37
Image reconstruction algorithms for microtomography Andrei V. Bronnikov Bronnikov Algorithms, The Netherlands

Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

Image reconstruction algorithms for microtomography

Andrei V. Bronnikov

Bronnikov Algorithms, The Netherlands

Page 2: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

• Introduction• Fundamentals of the algorithms• State-of-the-art in 3D image reconstruction• Phase-contrast image reconstruction• Summary

Contents

Page 3: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Microtomography systems

Image Intensifier

Camera

Manipulation system

Rail system

Object

X-Ray tubePC

Motor control

Camera control

NDT systems

Desktop systems

Synchrotron setup

Dental CBCTSmall animal CT

Nano x-ray microscopy

Page 4: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Micro CT images

Stampanoni et alSterling et al Dental CBCT

Page 5: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

• Object preparation, fixation, irradiation, etc

• Polychromatic source, miscalibrations, etc

• Small object size: insufficient absorption contrast

• Limited field-of-view, limited data, incomplete geometry

• Large amount of digital data

Problems

Page 6: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

• Region-of-interest reconstruction

• Fully 3D cone-beam scanning and reconstruction

• The use of phase contrast

• Software/hardware acceleration

Solutions

Page 7: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Geometry

Parallel beamThe source is faraway from the object

Cone beamThe source is closeto the object:- Increased flux- Magnification- Fully 3D

Synchrotron

Microfocus tube,microscopy

Page 8: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

`I nverse problem

gAf

Radon transform

Object: f

Projection data: dlfg

sLine

s

),(

,

s To find f from g ?

Page 9: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

`Backprojection

Integration of the projection data over the whole range of

0

* 1dggA

Page 10: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Algorithms: classification

gFF

gAAA

gAAAf

gAf

nn 11

1**

*1*

Radon transform

Imaging equation

BPF

FBP

Fourier

• Fourier algorithm• Filtered backprojection

(FBP)• Backprojection and

filtering (BPF)

• Iterative

Page 11: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Parallel-beam geometry (Synchrotron)

Page 12: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Fourier slice theorem

Page 13: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

I mage reconstruction with NFFT

gFFf 11

2Interpolation from the polar grid to the Cartesian is required

Nonequispaced Fast Fourier transform (NFFT) can be used

Potts et al, 2001

Linogram (“pseudo-polar”) grid

Page 14: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

FBP and BPF algorithms

“ramp filter”

dgFf0

11

1

1*1

221*2 AAFAAF

dgFf0

2212

1

gAAAgAAAf1***1*

Page 15: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

FBP algorithm

1D Filtering

dgqf0

Backprojection

Page 16: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Local (“Lambda”) tomography

gs

HAfgs

HgF *11 ˆ

dtts

tgsHg

gs

)(1)(

Local operator gs

Af *

Hilbert transform is non-local:

Page 17: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Cone-beam geometry (Microfocus x-ray tube)

Page 18: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Feldkamp algorithm with a circular orbit

X

ZFiltering

Backprojection

dgqf0

Feldkamp, Davis, Kress, 1984

Page 19: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Kirillov-Tuy condition

dssufug ))(()),((0

aa

a( )

s

detector

x-ray source trajectory; parametrized as a( )

Exact 3D reconstruction is possible if every plane through the object intersects the source trajectory at least once

f

u

Page 20: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Circular source orbit: artifacts

Slices of 3D reconstruction of a phantom (cone angle 30 deg):

Bronnikov 1995, 2000

Page 21: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

ROI reconstruction

Two-step data acquisition

Detector

Source

Sample

ROI

Position 2

Sample

Position 1

Page 22: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Non-planar source orbits

- two orthogonal circles- two circles and line- helix (most feasible mechanically)- saddle

Non-planar 3D reconstructions of a phantom:

Non-planar orbits satisfy the Kirillov-Tuy condition, but special reconstruction algorithms are required

Page 23: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Katsevich algorithm for a non-planar source orbit

gHAf *

2

1

PI-line (“segment”, “chord”) between a( 1) and a( 2): 2 1=2

1. Differentiation of data2. Hilbert transform along

the filtration lines inside the Tam-Danielson window

3. Backprojection

a( 1)

a( 2)

Th

RR2

,sin,cosaHelix:

Katsevich, 2002

Page 24: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

BPF algorithms for ROI reconstruction

gHHg

gAHf *

2

1

gAHf *121,2

1aa

1. Differentiation of data2. Backprojection onto the PI chord (locality!)3. Hilbert transform along the PI chord

a( )

Using that f has the finite support and

Zou, Pan, Sidky, 2005 derived:

Page 25: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Ultra-fast implementation

Reconstruction of a 512x512x512 image from 360 projections:

~10 sec~20 sec~40 sec~80 secTime :

Twin quad-core

Quad core

Dual core

SingleCPU (~2 GHz) :

Reconstruction of a 1024x1024x1024 image from 800 projections:

~120sec~480 secTime :

Twin quad-coreDual coreCPU (~2 GHz) :

• Graphic card (GPU) • CPU

Page 26: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Phase-contrast microtomography(Free propagation mode)

Page 27: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Phase contrast

Interference of the phase-shifted wave with the unrefracted waves

Page 28: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

I nline phase-contrast imaging

Snigirev et al, 1995

Page 29: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Polychromatic x-ray phase contrast

Wilkins et al, 1996

Page 30: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Phase-contrast tomography with Radon inversion: edges

Page 31: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

I nverse problem of phase-contrast microtomography

0),,( from),,(find 321 yxIxxxf z

• CTF (Cloetens et al, 1999)• TIE (Paganin and Nugent, 1998)

• Weak-absorption TIE (Bronnikov, 1999)

Object function: f = n – 1

Phase retrieval, more than one detection plane

FBP, single detection plane

Page 32: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Radon transform solution of TI E

Bronnikov, 1999

Object

ddsgd

f ),(ˆ4

12

f

g

d

1/),( id IIyxg

),(2

1),( 20 yxd

IyxI d

Page 33: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Phase-contrast reconstruction in the form of the FBP algorithm

2D Filtering

Backprojection

dgqd

f0

2 22 yx

yq

22Q

Bronnikov, 1999, 2002, 2006

22Q

Gureyev et al, 2004: choice of for linearly dependent absorption and refraction

Page 34: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

I mplementation at SLS

Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using modified filter given in the Eq. (8). The length of the scale bar is 50 µm.

Validation of the MBA method: (a) Phase tomographic reconstruction of sampleconsisting of polyacrylate, starch and cross-linked rubber matrix obtained using DPC and (b) using MBA. The length of the scale bar is 100 µm.

22Q

“MBA: Modified Bronnikov Algorithm”Groso, Abela, Stampanoni, 2006

Page 35: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

I mplementation at Ghent University

De Witte, Boone, Vlassenbroeck, Dierick, and Van Hoorebeke, 2009

Radon inversion “Modified Bronnikov Algorithm” “Bronnikov-Aided Correction”

Page 36: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

Polychromatic source, mixed phase and amplitude object

Data provided by Xradia

Air bubbles in epoxy,relatively strong absorption:

Reconstruction by the “Bronnikov Filter” with correction

6 mm

Page 37: Andrei.Bronnikov Image reconstruction · BronnikovAlgorithms Implementation at SLS Phase tomography reconstruction (a) and the 3D rendering (b) of a 350 microns thin wood sample using

BronnikovAlgorithms

• New developments in theory:- parallel-beam CT (synchrotron): the use of NFFT- cone-beam CT (microfocus): exact reconstruction with non-

planar orbits; exact ROI reconstruction(Katsevich formula, PI line, Hilbert transform on chords)

• New developments in implementation:– ultra-fast 3D reconstruction on multicore processors– (10243 voxels within one-two minutes on a PC)

• New developments in coherent methods:- robust algorithms for 3D phase reconstruction- correction for the phase component

Summary