I- + S4O62-

akan lebih akurat daripada:

I2 + 2S2O32- = 2I- + S4O6

2-

(Bassett, J. dkk., 1994).

Warna larutan 0,1 N iodium adalah cukup kuat sehingga iodium dapat bekerja sebagai indikatornya sendiri. Iodium juga memberi warna ungu atau merah lembayung yang kuat kepada pelarut-pelarut sebagai karbon tetraklorida atau kloroform dan kadang-kadang hal ini digunakan untuk mengetahui titik akhir titrasi. Akan tetapi lebih umum digunakan suatu larutan (dispersi koloidal) kanji, karena warna biru tua dari kompleks kanji-iodium dipakai untuk suatu uji sangat peka terhadap iodium. Kepekaan lebih besar dalam larutan yang sedikit asam daripada larutan netral dan lebih besar dengan adanya ion iodida (Underwood, 1986).

Pada titrasi iodometri, analit yang dipakai adalah oksidator yang dapat bereaksi dengan I- (iodide) untuk menghasilkan I2, I2 yang terbentuk secara kuantitatif dapat dititrasi dengan larutan tiosulfat. Dari pengertian diatas maka titrasi iodometri adalah dapat dikategorikan sebagai titrasi kembali.

Iodida adalah reduktor lemah dan dengan mudah akan teroksidasi jika direaksikan dengan oksidator kuat. Iodida tidak dipakai sebagai titrant hal ini disebabkan karena factor kecepatan reaksi dan kurangnya jenis indicator yang dapat dipakai untuk iodide. Oleh sebab itu titrasi kembali merubakan proses titrasi yang sangat baik untuk titrasi yang melibatkan iodide. Senyawaan iodide umumnya KI ditambahkan secara berlebih pada larutan oksidator sehingga terbentuk I2. I2 yang terbentuk adalah equivalent dengan jumlah oksidator yang akan ditentukan. Jumlah I2 ditentukan dengan menitrasi I2 dengan larutan standar tiosulfat (umumnya yang dipakai adalah Na2S2O3) dengan indicator amilum jadi perubahan warnanya dari biru tua kompleks amilum-I2 sampai warna ini tepat hilang.

Reaksi yang terjadi pada titrasi iodometri untuk penentuan iodat adalah sebagai berikut:

IO3-  + 5 I-  + 6H+  -> 3I2  + H2O

I2 + 2 S2O32-  -> 2I- + S4O62-

Page 5: Iodometri Dan Redoks - Kelompok B

Setiap mmol IO3- akan menghasilkan 3 mmol I2 dan 3 mmol I2 ini akan tepat bereaksi dengan 6 mmol S2O32- (ingat 1 mmol I2 tepat bereaksi dengan 2 mmol S2O32-) sehingga mmol IO3- ditentukan atau setara dngan 1/6 mmol S2O32-.

Mengapa kita menitrasi langsung antara tiosulfat dengan analit? Beberapa alasan yang dapat dijabarkan adalah karena analit yang bersifat sebagai oksidator dapat mengoksidasi tiosulfat menjadi senyawaan yang bilangan oksidasinya lebih tinggi dari tetrationat dan umumnya reaksi ini tidak stoikiometri. Alasa kedua adalah tiosulfat dapat membentuk ion kompleks dengan beberapa ion logam seperti Besi(II).

Beberapa hal yang perlu diperhatikan dalam melakukan titrasi Iodometri adalah sebagai berikut:

Penambahan amilum sebaiknya dilakukan saat menjelang akhir titrasi, dimana hal ini ditandai dengan warna larutan menjadi kuning muda (dari oranye sampai coklat  akibat terdapatnya I2 dalam jumlah banyak), alasannya kompleks amilum-I2 terdisosiasi sangat lambat akibatnya maka banyak I2 yang akan terabsorbsi oleh amilum jika amilum ditambahkan pada awal titrasi, alasan kedua adalah biasanya iodometri dilakukan pada media asam kuat sehingga akan menghindari terjadinya hidrolisis amilum

Titrasi harus dilakukan dengan cepat untuk meminimalisasi terjadinya oksidasi iodide oleh udara bebas. Pengocokan pada saat melakukan titrasi iodometri sangat diwajibkan untuk menghindari penumpukan tiosulfat pada area tertentu, penumpukkan konsentrasi tiosulfat dapat menyebabkan terjadinya dekomposisi tiosulfat untuk menghasilkan belerang. Terbentuknya reaksi ini dapat diamati dengan adanya belerang dan larutan menjadi bersifat koloid (tampak keruh oleh kehadiran S).

S2O32-  +  2H+  -> H2SO3 + S

Pastikan jumlah iodide yang ditambahkan adalah berlebih sehingga semua analit tereduksi dengan demikian titrasi akan menjadi akurat. Kelebihan iodide tidak akan mengganggu jalannya titrasi redoks akan tetapi jika titrasi tidak dilakukan dengan segera maka I- dapat teroksidasi oleh udara menjadi I2.

Bagaimana menstandarisasi larutan tiosulfat?

Tiosulfat yang dipakai dalam titrasi iodometri dapat distandarisasi dengan menggunakan senyawa oksidator  yang memiliki kemurnian tinggi (analytical grade) seperti K2Cr2O7, KIO3, KBrO3, atau senyawaan tembaga(II).

Bila digunakan Cu(II) maka pH harus dibuffer pada pH 3 dan dipakai tiosianat untuk masking agent, KSCN ditambahkan pada waktu mendektitik akhir titrasi dengan tujuan untuk menggantikan I2 yang teradsorbsi oleh CuI. Bila pH yang digunakan tinggi maka tembaga(II) akan terhidrolisis dan akan terbentuk hidroksidanya. Jika keasaman larutan sangat tinggi maka cenderung terjadi reaksi I- sebagai akibat adanya Cu(II) dalam larutan yang megkatalis reaksi tersebut.

Page 6: Iodometri Dan Redoks - Kelompok B

Beberapa contoh reaksi iodometri adalah sebagai berikut

2MnO4-  + 10 I- + 16 H+  <-> 2Mn2+  + 5 I2 + 8H2O

Cr2O72- + 6I- <-> 14 H+  <-> 2Cr3+  + 3 I2 + 7H2O

2Fe3+  +  2I-  <-> 2Fe2+  + I2

2 Ce4+  + 2I-  <-> 2Ce3+ + I2

Br2  + 2I-  <-> 2Br-  + I2

Garam KIO3 mampu mengoksidasi iodida menjadi iod secara kuantitatif dalam larutan asam.  Oleh karena itu digunakan sebagai larutan standar dalam proses titrasi Iodometri ini.  Selain itu juga karena sifat Iod itu sendiri yang mudah teroksidasi oleh oksigen dalam lingkungan sehingga iodida mudah terlepas. Reaksi ini sangat kuat dan hanya membutuhkan sedikit sekali kelebihan ion hidrogen untuk melengkapi reaksinya.  Namun kekurangan utama dari garam ini sebagai standar primer adalah bahwa bobot ekivalennya yang rendah. Larutan standar ini sangat stabil dan menghasilkan iod bila diolah dengan asam :

IO3- +   5I- +   6H+ 3 I2 +     3H2O

Larutan KIO3 memiliki dua kegunaan penting, pertama, adalah sebagai sumber dari sejumlah iod yang diketahui dalam titrasi, ia harus ditambahkan kepada larutan yang mengandung asam kuat, ia tak dapat digunakan dalam medium yang netral atau memiliki keasaman rendah.  Yang kedua, dalam penetapan kandungan asam dari larutan secara iodometri, atau dalam standarisasi larutan asam keras.  Larutan baku KIO3 0,1 N dibuat dengan melarutkan beberapa gram massa kristal KIO3 yang berwarna putih dengan menggunakan aquades dan mengencerkannya.

1. 1. Pembakuan Larutan Na2S2O3 dengan Larutan Baku KIO3

Percobaan ini menggunakan metode titrasi iodometri yaitu titrasi tidak  langsung dimana mula-mula iodium direaksikan dengan iodida berlebih, kemudian iodium yang terjadi dititrasi dengan natrium thiosulfat.  Larutan baku yang digunakan untuk standarisasi thiosulfat sendiri adalah KIO3 dan terjadi reaksi:

Oksidator + KI                           I2

I2 +  2Na2S2O3 2NaI  +  Na2S4O6

Natrium tiosulfat dapat dengan mudah diperoleh dalam keadaan kemurnian yang tinggi, namun selalu ada saja sedikit ketidakpastian dari kandungan air yang tepat, karena sifat flouresen atau melapuk-lekang dari garam itu dan karena alasan-alasan lainnya.  Karena itu, zat ini tidak memenuhi syarat untuk dijadikan sebagai larutan baku standar primer. 

Page 7: Iodometri Dan Redoks - Kelompok B

Natrium tiosulfat merupakan suatu zat pereduksi, dengan persamaan reaksi sebagai berikut  :

2S2O32- S4O6

2- +   2e-

Pembakuan larutan natrium tiosulfat dapat dapat dilakukan dengan menggunakan kalium iodat, kalium kromat, tembaga dan iod sebagai larutan standar primer, atau dengan kalium permanganat atau serium (IV) sulfat sebagai larutan standar sekundernya.  Namun pada percobaan ini senyawa yang digunakan dalam proses pembakuan natrium tiosulfat adalah kalium iodat standar.

Larutan thiosulfat sebelum digunakan sebagai larutan standar dalam proses iodometri ini harus distandarkan terlebih dahulu  oleh kalium iodat yang merupakan standar primer.  Larutan kalium iodat ini ditambahkan dengan asam sulfat pekat, warna larutan menjadi bening.  Dan setelah ditambahkan dengan kalium iodida, larutan berubah menjadi coklat kehitaman.  Fungsi penambahan asam sulfat pekat dalam larutan tersebut adalah memberikan suasana asam, sebab larutan yang terdiri dari kalium iodat dan klium iodida berada dalam kondisi netral atau memiliki keasaman rendah.  Reaksinya adalah sebagai berikut :

IO3- +  5I- +  6H+ →          3I2 +  3H2O

Indikator yang digunakan dalam proses standarisasi ini adalah indikator amilum 1%.  Penambahan amilum yang dilakukan saat mendekati titik akhir titrasi dimaksudkan agar amilum tidak membungkus iod karena akan menyebabkan amilum sukar dititrasi untuk kembali ke senyawa semula. Proses titrasi harus dilakukan sesegera mungkin, hal ini disebabkan sifat I2 yang mudah menuap. Pada titik akhir titrasi iod yang terikat juga hilang bereaksi dengan titran sehingga warna biru mendadak hilang dan perubahannya sangat jelas.  Penggunaan indikator ini untuk memperjelas perubahan warna larutan yang terjadi pada saat titik akhir titrasi.  Sensitivitas warnanya tergantung pada pelarut yang digunakan.  Kompleks iodium-amilum memiliki kelarutan yang kecil dalam air, sehingga umumnya ditambahkan pada titik akhir titrasi.  Jika larutan iodium dalam KI pada suasana netral dititrasi dengan natrium thiosulfat, maka :

I3- +   2S2O3

2- 3I- +   S4O62-

S2O32- +   I3

- S2O3I- +   2I-

2S2O3I- +  I- S4O62- +  I3

-

S2O3I- +  S2O32- S4O6

2- +  I-

Dari hasil perhitungan diketahui besarnya konsentrasi natrium thiosulfat yang digunakan sebagai larutan baku standar sebesar 6,25 N.

1. 2. Penentuan Kadar Cu2+ dengan Larutan Baku Na2S2O3

Page 8: Iodometri Dan Redoks - Kelompok B

Pada penentuan kadar Cu dengan larutan baku Na2S2O3 akan terjadi beberapa perubahan warna larutan sebelum titik akhir titrasi.  Tembaga murni dapat digunakan sebagai standar primer untuk natrium thiosulfat dan direkomendasikan jika thiosulfat harus digunakan untuk menetapkan tembaga.  Potensial standar pasangan Cu(II) – Cu(I) adalah +0,15 V dan karena itu iod merupakan pengoksidasi yang lebih baik dari pada ion Cu(II).  Tetapi bila ion iodida ditambahkan ke dalam larutan Cu(II) akan terbentuk endapan Cu(I).

2Cu2+ +  4I- 2CuI(s) +  I2

Penentuan kadar Cu2+ dalam larutan dengan bantuan larutan natrium tiosulfat yang dilakukan mengencerkan 5 mL sampel garam hingga 100 mL dan mengambil 10 mL hasil pengenceran tersebut untuk ditambahkan dengan larutan KI 10% dan menitrasi dengan larutan baku natrium tiosulfat hingga larutan yang semula berwarna coklat tua menjadi larutan yang berwarna kuning muda.  Kemudian larutan tersebut ditambahkan dengan 4 mL larutan amilum 1 % menghasilkan larutan yang semula berwarna kuning muda menjadi biru tua, Penambahan indikator amilum 1% ini dimaksudkan agar memperjelas perubahan warna yang terjadi pada larutan tersebut. kemudian larutan tersebut dititrasi kembali dengan larutan natrium tiosulfat hingga warna biru pada larutan tepat hilang.  Untuk lebih memperjelas terjadinya reaksi tersebut, ke dalam larutan ditambahkan amilum.  Bertemunya I2 dengan amilum ini akan menyebabakan larutan berwarna biru kehitaman.  Selanjutnya titrasi dilanjutkan kembali hingga warna biru hilang dan menjadi putih keruh.

I2 +  amilum                         I2-amilum

I2-amilum  +  2S2O32- 2I- +  amilum  +  S4O6

-

Hal yang perlu diperhatikan setelah penambahan amilum adalah adanya sifat adsorpsi pada permukaan endapan tembaga(I) iodida. Sifat ini menyebabkan terjadinya penyerapan iodium dan apabila iodium ini dihilangkan dengan cara titrasi, maka titik akhir titrasi akan tercapai terlalu cepat. Oleh karena itu, sebelum titik akhir titrasi tercapai, yaitu pada saat warna larutan yang dititrasi dengan Na2S2O3 akan berubah dari biru menjadi bening, dilakukan penambahan kalium tiosianat KCNS.

Penambahan KCNS menyebabkan larutan kembali berwarna biru. Reaksi yang terjadi adalah sebagai berikut:

2Cu2+ + 2I- + 2SCN- → 2CuSCN ↓ + I2

Endapan tembaga(I) tiosianat yang terbentuk mempunyai kelarutan yang lebih rendah daripada tembaga(I) iodida sehingga dapat memaksa reaksi berjalan sempurna. Selain itu, tembaga(I) tiosianat mungkin terbentuk pada permukaan tembaga(I) iodida yang telah mengendap. Reaksinya sebagai berikut:

CuI ↓ + SCN- → CuSCN ↓ + I-

Page 9: Iodometri Dan Redoks - Kelompok B

Penambahan larutan KCNS ini bertujuan sebagai larutan yang mengembalikan reaksi penambahan indikator amilum dalam larutan sehingga larutan menjadi kembali biru.  Reaksi yang berlangsung adalah

2Cu2+ +  4 I- 2CuI  +  I2

2S2O32- +  I2 S4O6

2-+   2I-

dari hasil pengamatan dan perhitungan, didapatkan jumlah volume titrasi larutan natrium tiosulfat yang dibutuhkan untuk merubah larutan dari warna coklat tua menjadi kuning muda setelah penambahan amilum maka larutan menjadi bening dan setelah penambahan KCNS maka larutan menjadi jernih kembali. Dari hasil perhitungan diperoleh massa tembaga pada larutan sampel sebesar 0,4321 gram dan kadar tembaga (%Cu2+) dalam larutan sample tersebut adalah sebesar 43,21 %.

IODOMETRI DAN IODIMETRI

• Iodometri : titrasi terhadap iodin (I2) bebas yang terdapat dalam larutan• Iodometri : titrasi dengan larutan I2 sebagai standar• I2 potensial oksidasi rendah dibanding oksidator lain• Yang dapat dioksidasi : S2-, SO3

2-, S2O32-, AsO3

3-, Sn2+

• Titrasi iodometri :• I- dapat dioksidasi dengan oksidator yang lebih kuat• BrO3

-, Cl2, Br2, IO3-, Cr2O7

2-, Ce4+, Fe3+, Cu2+, MnO4-

• I- I2, dan I2 dititrasi dengan S2O32-

• Membuat larutan I2 ditambah KI I3-

• Proses iodometri/iodimetri:

BE = banyaknya/beratnya zat tersebut yang dapat membebaskan 1 gram atom IodFaktor yang mempengaruhi potensial oksidasi I2/I-

1. Keasamantidak mengandung unsur O tidak terpengaruh pH sistem I2/I-, asal pH < 8

Pada pH > 8 I2 bereaksi dg OH-

I2 + 2OH- IO- + I- + H2O3 IO- IO3

- + 2 I-

mengandung unsur O sangat dipengaruhi pHpH : 4-9 AsO3

3- + I2 + H2O 2 I- + AsO43- +2H+

reaksi ke kanan

2. Kelarutan I2

Sumber-sumber kesalahan titrasi iodometri

1. Penguapan I2

2. Oksidasi udara

Page 10: Iodometri Dan Redoks - Kelompok B

3. Adsorpsi I2 oleh endapanpk Cu2+ Cu2I2 mengadsorpsi I2+ alkohol/CNS- (10 mL 10%)

4. Reaksi lambat pk Fe2+ pendiaman• Indikator : amilum• Kejelekan amilum :

1. tidak larut dalam air dingin2. suspensinya dalam air tidak stabil3. I2 + amilum iod amilum sukar larut dalam air

Pada awal titrasi terjadi kesalahan harus sedekat mungkin dengan titik ekivalenZat standar sekunder : Na2S2O3

• - kandungan air tidak dapat diketahui dengan tepat • - dalam penyimpanan mengalami penguraian oleh bakteri thiobacillus thioparus• - dipengaruhi oleh CO2 dalam air (suasana asam) penguraian :S2O3

2- + H+

HSO3-+S

Cara menghindari :

• Na2S2O3 dilarutkan dalam air mendidih (bebas CO2)• + pengawet 3 tts CHCl3/ 10 mg HgCl2/1 L lar• disimpan jauh dari sinar matahari

Zat standar primer untuk Na2S2O3

• 1. K2Cr2O7 suasana asam kuat• 2. KIO3 keasaman lemah• 3. KBrO3

• 4. K3Fe(CN)6

contoh penggunaan titrasi iodometri-iodimetri

1. Penetapan kadar Cu dalam CuSO45 H2O 2 CuSO4 + 4 KI 2 Cu + I2 + 2 K2SO4

2 Cu2+ + 4 I- 2 CuI + I2

I2 + 2 S2O32- 2 I- + S4O6

2-

1 mL Na2S2O3 1 N = 0,06354 g Cu

2. Penetapan kadar klor aktif dalam serbuk pemutih

OCl- + Cl- + 2 H+ Cl2 + H2O

Cl2 + 2 I- I2 + 2 Cl-

OCl- + 2 I- + 2 H+ I2 + Cl- + H2O

Page 11: Iodometri Dan Redoks - Kelompok B

I2 dititrasi dengan Na2S2O3

URAIAN BAHAN

1.Aquadest / air suling (FI III, 96)

Nama resmi : AQUA DESTILLATANama lain : Ar sulingRM : H2OBM : 18,02Kelarutan : Larut dalam etanol dan gliserolKegunaan : Sebagai pelarutPemerian : Cairan jernih, tidak berwarna, tidak berasa, tidak berbau.Penyimpanan : Dalam wadah tertutup rapatStruktur : H-O-H

2.Iodium (FI III ,31)

Nama resmi : IODUMNama lain : IodumRM : IBM : 126,96Kelarutan : larut dalam 3500 bagian air ,dalam 13 bagian etanol, dalam 80 bagian gliserol .Kegunaan : Sebagai sampelPemerian : Keeping atau butir, berat, mengkilap seperti logam, hitam kelabu dan bau khas .Penyimpanan : Dalam wadah tertutup rapat

3.Natrium Tiosulfat (FI III,428)

Nama resmi : NATRI THIOSULFASNama lain : Natrium tiosulfat/hipoRM : Na2S2O3 .5H2OBM : 248,17Pemerian : Hablur besar tidak berwarna /serbuk hablur kasar. Dalam lembab meleleh basah, dalam hampa udara merapuh.Kelarutan : larut dalam 0,5 bagian air,praktis tidak larut dalam etanolKegunaan : Sebagai penitrasiPenyimpanan : Dalam wadah tertutup rapat.

4 Asam Sulfat (FI III,58)

Nama resmi : ACIDUM SULFURICUMNama lain : Asam sulfatRM : H2SO4

Page 12: Iodometri Dan Redoks - Kelompok B

BM : 98,07Pemerian : Cairan kental seperti minyak,korosif,tidak berwarna jika ditambahkan dalam air menimbulkan panas.Kelarutan : -Kegunaan : Sebagai sampelPenyimpanan : Dalam wadah tertutup rapat

5.VITAMIN C( FI III,47)

Nama resmi : ACIDUM ASCORBICUMNama lain : Asam askorbatRM : C6H8O6BM : 176,13Pemerian : Serbuk atau hablur,putih atau agak kuning,tidak berbau rasa asam, karena pengaruh cahaya jadi gelap.Kelarutan : Mudah larut dalam air, sukar larut dalam etanol, praktis tidak larut dalam klorofomKegunaan : Sebagai bahanPenyimpanan : Dalam wadah tertutup rapat.

6.KALIUM BROMAT(FI III,687)

Nama resmi : KALIUM BROMATNama lain : Kalium bronatRM : KBrO3BM : -Pemerian : Serbuk hablur,putihKelarutan : Pada suhu 15,5 larut dalam 12,5 bagian air, dalam 2 bagian air mendidih, sukar larut dalam etanol p.Penyimpanan : Dalam wadah tertutup rapatKegunaan : Sebagai sampel

7.KALIUM BROMIDA(FI III,328)

Nama resmi : KALII BROMIDUMNama lain : Kalium bromidaPemerian : Hablur tidak berwarna, teransaran / buram /serbuk butir tidak berbau, rasa asin, agak pahitRM : KBrBM : 109,01Penyimpanan : Dalam wadah tertutup rapatKegunaan : Sebagai sampelKelarutan : Larut dalam 1,6 bagian air dan dalam 200 bagian etanol

8.ASAM ASETAT (FI III 41)

Page 13: Iodometri Dan Redoks - Kelompok B

Nama resmi : ACIDUM ACETICUM DILUTUMNama lain : Asam asetat encerRM : CH3COOHBM : -Pemerian : -Kelarutan : -Penyimpanan : Dalam wadah tertutup rapat.Kegunaan : Sebagai sampel

9.TEMBAGA (II )SULFAT(FI III,731)

Nama resmi : TEMBAGA II SULFATNama lain : Kupri sulfatRM : CUSO4.5H2OPemerian : Prisma tri klinik,serbuk hablur,biruKelarutan : Larut dalam 3 bagian air dan 3 bagian gliserol, sangat sukar larut dalam etanol.Penyimpanan : Dalam wadah tertutup rapatKegunaan : Sebagai sampel

10.ASAM SALISILAT(FI III,56)

Nama resmi : ACIDUM SALICYLICUMNama lain : Asam salisilatRM : C7H6O3BM : 138,13Pemerian : Hablur ringan tidak berwarna /serbuk berwarna putih hampir tidak berbau, rasa agak manis dan tajamKelarutan : Larut dalam 550 bagian airdan dalam 4 etanol, mudah larut dalam klorofom dan dalam eter p.Kegunaan : Sebagai sampelPenyimpanan : Dalam wadah tertutup rapat.

11.ASAM KLORIDA(FI III,53)

Nama resmi : ACIDUM HYDRO CHLORIDUMNama lain : Asam kloridaRM : HCLBM : 36,46Penyimpanan : Dalam wadah tertutup rapatKelarutan : -Pemerian : Tidak berwarna, berasap, bau merangsang, jika diencerkan dengan dua bagian air, berasap dan bau hilang

Page 14: Iodometri Dan Redoks - Kelompok B

Kegunaan : Sebagai zat tamabahan

12.KIO3 (FI III,689)

Nama resmi : KALIUM IODATNama lain : kalium iodatRM : KIO3Pemerian : Serbuk hablur, putih.Kelarutan : Larut dalam airPenyimpanan : Dalam wadah tertutup rapatKegunaan : Sebagai sampel

13.KI (FI III,330)

Nama resmi : KALII IODIDUMNama lain : Kalium iodideRM : KIBM : 166,00Pemerian : Hablur heksahedral, transparan /tidak berwarna, opak dan putih /serbuk butiran putih, higroskopik.Kelarutan : Mudah larut dalam air, lebih mudah larut dalam air mendidih, larut dalm etanol .pPenyimpanan : Dalam wadah tertutup rapatKegunaan : Sebagai sampel

Redoks

Page 15: Iodometri Dan Redoks - Kelompok B

Ilustrasi sebuah reaksi redoks

Redoks (singkatan dari reaksi reduksi/oksidasi) adalah istilah yang menjelaskan berubahnya bilangan oksidasi (keadaan oksidasi) atom-atom dalam sebuah reaksi kimia.

Hal ini dapat berupa proses redoks yang sederhana seperti oksidasi karbon yang menghasilkan karbon dioksida, atau reduksi karbon oleh hidrogen menghasilkan metana(CH4), ataupun ia dapat berupa proses yang kompleks seperti oksidasi gula pada tubuh manusia melalui rentetan transfer elektron yang rumit.

Istilah redoks berasal dari dua konsep, yaitu reduksi dan oksidasi. Ia dapat dijelaskan dengan mudah sebagai berikut:

Oksidasi menjelaskan pelepasan elektron oleh sebuah molekul, atom, atau ion Reduksi menjelaskan penambahan elektron oleh sebuah molekul, atom, atau ion.

Walaupun cukup tepat untuk digunakan dalam berbagai tujuan, penjelasan di atas tidaklah persis benar. Oksidasi dan reduksi tepatnya merujuk pada perubahan bilangan oksidasi karena transfer elektron yang sebenarnya tidak akan selalu terjadi. Sehingga oksidasi lebih baik didefinisikan sebagai peningkatan bilangan oksidasi, dan reduksi sebagai penurunan bilangan oksidasi. Dalam prakteknya, transfer elektron akan selalu mengubah bilangan oksidasi, namun terdapat banyak reaksi yang diklasifikasikan sebagai "redoks" walaupun tidak ada transfer elektron dalam reaksi tersebut (misalnya yang melibatkan ikatan kovalen).

Reaksi non-redoks yang tidak melibatkan perubahan muatan formal (formal charge) dikenal sebagai reaksi metatesis

Contoh reaksi redoks

Salah satu contoh reaksi redoks adalah antara hidrogen dan fluorin:

Kita dapat menulis keseluruhan reaksi ini sebagai dua reaksi setengah: reaksi oksidasi

dan reaksi reduksi

Page 16: Iodometri Dan Redoks - Kelompok B

Penganalisaan masing-masing reaksi setengah akan menjadikan keseluruhan proses kimia lebih jelas. Karena tidak terdapat perbuahan total muatan selama reaksi redoks, jumlah elektron yang berlebihan pada reaksi oksidasi haruslah sama dengan jumlah yang dikonsumsi pada reaksi reduksi.

Unsur-unsur, bahkan dalam bentuk molekul, sering kali memiliki bilangan oksidasi nol. Pada reaksi di atas, hidrogen teroksidasi dari bilangan oksidasi 0 menjadi +1, sedangkan fluorin tereduksi dari bilangan oksidasi 0 menjadi -1.

Ketika reaksi oksidasi dan reduksi digabungkan, elektron-elektron yang terlibat akan saling mengurangi:

Dan ion-ion akan bergabung membentuk hidrogen fluorida:

Reaksi penggantian

Redoks terjadi pada reaksi penggantian tunggal atau reaksi substitusi. Komponen redoks dalam tipe reaksi ini ada pada perubahan keadaan oksidasi (muatan) pada atom-atom tertentu, dan bukanlah pada pergantian atom dalam senyawa.

Sebagai contoh, reaksi antara larutan besi dan tembaga(II) sulfat:

Persamaan ion dari reaksi ini adalah:

Terlihat bahwa besi teroksidasi:

dan tembaga tereduksi:

Page 17: Iodometri Dan Redoks - Kelompok B

Contoh-contoh lainnya Besi(II) teroksidasi menjadi besi(III)

hidrogen peroksida tereduksi menjadi hidroksida dengan keberadaan sebuah asam:

H2O2 + 2 e− → 2 OH−

Persamaan keseluruhan reaksi di atas adalah:

2Fe2+ + H2O2 + 2H+ → 2Fe3+ + 2H2O denitrifikasi , nitrat tereduksi menjadi nitrogen dengan keberadaan asam:

2NO3− + 10e− + 12 H+ → N2 + 6H2O

Besi akan teroksidasi menjadi besi(III) oksida dan oksigen akan tereduksi membentuk besi(III) oksida (umumnya dikenal sebagai perkaratan):

4Fe + 3O2 → 2 Fe2O3

Pembakaran hidrokarbon, contohnya pada mesin pembakaran dalam, menghasilkan air, karbon dioksida, sebagian kecil karbon monoksida, dan energi panas. Oksidasi penuh bahan-bahan yang mengandung karbon akan menghasilkan karbon dioksida.

Dalam kimia organik, oksidasi seselangkah (stepwise oxidation) hidrokarbon menghasilkan air, dan berturut-turut alkohol, aldehida atau keton, asam karboksilat, dan kemudian peroksida.

Menyeimbangkan reaksi redoks

Untuk menuliskan keseluruhan reaksi elektrokimia sebuah proses redoks, diperlukan penyeimbangan komponen-komponen dalam reaksi setengah. Untuk reaksi dalam larutan, hal ini umumnya melibatkan penambahan ion H + , ion OH - , H2O, dan elektron untuk menutupi perubahan oksidasi.

Media asam

Pada media asam, ion H + dan air ditambahkan pada reaksi setengah untuk menyeimbangkan keseluruhan reaksi. Sebagai contoh, ketika mangan(II) bereaksi dengan natrium bismutat:

natrium bismutat:

Page 18: Iodometri Dan Redoks - Kelompok B

Reaksi ini diseimbangkan dengan mengatur reaksi sedemikian rupa sehingga dua setengah reaksi tersebut melibatkan jumlah elektron yang sama (yakni mengalikan reaksi oksidasi dengan jumlah elektron pada langkah reduksi, demikian juga sebaliknya).

Reaksi diseimbangkan:

Hal yang sama juga berlaku untuk sel bahan bakar propana di bawah kondisi asam:

Dengan menyeimbangkan jumlah elektron yang terlibat:

Persamaan diseimbangkan:

Media basa

Pada media basa, ion OH - dan air ditambahkan ke reaksi setengah untuk menyeimbangkan keseluruhan reaksi.Sebagai contoh, reaksi antara kalium permanganat dan natrium sulfit:

Dengan menyeimbangkan jumlah elektron pada kedua reaksi setengah di atas:

Persamaan diseimbangkan:

Page 19: Iodometri Dan Redoks - Kelompok B

Pengertian Oksidasi dan Reduksi (Redoks)

Pengertian oksidasi dan reduksi disini lebih melihat dari segi transfer oksigen, hidrogen dan elektron. Disini akan juga dijelaskan mengenai zat pengoksidasi (oksidator) dan zat pereduksi (reduktor).

Oksidasi dan reduksi dalam hal transfer oksigen

Dalam hal transfer oksigen, Oksidasi berarti mendapat oksigen, sedang Reduksi adalah kehilangan oksigen.

Sebagai contoh, reaksi dalam ekstraksi besi dari biji besi:

Karena reduksi dan oksidasi terjadi pada saat yang bersamaan, reaksi diatas disebut reaksi REDOKS.

Zat pengoksidasi dan zat pereduksi

Oksidator atau zat pengoksidasi adalah zat yang mengoksidasi zat lain. Pada contoh reaksi diatas, besi(III)oksida merupakan oksidator.

Reduktor atau zat pereduksi adalah zat yang mereduksi zat lain. Dari reaksi di atas, yang merupakan reduktor adalah karbon monooksida.

Jadi dapat disimpulkan:

oksidator adalah yang memberi oksigen kepada zat lain, reduktor adalah yang mengambil oksigen dari zat lain

Oksidasi dan reduksi dalam hal transfer hidrogen

Definisi oksidasi dan reduksi dalam hal transfer hidrogen ini sudah lama dan kini tidak banyak digunakan.

Oksidasi berarti kehilangan hidrogen, reduksi berarti mendapat hidrogen.

Page 20: Iodometri Dan Redoks - Kelompok B

Perhatikan bahwa yang terjadi adalah kebalikan dari definisi pada transfer oksigen.Sebagai contoh, etanol dapat dioksidasi menjadi etanal:

Untuk memindahkan atau mengeluarkan hidrogen dari etanol diperlukan zat pengoksidasi (oksidator). Oksidator yang umum digunakan adalah larutan kalium dikromat(IV) yang diasamkan dengan asam sulfat encer.

Etanal juga dapat direduksi menjadi etanol kembali dengan menambahkan hidrogen. Reduktor yang bisa digunakan untuk reaksi reduksi ini adalah natrium tetrahidroborat, NaBH4. Secara sederhana, reaksi tersebut dapat digambarkan sebagai berikut:

Zat pengoksidasi (oksidator) dan zat pereduksi (reduktor)

Zat pengoksidasi (oksidator) memberi oksigen kepada zat lain, atau memindahkan hidrogen dari zat lain.

Zat pereduksi (reduktor) memindahkan oksigen dari zat lain, atau memberi hidrogen kepada zat lain.

Oksidasi dan reduksi dalam hal transfer elektron

Oksidasi berarti kehilangan elektron, dan reduksi berarti mendapat elektron.

Definisi ini sangat penting untuk diingat. Ada cara yang mudah untuk membantu anda mengingat definisi ini. Dalam hal transfer elektron:

Contoh sederhana

Reaksi redoks dalam hal transfer elektron:

Page 21: Iodometri Dan Redoks - Kelompok B

Tembaga(II)oksida dan magnesium oksida keduanya bersifat ion. Sedang dalam bentuk logamnya tidak bersifat ion. Jika reaksi ini ditulis ulang sebagai persamaan reaksi ion, ternyata ion oksida merupakan ion spektator (ion penonton).

Jika anda perhatikan persamaan reaksi di atas, magnesium mereduksi iom tembaga(II) dengan memberi elektron untuk menetralkan muatan tembaga(II).

Dapat dikatakan: magnesium adalah zat pereduksi (reduktor).Sebaliknya, ion tembaga(II) memindahkan elektron dari magnesium untuk menghasilkan ion magnesium. Jadi, ion tembaga(II) beraksi sebagai zat pengoksidasi (oksidator).

Memang agak membingungkan untuk mempelajari oksidasi dan reduksi dalam hal transfer elektron, sekaligus mempelajari definisi zat pengoksidasi dan pereduksi dalam hal transfer elektron.

Dapat disimpulkan sebagai berikut, apa peran pengoksidasi dalam transfer elektron:

Zat pengoksidasi mengoksidasi zat lain. Oksidasi berarti kehilangan elektron (OIL RIG). Itu berarti zat pengoksidasi mengambil elektron dari zat lain. Jadi suatu zat pengoksidasi harus mendapat elektron

Atau dapat disimpulkan sebagai berikut: Suatu zat pengoksidasi mengoksidasi zat lain. Itu berarti zat pengoksidasi harus direduksi. Reduksi berarti mendapat elektron (OIL RIG). Jadi suatu zat pengoksidasi harus mendapat elektron.

Bilangan Oksidasi (BILOKS)

Pengertian Bilangan Oksidasi

Dengan bilangan oksidasi akan mempermudah dalam pengerjaan reduksi atau oksidasi dalam suatu reaksi redoks.

Page 22: Iodometri Dan Redoks - Kelompok B

Kita akan membuat contoh dari Vanadium. Vanadium membentuk beberapa ion, V2+ dan V3+. Bagaimana ini bisa terjadi? Ion V2+ akan terbentuk dengan mengoksidasi logam, dengan memindahkan 2 elektron:

Vanadium kini disebut mempunyai biloks +2.

Pemindahan satu elektron lagi membentuk ion V3+:

Vanadium kini mempunyai biloks +3.

Pemindahan elektron sekali lagi membentuk bentuk ion tidak biasa, VO2+.

Biloks vanadium kini adalah +4. Perhatikan bahwa biloks tidak didapat hanya dengan menghitung muatan ion (tapi pada kasus pertama dan kedua tadi memang benar).

Bilangan oksidasi positif dihitung dari total elektron yang harus dipindahkan-mulai dari bentuk unsur bebasnya.

Vanadium biloks +5 juga bisa saja dibentuk dengan memindahkan elektron kelima dan membentuk ion baru.

Setiap kali vanadium dioksidasi dengan memindahkan satu elektronnya, biloks vanadium bertambah 1.

Sebaliknya, jika elektron ditambahkan pada ion, biloksnya akan turun. Bahkan dapat didapat lagi bentuk awal atau bentuk bebas vanadium yang memiliki biloks nol.

Bagaimana jika pada suatu unsur ditambahkan elektron? Ini tidak dapat dilakukan pada vanadium, tapi dapat pada unsur seperti sulfur.

Ion sulfur memiliki biloks -2.

Kesimpulan

Page 23: Iodometri Dan Redoks - Kelompok B

Biloks menunjukkan total elektron yang dipindahkan dari unsur bebas (biloks positif) atau ditambahkan pada suatu unsur (biloks negatif) untuk mencapai keadaan atau bentuknya yang baru.

Oksidasi melibatkan kenaikan bilangan oksidasi

Reduksi melibatkan penurunan bilangan oksidasi

Dengan memahami pola sederhana ini akan mempermudah pemahaman tentang konsep bilangan oksidasi. Jika anda mengerti bagaimana bilangan oksidasi berubah selama reaksi, anda dapat segera tahu apakah zat dioksidasi atau direduksi tanpa harus mengerjakan setengah-reaksi dan transfer elektron.

Mengerjakan bilangan oksidasi

Biloks tidak didapat dengan menghitung jumlah elektron yang ditransfer. Karena itu membutuhkan langkah yang panjang. Sebaliknya cukup dengan langkah yang sederhana, dan perhitungan sederhana.

E Biloks dari unsur bebas adalah nol. Itu karena unsur bebas belum mengalami oksidasi atau reduksi. Ini berlaku untuk semua unsur, baik unsur dengan struktur sederhana seperti Cl2 atau S8, atau unsur dengan struktur besar seperti karbon atau silikon.

* Jumlah biloks dari semua atom atau ion dalam suatu senyawa netral adalah nol.

* Jumlah biloks dari semua atom dalam suatu senyawa ion sama dengan jumlah muatan ion tersebut.

* Unsur dalam senyawa yang lebih elektronegatif diberi biloks negatif. Yang kurang elektronegatif diberi biloks positif. Ingat, Fluorin adalah unsur paling elektronegatif, kemudian oksigen.

* Beberapa unsur hampir selalu mempunyai biloks sama dalam senyawanya:

unsurBilangan Oksidasi

Pengecualian

Logam selalu +1

Page 24: Iodometri Dan Redoks - Kelompok B

golongan I

Group 2 metals selalu +2

Oksigen biasanya -2 Kecuali dalam peroksida dan F2O (lihat dibawah)

Hidrogen biasanya +1Kecuali dalam hidrida logam, yaitu -1 (lihat dibawah)

Fluorin selalu -1

Klorin biasanya -1Kecuali dalam persenyawaan dengan O atau F (lihat dibawah)

Alasan pengecualian

Hidrogen dalam hidrida logam

Yang termasuk hidrida logam antara lain natrium hidrida, NaH. Dalam senyawa ini, hidrogen ada dalam bentuk ion hidrida, H-. Biloks dari ion seperti hidrida adalah sama dengan muatan ion, dalam contoh ini, -1.

Dengan penjelasan lain, biloks senyawa netral adalah nol, dan biloks logam golongan I dalam senyawa selalu +1, jadi biloks hidrogen haruslah -1 (+1-1=0).

Oksigen dalam peroksida

Yang termasuk peroksida antara lain, H2O2. Senyawa ini adalah senyawa netral, jadi jumlah biloks hidrogen dan oksigen harus nol.

Karena tiap hidrogen memiliki biloks +1, biloks tiap oksigen harus -1, untuk mengimbangi biloks hidrogen.

Oksigen dalam F2O

Permasalahan disini adalah oksigen bukanlah unsur paling elektronegatif. Fluorin yang paling elektronegatif dan memiliki biloks -1. Jadi biloks oksigen adalah +2.

Klorin dalam persenyawaan dengan fluorin atau oksigen

Klorin memiliki banyak biloks dalam persenyawaan ini. Tetapi harus diingat, klorin tidak memiliki biloks -1 dalam persenyawaan ini.

Page 25: Iodometri Dan Redoks - Kelompok B

Contoh soal bilangan oksidasi

Apakah bilangan oksidasi dari kromium dalam Cr2+?

Untuk ion sederhana seperti ini, biloks adalah jumlah muatan ion, yaitu +2 (jangan lupa tanda +)

Apakah bilangan oksidasi dari kromium dalam CrCl3?

CrCl3 adalah senyawa netral, jadi jumlah biloksnya adalah nol. Klorin memiliki biloks -1. Misalkan biloks kromium adalah n:

n + 3 (-1) = 0

n = +3

Apakah bilangan oksidasi dari kromium dalam Cr(H2O)63+?

Senyawa ini merupakan senyawa ion, jumlah biloksnya sama dengan muatan ion. Ada keterbatasan dalam mengerjakan biloks dalam ion kompleks seperti ini dimana ion logam dikelilingi oleh molekul-molekul netral seperti air atau amonia.

Jumlah biloks dari molekul netral yang terikat pada logam harus nol. Berarti molekul-molekul tersebut dapat diabaikan dalam mengerjakan soal ini. Jadi bentuknya sama seperti ion kromium yang tak terikat molekul, Cr3+. Biloksnya adalah +3.

Apakah bilangan oksidasi dari kromium dalam ion dikromat, Cr2O72-?

Biloks oksigen adalah -2, dan jumlah biloks sama dengan jumlah muatan ion. Jangan lupa bahwa ada 2 atom kromium.

2n + 7(-2) = -2n = +6

Menggunakan bilangan oksidasi

Dalam penamaan senyawa

Anda pasti pernah tahu nama-nama ion seperti besi(II)sulfat dan besi(III)klorida. Tanda (II) dan (III) merupakan biloks dari besi dalam kedua senyawa tersebut: yaitu +2 dan +3. Ini menjelaskan bahwa senyawa mengandung ion Fe2+ dan Fe3+.

Page 26: Iodometri Dan Redoks - Kelompok B

Besi(II)sulfat adalah FeSO4. Ada juga senyawa FeSO3 dengan nama klasik besi(II)sulfit. Nama modern menunjukkan biloks sulfur dalam kedua senyawa.Ion sulfat yaitu SO4

2-. Biloks sulfur adalah +6. Ion tersebut sering disebut ion sulfat(VI).

Ion sulfit yaitu SO32-. Biloks sulfur adalah +4. Ion ini sering disebut ion sulfat(IV).

Akhiran -at menunjukkan sulfur merupakan ion negatif.

Jadi lengkapnya FeSO4 disebut besi(II)sulfat(VI), dan FeSO3 disebut besi(II)sulfat(IV). Tetapi karena kerancuan pada nama-nama tersebut, nama klasik sulfat dan sulfit masih digunakan.

Menggunakan bilangan oksidasi untuk menentukan yang dioksidasi dan yang direduksi.

Ini merupakan aplikasi bilangan oksidasi yang paling umum. Seperti telah dijelaskan:

Oksidasi melibatkan kenaikan bilangan oksidasi

Reduksi melibatkan penurunan bilangan oksidasi

Pada contoh berikut ini, kita harus menentukan apakah reaksi adalah reaksi redoks, dan jika ya apa yang dioksidasi dan apa yang direduksi.

Contoh 1:

Reaksi antara magnesium dengan asam hidroklorida:

Apakah ada biloks yang berubah? Ya, ada dua unsur yang berupa senyawa pada satu sisi reaksi dan bentuk bebas pada sisi lainnya. Periksa semua biloks agar lebih yakin.

Biloks magnesium naik, jadi magnesium teroksidasi. Biloks hidrogen turun, jadi hidrogen tereduksi. Klorin memiliki biloks yang sama pada kedua sisi persamaan reaksi, jadi klorin tidak teroksidasi ataupun tereduksi.

Contoh 2:

Reaksi antara natrium hidroksidsa dengan asam hidroklorida:

Page 27: Iodometri Dan Redoks - Kelompok B

Semua bilangan oksidasi diperiksa:

Ternyata tidak ada biloks yang berubah. Jadi, reaksi ini bukanlah reaksi redoks.

Contoh 3:

Reaksi antara klorin dan natrium hidroksida encer dingin:

Jelas terlihat, biloks klorin berubah karena berubah dari undur bebas menjadi dalam persenyawaan. Bilangan oksidasi diperiksa:

Klorin ternyata satu-satunya unsur yang mengalami perubahan biloks. Lalu, klorin mengalami reduksi atau oksidasi? Jawabannya adalah keduanya. Satu atom klorin mengalami reduksi karena biloksnya turun, atom klorin lainnya teroksidasi.

Peristiwa seperti ini disebut reaksi disproporsionasi. Reaksi disproporsionasi yaitu reaksi dimana satu unsur mengalami oksidasi maupun reduksi.

● Menggunakan bilangan oksidasi untuk mengerjakan proporsi reaksi

Bilangan oksidasi dapat berguna dalam membuat proporsi reaksi dalam reaksi titrasi, dimana tidak terdapat informasi yang cukup untuk menyelesaikan persamaan reaksi yang lengkap.

Ingat, setiap perubahan 1 nilai biloks menunjukkan bahwa satu elektron telah ditransfer. Jika biloks suatu unsur dalam reaksi turun 2 nilai, berarti unsur tersebut memperoleh 2 elektron.

Unsur lain dalam reaksi pastilah kehilangan 2 elektron tadi. Setiap biloks yang turun, pasti diikuti dengan kenaikan yang setara biloks unsur lain.

Page 28: Iodometri Dan Redoks - Kelompok B

Ion yang mengandung cerium dengan biloks +4 adalah zat pengoksidasi (rumus molekul rumit, tidak sekedar Ce4+). Zat tersebut dapat mengoksidasi ion yang mngandung molybdenum dari biloks +2 menjadi +6. Biloks cerium menjadi +3 ( Ce4+). Lalu, bagaimana proporsi reaksinya?

Biloks molybdenum naik sebanyak 4 nilai. Berarti biloks cerium harus turun sebanyak 4 nilai juga.

Tetapi biloks cerium dalam tiap ionnya hanya turun 1 nilai, dari +4 menjadi +3. Jadi jelas setidaknya harus ada 4 ion cerium yang terlibat dalam setiap reaksi dengan molybdenum ini.

Proporsi reaksinya adalah 4 ion yang mengandung cerium dengan 1 ion molybdenum.

● Menulis Persamaan Ion Untuk Reaksi REDOKS

Berikut akan dijelaskan bagaimana mengerjakan setengah-reaksi elektron untuk proses oksidasi dan reduksi, kemudian bagaimana menggabungkan setengah-reaksi tersebut untuk mendapat persamaan ion untuk reaksi redoks secara utuh. Ini merupakan pelajaran yang penting dalam kimia anorganik.

■ Setengah-Reaksi Elektron

Apakah setengah-reaksi elektron?

Ketika magnesium mereduksi tembaga(II)oksida dalam suhu panas menjadi tembaga, persamaan ion untuk reaksi itu adalah:

Kita dapat membagi persamaan ion ini menjadi dua bagian, dengan melihat dari sisi magnesium dan dari sisi ion tembaga(II) secara terpisah. Dari sini terlihat jelas bahwa magnesium kehilangan dua elektron, dan ion tembaga(II) yang mendapat dua elektron tadi.

Kedua persamaan di atas disebut "setengah-reaksi elektron" atau "setengah-persamaan" atau "setengah-persamaan ionik" atau "setengah-reaksi", banyak sebutan tetapi mempunyai arti hal yang sama.

Setiap reaksi redoks terdiri dari dua setengah-reaksi. Pada salah satu reaksi terjadi kehilangan elektron (proses oksidasi), dan di reaksi lainnya terjadi penerimaan

Page 29: Iodometri Dan Redoks - Kelompok B

elektron (proses reduksi).

Mengerjakan setengah-reaksi elektron dan menggunakannya untuk membuat persamaan ion

Pada contoh di atas, kita mendapat setengah-reaksi elektron dengan memulai dari persamaan ion kemudian mengeluarkan masing-masing setengah-reaksi dari persamaan tersebut. Itu merupakan proses yang tidak benar.

Pada kenyataannya, kita hampir selalu memulai dari setengah-reaksi elektron dan menggunakannya untuk membuat persamaan ion.

Contoh 1: Reaksi antara klorin dan ion besi(II)

Gas klorin mengoksidasi ion besi(II) menjadi ion besi(III). Pada proses ini, klorin direduksi menjadi ion klorida. Sebagai permulaan kita buat dahulu masing-masing setengah-reaksi.

Untuk klorin, seperti kita ketahui klorin (sebagai molekul) berubah menjadi ion klorida dengan reaksi sebagai berikut:

Pertama, kita harus menyamakan jumlah atom di kedua sisi:

Penting untuk diingat, jumlah atom harus selalu disamakan dahulu sebelum melakukan proses selanjutnya. Jika terlupa, maka proses selanjutnya akan menjadi kacau dan sia-sia.

Kemudian untuk menyempurnakan setengah-reaksi ini kita harus menambahkan sesuatu. Yang bisa ditambah untuk setengah-reaksi adalah:

* Elektron* Air* Ion hidrogen (H+) (kecuali jika reaksi terjadi dalam suasana basa, jika demikian yang bisa ditambahkan adalah ion hidroksida (OH-)

Dalam kasus contoh di atas, hal yang salah pada persamaan reaksi yang kita telah buat adalah muatannya tidak sama. Pada sisi kiri persamaan tidak ada muatan, sedang pada sisi kanannya ada muatan negatif 2 (untuk selanjutnya disingkat dengan simbol : 2-).

Hal itu dapat dengan mudah diperbaiki dengan menambah dua elektron pada sisi kiri persamaan reaksi. Akhirnya didapat bentuk akhir setengah-reaksi ini:

Page 30: Iodometri Dan Redoks - Kelompok B

Proses yang sama juga berlaku untuk ion besi(II). Seperti telah diketatahui, ion besi(II) dioksidasi menjadi ion besi(III).

Jumlah atom dikedua sisi telah sama, tetapi muatannya berbeda. Pada sisi kanan, terdapat muatan 3+, dan pada sisi kiri hanya 2+.

Untuk menyamakan muatan kita harus mengurangi muatan positif yang ada pada sisi kanan, yaitu dengan menambah elektron pada sisi tersebut:

Mengabungkan setengah reaksi untuk mendapat persamaan ion untuk reaksi redoks

Sekarang kita telah mendapatkan persamaan dibawah ini:

Terlihat jelas bahwa reaksi dari besi harus terjadi dua kali untuk setiap molekul klorin. Setelah itu, kedua setengah-reaksi dapat digabungkan.

Tapi jangan berhenti disitu! Kita harus memeriksa kembali bahwa semua dalam keadaan sama atau setara, baik jumlah atom dan muatannya. Sangat mudah sekali terjadi kesalahan kecil (tapi bisa menjadi fatal!) terutama jika yang dikerjakan adalah persamaan yang lebih rumit.

Pada persamaan terakhir, terlihat bahwa tidak ada elektron yang diikutsertakan. Pada persamaan terakhir ini, di kedua sisi sebenarnya terdapat elektron dalam

Page 31: Iodometri Dan Redoks - Kelompok B

jumlah yang sama, jadi saling meniadakan, dapat dicoret, dan tidak perlu ditulis dalam persamaan akhir yang dihasilkan.

Contoh 2: Reaksi antara hidrogen peroksida dan ion manganat(VII)

Persamaan reaksi pada contoh 1 merupakan contoh yang sederhana dan cukup mudah. Tetapi teknik atau cara pengerjaannya berlaku juga untuk reaksi yang lebih rumit dan bahkan reaksi yang belum dikenal.

Ion manganat(VII), MnO4-, mengoksidasi hidrogen peroksida, H2O2, menjadi gas

oksigen. Reaksi seperti ini terjadi pada larutan kalium manganat(VII) dan larutan hidrogen peroksida dalam suasana asam dengan penambahan asam sulfat.Selama reaksi berlangsung, ion manganat(VII) direduksi menjadi ion mangan(II).

Kita akan mulai dari setengah-reaksi dari hidrogen peroksida.

Jumlah atom oksigen telah sama/ setara, tetapi bagaimana dengan hidrogen?

Yang bisa ditambahkan pada persamaan ini hanyalah air, ion hidrogen dan elektron. Jika kita menambahkan air untuk menyamakan jumlah hidrogen, jumlah atom oksigen akan berubah, ini sama sekali salah.

Yang harus dilakukan adalah menambahkan dua ion hidrogen pada sisi kanan reaksi:

Selanjutnya, kita perlu menyamakan muatannya. Kita perlu menambah dua elektron pada sisi kanan untuk menjadikan jumlah muatan di kedua sisi 0.

Sekarang untuk setengah-reaksi manganat(VII):

Ion manganat(VII) berubah menjadi ion mangan(II).

Jumlah ion mangan sudah setara, tetapi diperlukan 4 atom oksigen pada sisi kanan reaksi. Satu-satunya sumber oksigen yang boleh ditambahkan pada reaksi suasana asam ini adalah air.

Page 32: Iodometri Dan Redoks - Kelompok B

Dari situ ternyata ada tambahan hidrogen, yang juga harus disetarakan. Untuk itu, kita perlu tambahan 8 ion hidrogen pada sisi kiri reaksi.

Setelah semua atom setara, selanjutnya kita harus menyetarakan muatannya. Pada tahapan reaksi diatas, total muatan disisi kiri adalah 7+ (1- dan 8+), tetapi pada sisi kanan hanya 2+. Jadi perlu ditambahkan 5 elektron pada sisi kiri untuk mengurangi muatan dari 7+ menjadi 2+.

Dapat disimpulkan, urutan pengerjaan setengah reaksi ini adalah:

Menyetarakan jumlah atom selain oksegen dan hidrogen. Menyetarakan jumlah oksigen dengan menambah molekul air (H2O). Menyetarakan jumlah hidrogen dengan menambah ion hidrogen (H+). Menyetarakan muatan dengan menambah elektron.

Menggabungkan setengah-reaksi untuk membuat persamaan reaksi

Kedua setengah-reaksi yang sudah kita dapat adalah:

Supaya dapat digabungkan, jumlah elektron dikedua setengah-reaksi sama banyak. Untuk itu setengah-reaksi harus dikali dengan faktor yang sesuai sehingga menghasilkan jumlah elektron yang setara. Untuk reaksi ini, masing-masing setengah reaksi dikalikan sehingga jumlah elektron menjadi 10 elektron.

Tapi kali ini tahapan reaksi belum selesai. Dalam hasil persamaan reaksi, terdapat ion hidrogen pada kedua sisi reaksi.

Page 33: Iodometri Dan Redoks - Kelompok B

Persamaan ini dapat disederhanakan dengan mengurangi 10 ion hidrogen dari kedua sisi sehingga menghasilkan bentuk akhir dari persamaan ion ini. Tapi jangan lupa untuk tetap memeriksa kesetaraan jumlah atom dan muatan!

Sering terjadi molekul air dan ion hidrogen muncul di kedua sisi persamaan reaksi, jadi harus selalu diperiksa dan kemudian disederhanakan.

BAB III

KESIMPULAN

IODOMETRI

Berdasarkan tujuan, perhitungan dan pembahasan yang telah diuraikan sebelumnya, maka dapat ditarik beberapa kesimpulan berikut :

1. Ada dua cara analisis menggunakan senyawa iodium yaitu titrasi iodimetri atau dengan iodometri dimana iodium terlebih dahulu dioksidasi oleh oksidator misalnya KI namun iodimetri lebih jarang digunakan karena iodium termasuk oksidaotr lemah.

2. Kadar tembaga dalam garam CuSO4.5H2O dapat ditentukan dengan cara iodometri atau kadar asam asetil salisilat dalam tablet aspirin.

Page 34: Iodometri Dan Redoks - Kelompok B

3. Indikator yang dipakai adalah amilum 0,1 N karena amilum sangat peka terhadap iodium dan  terbentuk kompleks amilum berwarna biru cerah, saat ekivalen amilum terlepas kembali.

4. Massa tembaga pada larutan diketahui sebesar 0,4321 gram dan kadar tembaga dalam larutan sebesar 43,21 %.

REDOKS

1. Redoks (singkatan dari reaksi reduksi/oksidasi) adalah istilah yang menjelaskan berubahnya bilangan oksidasi (keadaan oksidasi) atom-atom dalam sebuah reaksi kimia.

2. Untuk menuliskan keseluruhan reaksi elektrokimia sebuah proses redoks, diperlukan penyeimbangan komponen-komponen dalam reaksi setengah. Untuk reaksi dalam larutan, hal ini umumnya melibatkan penambahan ion H+, ion OH-, H2O, dan elektron untuk menutupi perubahan oksidasi

3. Dengan bilangan oksidasi akan mempermudah dalam pengerjaan reduksi atau oksidasi dalam suatu reaksi redoks.

4. Biloks menunjukkan total elektron yang dipindahkan dari unsur bebas (biloks positif) atau ditambahkan pada suatu unsur (biloks negatif) untuk mencapai keadaan atau bentuknya yang baru.

BAB IV

DAFTAR PUSTAKA

Basset. J etc. 1994. Buku Ajar Vogel, Kimia Analisis Kuantitatif Anorganik. Penerbit Buku Kedokteran EGC. Jakarta.

Khopkar, S. M. 1990. Konsep Dasar Kimia Analitik. Universitas Indonesia Press. Jakarta.

Rivai, Harrizul. 1995. Asas Pemeriksaan Kimia. Penerbit UI. Jakarta.

Page 35: Iodometri Dan Redoks - Kelompok B

DAY.R.A dan UNDERWOOD A.L.2002. Analisis Kimia Kuantitatif Edisi VI. Jakarta : Erlangga

Dirjen.POM.1979.Farmakope Indonesia Edisi III .Jakarta : Departemen kesehatan RI.

http://medicafarma.blogspot.com/2008/04/iodometri-dan-iodimetri.html

http://id.wikipedia.org/wiki/Redoks