Hemodynamic Cycle

Embed Size (px)

Citation preview

  • 8/18/2019 Hemodynamic Cycle

    1/57

    Hemodynamic cycle, heart sounds,

    valvular heart disorders

    Physiology and Pathophysiology of the heart

    Part 1

  • 8/18/2019 Hemodynamic Cycle

    2/57

    Phase 1

     Atrial Contraction

    RV

    LV

    LA

    PARA

     A

    RV

    LV

    LA

    PARA

     A

    120

    40

    80

    0

    40

    80

    120

    LV

    Vol

    (ml)

    Press(mmHg)

    1 2 3 4 5   6   7

    Phase

    0 0.4 0.8

    Time (sec)

    Heart

    Sounds

    ECG

    LV Press

    AorticPressure

    LA Press

    LVEDV

    LVESV

    I   II IIIIV

    a   cv

    120

    40

    80

    0

    40

    80

    120

    LV

    Vol

    (ml)

    Press(mmHg)

    1 2 3 4 5   6   7

    Phase

    0 0.4 0.8

    Time (sec)

    Heart

    Sounds

    ECG

    LV Press

    AorticPressure

    LA Press

    LVEDV

    LVESV

    I   II IIIIV

    a   cv

     

  • 8/18/2019 Hemodynamic Cycle

    3/57

    Phase 2

    Isovolumetric

    Contraction

    RV

    LV

    LA

    PARA

     A

     P 

    P   120

    40

    80

    0

    40

    80

    120

    LV

    Vol

    (ml)

    Press(mmHg)

    1 2 3 4 5   6   7

    Phase

    0 0.4 0.8

    Time (sec)

    Heart

    Sounds

    ECG

    LV Press

    AorticPressure

    LA Press

    LVEDV

    LVESV

    I   II IIIIV

    a   cv

    Phase 2

    Isovolumetric

    Contraction

    RV

    LV

    LA

    PARA

     A

     P 

    P

    RV

    LV

    LA

    PARA

     A

     P 

    P   120

    40

    80

    0

    40

    80

    120

    LV

    Vol

    (ml)

    Press(mmHg)

    1 2 3 4 5   6   7

    Phase

    0 0.4 0.8

    Time (sec)

    Heart

    Sounds

    ECG

    LV Press

    AorticPressure

    LA Press

    LVEDV

    LVESV

    I   II IIIIV

    a   cv

    120

    40

    80

    0

    40

    80

    120

    LV

    Vol

    (ml)

    Press(mmHg)

    1 2 3 4 5   6   7

    Phase

    0 0.4 0.8

    Time (sec)

    Heart

    Sounds

    ECG

    LV Press

    AorticPressure

    LA Press

    LVEDV

    LVESV

    I   II IIIIV

    a   cv

     

  • 8/18/2019 Hemodynamic Cycle

    4/57

    Phase 3

    Rapid Ejection

    RV

    LV

    LA

    PARA

     A

    120

    40

    80

    0

    40

    80

    120

    LV

    Vol

    (ml)

    Press

    (mmHg)

    1 2 3 4 5   6   7

    Phase

    0 0.4 0.8

    Time (sec)

    Heart

    Sounds

    ECG

    LV Press

    AorticPressure

    LA Press

    LVEDV

    LVESV

    I   II IIIIV

    a   cv

    Phase 3

    Rapid Ejection

    RV

    LV

    LA

    PARA

     A

    RV

    LV

    LA

    PARA

     A

    120

    40

    80

    0

    40

    80

    120

    LV

    Vol

    (ml)

    Press

    (mmHg)

    1 2 3 4 5   6   7

    Phase

    0 0.4 0.8

    Time (sec)

    Heart

    Sounds

    ECG

    LV Press

    AorticPressure

    LA Press

    LVEDV

    LVESV

    I   II IIIIV

    a   cv

    120

    40

    80

    0

    40

    80

    120

    LV

    Vol

    (ml)

    Press

    (mmHg)

    1 2 3 4 5   6   7

    Phase

    0 0.4 0.8

    Time (sec)

    Heart

    Sounds

    ECG

    LV Press

    AorticPressure

    LA Press

    LVEDV

    LVESV

    I   II IIIIV

    a   cv

     

  • 8/18/2019 Hemodynamic Cycle

    5/57

    RV

    LV

    LA

    PARA

     A

    Phase 4

    Reduced Ejection

    120

    40

    80

    0

    40

    80

    120

    LV

    Vol

    (ml)

    Press(mmHg)

    1 2 3 4 5   6   7

    Phase

    0 0.4 0.8

    Time (sec)

    Heart

    Sounds

    ECG

    LV Press

    AorticPressure

    LA Press

    LVEDV

    LVESV

    I   II IIIIV

    a   cv

    RV

    LV

    LA

    PARA

     A

    Phase 4

    Reduced Ejection

    120

    40

    80

    0

    40

    80

    120

    LV

    Vol

    (ml)

    Press(mmHg)

    1 2 3 4 5   6   7

    Phase

    0 0.4 0.8

    Time (sec)

    Heart

    Sounds

    ECG

    LV Press

    AorticPressure

    LA Press

    LVEDV

    LVESV

    I   II IIIIV

    a   cv

     

  • 8/18/2019 Hemodynamic Cycle

    6/57

    RV

    LV

    LA

    PARA

     A

    Phase 5

    Isovolumetric

    Relaxation

     

    P P   120

    40

    80

    0

    40

    80

    120

    LV

    Vol

    (ml)

    Press(mmHg)

    1 2 3 4 5   6   7

    Phase

    0 0.4 0.8

    Time (sec)

    Heart

    Sounds

    ECG

    LV Press

    AorticPressure

    LA Press

    LVEDV

    LVESV

    I   II IIIIV

    a   cv

    RV

    LV

    LA

    PARA

     A

    Phase 5

    Isovolumetric

    Relaxation

     

    P P   120

    40

    80

    0

    40

    80

    120

    LV

    Vol

    (ml)

    Press(mmHg)

    1 2 3 4 5   6   7

    Phase

    0 0.4 0.8

    Time (sec)

    Heart

    Sounds

    ECG

    LV Press

    AorticPressure

    LA Press

    LVEDV

    LVESV

    I   II IIIIV

    a   cv

     

  • 8/18/2019 Hemodynamic Cycle

    7/57Time (sec)

    RV

    LV

    LA

    PARA

     A

    Phase 6

    Rapid Filling

    120

    40

    80

    0

    40

    80

    120

    LV

    Vol

    (ml)

    Press(mmHg)

    1 2 3 4 5   6   7

    Phase

    0 0.4 0.8

    Time (sec)

    Heart

    Sounds

    ECG

    LV Press

    AorticPressure

    LA Press

    LVEDV

    LVESV

    I   II IIIIV

    a   cv

    Time (sec)

    RV

    LV

    LA

    PARA

     A

    Phase 6

    Rapid Filling

    120

    40

    80

    0

    40

    80

    120

    LV

    Vol

    (ml)

    Press(mmHg)

    1 2 3 4 5   6   7

    Phase

    0 0.4 0.8

    Time (sec)

    Heart

    Sounds

    ECG

    LV Press

    AorticPressure

    LA Press

    LVEDV

    LVESV

    I   II IIIIV

    a   cv

     

  • 8/18/2019 Hemodynamic Cycle

    8/57

    HR 75/MIN HR 200/MIN Skeletal muscle

    Hemodynamic cycle duration 0,80 0,30

    Systole 0,27 0,16

    Action potential duration 0,25 0,15 0,005

    Absolute refraction period 0,20 0,13 0,004

    Relative refraction period 0,05 0,02 0,003

    Diastole 0,53 0,14

  • 8/18/2019 Hemodynamic Cycle

    9/57

    Heart sounds

  • 8/18/2019 Hemodynamic Cycle

    10/57

    Heart soundsSound Appears during Results from:

    S1Isovolumetriccontraction

    Caused by the sudden block ofreverse blood flow due to closureof the atrioventricular valves

    S2Isovolumetricrelaxation

    Caused by the sudden block ofreversing blood flow due to closureof the semilunar valves

    S3 Rapid ventricle filling

    Physiology (benign) in children,also trained individual andsometimes in pregnancy;protodiastolic gallop, ventriculargallop

    Pathology–

     failing left ventricle(dilated ventricle)

    S4 Atrial systoleLow plasticity of the ventricles (ex.Hypetrophy)presystolic gallop or atrial gallop

  • 8/18/2019 Hemodynamic Cycle

    11/57

    Heart sounds -

    murmurs

  • 8/18/2019 Hemodynamic Cycle

    12/57

    Cardiac Output = Heart Rate (HR) x Stroke Volume (SV)

    •  HR regulation

    • SV regulation

    Cardiac output

  • 8/18/2019 Hemodynamic Cycle

    13/57

    HR regulation

    www.cvphysiology.com

  • 8/18/2019 Hemodynamic Cycle

    14/57

    ANS and regulation of the heart work

    Muscarinic M2 rec

    activation

    SA

    AV

    Vagal nerveSympathetic system

    ACh NE

    HR

    Inotropy

     – 

    Adrenergic β1 rec

    activation

  • 8/18/2019 Hemodynamic Cycle

    15/57

    β  GscAMP

    β 

    GscAMP

    NA

    NA

    Na+ Na+ 

    Na+ 

    Na+ 

    Na+ 

    Na+ 

    Na+ Na+  Na+ 

    Na+ 

    Na+ 

    Na+ 

    Na+ 

    Na+ 

    Na+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca

    2+

     

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Na+ 

    Na+ 

    Na+ 

    Ca2+ 

  • 8/18/2019 Hemodynamic Cycle

    16/57

    Sarcoplasmic reticulum

    β 

    β 

    Gs

    Gs

    Ca2+  Ca2+ 

    Ca2+ Ca2+ 

    Ca2+ 

    Ca2+ Ca2+ 

    Ca2+ Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ Ca2+ 

    Ca2+ 

    Ca2+ Ca2+ 

    Ca2+ 

    Ca2+  Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca

    2+

     

    Ca2+ 

    Ca2+ 

    Ca2+  Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    NA

    NA

    cAMP

    cAMP

  • 8/18/2019 Hemodynamic Cycle

    17/57

  • 8/18/2019 Hemodynamic Cycle

    18/57

    M

     ACh

    K+ 

    K+ 

    K+ K+ 

    K+ 

    M

     ACh

    Gi

    Gi

    K+ 

    K+ K+ 

    K+ 

    K+ 

    K+ 

    K+ 

    K+ 

    K+ 

    cAMP

    Na+ 

    Na+ 

    Na+ 

    Na+ 

    Na+ 

    Ca2+ 

    Na+ Na+ 

    Na+ 

    Na+ 

    Na+ Na+ 

    cAMP

    +

    +

    +

    +

    +

    +

    +

    +

    +

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    --

    -

    -

    -

    -

    --

    +++

    +

    +

    +

    ++

    +

    +

    +

    +K+ 

    K+ K+ 

    K+

     

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+ 

    Ca2+  Ca2+ 

    Ca

    2+

     

  • 8/18/2019 Hemodynamic Cycle

    19/57

    FRANK-STARLING LAW

    Increased afterloadDecreased afterload

    preload

    www.cvphysiology.com

  • 8/18/2019 Hemodynamic Cycle

    20/57

    What affects preload?

    www.cvphysiology.com

  • 8/18/2019 Hemodynamic Cycle

    21/57

    FRANK-STARLING LAW - Contractility

    preloadwww.cvphysiology.com

    Increased contractility

    Decreased contractilty

    C t ti l ti

  • 8/18/2019 Hemodynamic Cycle

    22/57

    Anrep effect –  wzrost kurczliwości w odpowiedzi na gwałtowny wzrost afterload 

    Bowditch effect – depends on HR increase

    HOMEOMETRIC regulation – depends on contractility

    HETEROMETRIC regulation – depends on Frank-Starling mechanism

    Contraction regulation

  • 8/18/2019 Hemodynamic Cycle

    23/57

    Clinical index for inotropy evaluation:

    Ejection Fraction (EF) = SV/EDV * 100%

    dP/dt

    Contractility

  • 8/18/2019 Hemodynamic Cycle

    24/57

    Stroke volume regulation

    www.cvphysiology.com

  • 8/18/2019 Hemodynamic Cycle

    25/57

    Case 1

    • 62-years old women with history of atrial

    fibrillation

    • shortness of breath, when she lies down flat in

    the supine position,

    • nocturia,

    • she has run out of digoxin, which she took to

    control her heart rate

  • 8/18/2019 Hemodynamic Cycle

    26/57

    Case 1

    • bood pressure 90/65 mm Hg,

    • irregular heart rate ~ 120/min,

    • pulmonary rales,

    • increased jugular venous distension,

    • peripheral edema of legs

  • 8/18/2019 Hemodynamic Cycle

    27/57

    the primary diagnosis

  • 8/18/2019 Hemodynamic Cycle

    28/57

    the primary diagnosis

    atrial fibrillation

    congestive heart failure

  • 8/18/2019 Hemodynamic Cycle

    29/57

    Question 1:

    What can be a cause of atrial fibrillation in this

    patient?

  • 8/18/2019 Hemodynamic Cycle

    30/57

     Answer 1:

    • the run out of digoxin

  • 8/18/2019 Hemodynamic Cycle

    31/57

    Question 2:

    What is the mechanism of digoxine in the heart?

    • the positive inotropic effect

    • the negative chrono- dromotropic effect

    Why?

  • 8/18/2019 Hemodynamic Cycle

    32/57

    The sodium/potassium pomp inhibition

    in cardiomiocytes membrane

  • 8/18/2019 Hemodynamic Cycle

    33/57

    Question 3:

    What factors affect stroke volume?

  • 8/18/2019 Hemodynamic Cycle

    34/57

     Answer 3:

    • Contractility

    • Preload

    • Afterload

    Which of above factors was changed during atrial

    fibrillation?

  • 8/18/2019 Hemodynamic Cycle

    35/57

    Question 4:

    How does stimulation of muscarine receptors affect

    contractillity?

  • 8/18/2019 Hemodynamic Cycle

    36/57

     Answer 4:

    • stimulation of muscarinic receptors decreases

    contractility only in atria

  • 8/18/2019 Hemodynamic Cycle

    37/57

    Case 2

    • 25-year old pregnant women

    • no medication,

    • no complications with this pregnancy

    • she was admitted to the hospital in active

    phase of labor

    • she asked for pain relief

  • 8/18/2019 Hemodynamic Cycle

    38/57

    Case 2

    • the epidural nerve block has been done

    • dizzines

    • low blood pressure

    • raid heart rate

  • 8/18/2019 Hemodynamic Cycle

    39/57

    Case 2

    • intravenous fluid bolus and a small amount

    of ephedrine were recommended

    • the lack of sympthoms

  • 8/18/2019 Hemodynamic Cycle

    40/57

    Question 1:

    Why would epidural analgesia cause these

    sympthms?

  • 8/18/2019 Hemodynamic Cycle

    41/57

     Answer 1:

    • sympathetic blockade (T10 – L3) resulting in

    decreased venous pressure and thus decreased

    cardiac output and decreased pheripheral

    resistance resulting in hypotension

  • 8/18/2019 Hemodynamic Cycle

    42/57

    Question 2:

    How would ephedrine (IV) counter the hypotension?

  • 8/18/2019 Hemodynamic Cycle

    43/57

     Answer 2:

    •   ephedrine increases 1 stimulation, leading to

    contraction of the venous musculature,

    increasing VP, and thus CO and pheripheral

    resistance

    Cardiac Output in relation

  • 8/18/2019 Hemodynamic Cycle

    44/57

    Cardiac Output in relationto venous pressure

  • 8/18/2019 Hemodynamic Cycle

    45/57

    • 62-year old man

    • 10-year history of arterial hypertension and dyslipidemia;

    • Since couple moths lack tolerance for physical effort (he can’t 

    climb up to the 2’nd floor) and several times he reported angina

    pectoris

    • Admitted to a Cardiology Unit after syncope with arising

    dyspnoe;

    Case 3

  • 8/18/2019 Hemodynamic Cycle

    46/57

    Physical examination:

    •HR 123/min

    • Heart gallop

    •Loud heart murmur in the aortic area

    •Blood congestion in pulmonary circulation;

  • 8/18/2019 Hemodynamic Cycle

    47/57

  • 8/18/2019 Hemodynamic Cycle

    48/57

  • 8/18/2019 Hemodynamic Cycle

    49/57

     LV

    hypetrophy

    Calcificatedaortic valve

  • 8/18/2019 Hemodynamic Cycle

    50/57

    Turbulent blood

    flow through LVoutflow

  • 8/18/2019 Hemodynamic Cycle

    51/57

    Cli i l ti

  • 8/18/2019 Hemodynamic Cycle

    52/57

    Clinical questions:

    1. What should be diagnosed in our patient?

    2. Why systolic murmur in the aortic area?

    3. Why patient developed heart failure?

    4. Why in the echocardiography LV hypertrophy was

    observed?

    5. Why patient developed symptoms of the ischaemia? 

    Cli i l ti

  • 8/18/2019 Hemodynamic Cycle

    53/57

    Clinical questions:

    1. What should be diagnosed in our patient?

    Severe symptomatic aortic stenosis complicated with

    acute heart failure.

    Cli i l ti

  • 8/18/2019 Hemodynamic Cycle

    54/57

    Clinical questions:

    1. Why systolic murmur appeared in the aortic area?

    Sytolic aortic murmur appeared when blood was ejected from

    LV through narrow aortic valve.

    Cli i l ti

  • 8/18/2019 Hemodynamic Cycle

    55/57

    Clinical questions:

    1. Why patient developed heart failure?

    Blood stasis in LV according to the narrowing of aortic

    valve resulted in the volume and pressure overload of the

    LV (↑LVEDP) -> and LA.

    Increased left atrium pressure decreased venous return from

    pulmonary circulation what resulted in pulmonary

    congestion.

    Cli i l ti

  • 8/18/2019 Hemodynamic Cycle

    56/57

    Clinical questions:

    1. Why in the echocardiography LV hypertrophy was

    observed?

    During development of the aortic stenosis afterload gradually

    increased. A rise in afterload increased duration of a isovolumetric

    systole.

    Cli i l ti

  • 8/18/2019 Hemodynamic Cycle

    57/57

    Clinical questions:

    1. Why patient developed symptoms of the ischaemia?

    Cardiac muscle hypertrophy -> higher metabolic

    demand (higher O2 demand).

    Higher afterload -> lower stroke volume

    Low SV -> low BP

    Low coronary perfusion