27
Helmuth Thomas 1 , Friederike Prowe 1,4 , Ivan D. Lima 2 , Scott C. Doney 2 , Rik Wanninkhof 3 , Richard Greatbach 1,4 , Antoine Corbière 5 & Ute Schuster 6 1: Dalhousie University, Halifax, Canada. 2: Woods Hole Oceanographic Institution, Woods Hole MA, USA. 3: NOAA, Miami, USA. 4: now at IfM- Geomar, Kiel Germany. 6: Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, Pairs France. 6:University of East Anglia, Norwich, UK Temporal variability of the CO 2 system in the North Atlantic Ocean

Helmuth Thomas 1 ,

  • Upload
    mohawk

  • View
    59

  • Download
    4

Embed Size (px)

DESCRIPTION

Temporal variability of the CO 2 system in the North Atlantic Ocean. Helmuth Thomas 1 , Friederike Prowe 1,4 , Ivan D. Lima 2 , Scott C. Doney 2 , Rik Wanninkhof 3 , Richard Greatbach 1,4 , Antoine Corbière 5 & Ute Schuster 6. - PowerPoint PPT Presentation

Citation preview

Page 1: Helmuth Thomas 1 ,

Helmuth Thomas1, Friederike Prowe1,4, Ivan D. Lima2, Scott C. Doney2, Rik Wanninkhof3,

Richard Greatbach1,4, Antoine Corbière5 & Ute Schuster6

1: Dalhousie University, Halifax, Canada. 2: Woods Hole Oceanographic Institution, Woods Hole MA, USA. 3: NOAA, Miami, USA. 4: now at IfM-Geomar, Kiel Germany. 6: Laboratoire

d'Océanographie et du Climat: Expérimentations et Approches

Numériques, Pairs France. 6:University of East Anglia, Norwich, UK

Temporal variability of the CO2 system in the North Atlantic Ocean

Page 2: Helmuth Thomas 1 ,

Observations in the North Atlanticduring 1995-2002/4

BATS, BermudaΔpCO2 constantBates, 2001/7

North SeaΔpCO2 declining

VOS line UK –CaribbeanΔpCO2 decliningSchuster and Watson2007Sub Polar North AtlanticΔpCO2 decliningOmar and Olsen, 2006

South of GreenlandΔpCO2 decliningCorbiere et al., 2007

North Atlantic Drift RegionΔpCO2 decliningLefèvre et al., 2004

NW AtlanticΔpCO2 increasingLueger et al., 2006

Thomas et al., 2008, GBC

Page 3: Helmuth Thomas 1 ,

•Simulations from 1958-2004 •Community Climate System Model, POP

coarse resolution•Ecosystem model coupled to modified

OCMIP-II biogeochemistry•NCEP/NCAR reanalysis forcing

•Further reading: Doney et al., 2004, Moore et al. 2004, Yeager et al., 2006

•pCO2 decomposition (DICnorm, ATnorm, T, S) •Trend regression analysis

•Anthropogenic and preindustrial runs

Simulations for the North Atlantic Ocean

What is the driver for the observed CO2 flux variability in the North Atlantic Ocean?

situin

situinnorm Sal

DICDIC

35*

.Thomas et al., 2008, GBC

Page 4: Helmuth Thomas 1 ,

Simulations vs. Observations for the North Atlantic Ocean

Corbière et al.

Model

water +2.5

ppm yr-1

+3.0

ppm yr-1

Atmos. +1.6

ppm yr-1

+1.6

ppm yr-1

temp.-

pCO2

+ +1.2

ppm yr-1

DIC +0.6

μmol (kg yr)-1

AT -0.3

μmol (kg yr)-1 Thomas et al., 2008, GBC

Page 5: Helmuth Thomas 1 ,

Period 1993-2003 2001-2008

Atm 1.9 µatm/yr 2.1 µatm/yr

Ocean 3.6 µatm/yr 5-7 µatm/yr

Why ? Warming +DIC/-TA

Full story presented by

Corbière et al. (Poster, CT1)

Ocean CO2 trends in the North Atlantic Subpolar Gyre :

winter 1993-2003/2001-2008 (based on DIC/TA Suratlant data)

Skògafoss

Nuka Arctica

Page 6: Helmuth Thomas 1 ,

1994-1995

2002-2005Schuster and Watson, 2007

JGR

mean

CO2 uptake in 1994/5 and 2002/4

[mo

l C

O2

m-2 y

r-1]

0

1.4

The overall sink (14-65 degrees N):1995: 0.40 PgC (Takahashi climatology)2005: 0.24 Pg C for 2005

40% decline in CO2 uptake?

UK-Caribbean route

Page 7: Helmuth Thomas 1 ,

Simulations vs. Observations for the North Atlantic Ocean

One conclusion:We need to maintain an observing system.

Tool:Trend regression analysisinstead of differences.

Page 8: Helmuth Thomas 1 ,

Simulations vs. Observations for the North Atlantic Ocean

Tool:Trend regression analysisinstead ofdifferences

Page 9: Helmuth Thomas 1 ,

Simulations vs. Observations for the North Atlantic Ocean

neutr./neg. NAO

Most of the observationscover the 95-04 period

ΔpCO2 trends

long term

pos. NAO

Note changein scale!

Thomas et al.2008, GBC

Page 10: Helmuth Thomas 1 ,

Outline

1: Fundamentalcontrol

2: Adjustments

3: Overlayingperturbance

Real World Ocean

Building the house

You move in

Your in-laws move in

Page 11: Helmuth Thomas 1 ,

NAO & the subpolar and subtropical gyres

Positive NAO:Strong westerliesStrong NAC

Negative NAO:weaker westerlies

weaker NAC

http://www.noc.soton.ac.uk

↑ http://www.ldeo.columbia.edu/res/pi/NAO/http://www.ldeo.columbia.edu/res/pi/NAO/

1: Fundamental control

Page 12: Helmuth Thomas 1 ,

North Atlantic Oscillation during the past two decades

15

20

MO

C[S

v]

-5

0

5

Win

ter

NA

O

1,980 1,985 1,990 1,995 2,000 2,005

1: Fundamental control

Thomas et al., 2008, GBC

Page 13: Helmuth Thomas 1 ,

15

20

MO

C[S

v]

-5

0

5

Win

terN

AO

1,980 1,985 1,990 1,995 2,000 2,005

positive NAO(1989-1995 average)

Response of surface ocean to NAO forcing

Surface velocity

(each 2nd grid point shown)

x

x

1: Fundamental control

Subpolar gyre

Subtropical gyre

Labrador Current

Thomas et al., 2008, GBC

Page 14: Helmuth Thomas 1 ,

Neutral - positive NAO(1996/2004av.) - (1989/1995av.)

Response of surface ocean to NAO forcing

Surface velocity difference

Subpolar gyre

(each 2nd grid point shown)

Subtropical gyre

1: Fundamental control

Labrador Current

Thomas et al., 2008, GBC

Page 15: Helmuth Thomas 1 ,

Response of surface ocean to NAO forcing

1: Fundamental control

Thomas et al., 2008, GBC

Page 16: Helmuth Thomas 1 ,

Annual salinity anomalies:

1: Fundamental control (one more detail)

Expansion of subtropical gyre during positive NAO

Relevance western subpolar gyre:

Labrador Current cannot move south, it is diverted into the subpolar gyre

Thomas et al., 2008, GBC

Page 17: Helmuth Thomas 1 ,

Response of surface ocean to NAO forcing

Pos. NAO

Neutr./neg. NAO

1: Fundamental control

Page 18: Helmuth Thomas 1 ,

DICnorm and Salinity in the North Atlantic1: Fundamental control

Pos. NAONeutr./neg. NAO

North Atlantic Current is fed by low DICnorm / high salinity water:Northward transport of aCO2 deficiency

Thomas et al., 2008, GBC

Page 19: Helmuth Thomas 1 ,

Main driver of variability:DICnorm

(AT,norm exerts minor control)

Example:2 stations atthe easternand westernsubpolar gyre

WE

ST

1: Fundamental control

EA

ST

Note the phase lag between west and east

Thomas et al., 2008, GBC

Page 20: Helmuth Thomas 1 ,

Large scale control:NAC and its low DICnorm

Pos. NAO:•Fast NAC•High supply of low DICnorm

•High CO2 uptake

Neut. / Neg NAO:•Slow NAC•Low supply of low DICnorm

•low CO2 uptake

Long term:no significant trend

Corrected for anthropogenic CO2!!

NAO+

NAO-/

1: Fundamental control

Longterm

Thomas et al., 2008, GBC

Page 21: Helmuth Thomas 1 ,

Conclusions 1• Key process:

– NAC exports CO2 sink from the tropics northward

• Pos. NAO:– Fast NAC– High supply of low DICnorm

– Higher CO2 uptake

• Neut. / Neg NAO:– Slow NAC– Low supply of low DICnorm

– lower CO2 uptake

• Long term:– no significant trend

• Temporal aspect:– Observed response depends on distance to NAC source region

1: Fundamental control

however:

Page 22: Helmuth Thomas 1 ,

2: Adjustments

Effects of atmospheric temperature

Pos. NAO

neutr./neg. NAO

Long termAtm. Temperature effects:•Fast response•Spatially not uniform across the basin•Particularly dominant in the NW Atlantic

Note changein scale!

Thomas et al., 2008, GBC

Page 23: Helmuth Thomas 1 ,

Perturbing process:Great Salinity anomalies

Annual salinity anomalies:

Annual DICnorm anomalies:

3. Overlaying perturbance

Recall:1. Fundamental control:Pos. NAO = enhanced northward flow of low DICnorm Thomas et al., 2008, GBC

Page 24: Helmuth Thomas 1 ,

Do we still expect correlations?(??)

-1.0

-0.5

0.0

0.5

1.0

R

-2 0 2 4

Lag [yr]

Northern North Atlantic

Western Subpolar Gyre

CorrelationCO2 air-sea flux vs. NAO

>60ºN

15

20

MO

C[S

v]

-5

0

5W

inte

rN

AO

1,980 1,985 1,990 1,995 2,000 2,005

Annual SST anomalies:

+ NAO

neutr./neg. NAO

p<0.05

Thomas et al., 2008, GBC

Page 25: Helmuth Thomas 1 ,

Outline

1: Fundamentalcontrol

2: Adjustments

3: Overlayingperturbance

Real World Ocean

Building the house

Response of surface

circulation to NAO

You move in Atmospheric Temperature

Your in-laws move in

Great Salinity Anomaly

Page 26: Helmuth Thomas 1 ,

Conclusions• Key process:

– NAC exports CO2 sink from the tropics northward

• Pos. NAO:– Fast NAC– High supply of low DICnorm

– Higher CO2 uptake– Strong cooling in NW Atlantic

• Neut. / Neg NAO:– Slow NAC– Low supply of low DICnorm

– lower CO2 uptake– Strong warming in NW Atlantic

• Alternative view:– Partial redistribution of North Atlantic CO2 sink between

subpolar and subtropical gyres

• Long term:– no significant trend other than (global) warming and rising

atmos. CO2.

• Perturbation:– Great Salinity Anomalies

Consequences are timevariant across the basinbecause of water masstravel time.

High correlations unlikely.

Page 27: Helmuth Thomas 1 ,

Reference:

• Thomas, H., F. Prowe, I.D. Lima, S.C. Doney, R. Wanninkhof, R.J. Greatbatch, A. Corbière and U. Schuster (2008). Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past two decades Global Biogeochemical Cycles, in press.