24
Estimating the Burden of Disease Examining the impact of changing risk factors on colorectal cancer incidence and mortality Karen M. Kuntz, ScD Cancer Risk Prediction Models: A Workshop on Development, Evaluation, and Application National Cancer Institute May 20-21, 2004 ** Results presented are preliminary.

Estimating the Burden of Disease Examining the impact of changing risk factors on colorectal cancer incidence and mortality Karen M. Kuntz, ScD Cancer

Embed Size (px)

Citation preview

Estimating the Burden of DiseaseExamining the impact of changing risk factors on colorectal cancer incidence and mortality

Karen M. Kuntz, ScD

Cancer Risk Prediction Models: A Workshop on Development, Evaluation, and Application

National Cancer Institute

May 20-21, 2004

** Results presented are preliminary.

Decision-Analytic Models

• Analytical structures that represent key elements of a disease

• Goal: evaluate policies in terms of costs and health benefits (not estimation)

• Cohort models vs. population-based model

• Risk functions often incorporated

Age-standardized incidence and mortality

Cases

Deaths

0

20

40

60

80

100

120

1975 1980 1985 1990 1995 2000

Year

CR

C E

ven

ts p

er

10

0,0

00

CRC Risk Factors

• Body mass index (BMI)• Smoking• Folate intake (multivitamin use)• Physical activity• Red meat consumption• Fruit and vegetable consumption• Aspirin use• Hormone replacement therapy (HRT)

Individual Risk Functions

• Pr(CRC | BMI, smoking, MV use, etc.)– Annual risk– 10-year probability

• Estimate from cohort studies– Nurses’ Health Study (NHS)– Health Professionals’ Follow-up Study (HPFS)

NHS & HPFS Data Multivariate logistic regression of NHS/HPFS data

provide information about the relationship between risk factors and diagnosed (but not underlying) CRC

Diagnosis freeDetected

CRC

Aggregate CRC risk function

Stage-Specific Risk Functions

Goal: decompose the aggregate function into stage-specific risk functions

Disease freeUndetected

CRC

Risk function1

f(age, aspirin use, etc.)

Aggregate CRC risk function

Detected CRC

Adenoma

Risk function2

f(age, activity, etc.)

• Establish “observed relationship” between risk factor and diagnosed CRC

• Simulate incidence of CRC in hypothetical cohort that is matched to study cohort

• Use regression analysis to examine simulated relationship between risk factor and diagnosed CRC

• Calibrate ORs of simulated data analysis to those of cohort analysis

Our Approach

Example: 50 yo white woman

BMI = 25 kg/m2

Non-smoker

MV user

5 met-hr/wk

2 sv/wk red meat

5 sv/dy fruit/veg

No aspirin use

No HRT use

Lifetime CRC risk:

4.8%

Example: 50 yo white woman BMI = 35 kg/m2

Smoker No MV use

5 met-hr/wk

2 sv/wk red meat

5 sv/dy fruit/veg

No aspirin use

No HRT use

Lifetime CRC risk:

9.7%

CISNET Model

CRCModel

Risk factortrends

Screeningbehavior

Diffusion ofnew treatments

Calendar Time

1970 1975 1980 1985 1990

CRCincidence &

mortality

Age-standardized incidence

US Population

0

20

40

60

80

100

120

1975 1980 1985 1990 1995 2000 2005

Year

CR

C C

ase

s p

er

100,0

00

Age-standardized incidence

US population

Model population

0

20

40

60

80

100

120

1975 1980 1985 1990 1995 2000 2005

Year

CR

C C

ase

s p

er

10

0,0

00

Age-standardized incidence

Flat trends since 1970

8574

Risk factor trends

0

20

40

60

80

100

120

1975 1980 1985 1990 1995 2000 2005

Year

CR

C C

ase

s p

er

10

0,0

00

Age-standardized incidence

Healthy weight in 1970

7174

0

20

40

60

80

100

120

1975 1980 1985 1990 1995 2000 2005

Year

CR

C C

ase

s p

er

10

0,0

00

Age-standardized incidence

No smoking in 19706374

0

20

40

60

80

100

120

1975 1980 1985 1990 1995 2000 2005

Year

CR

C C

ase

s p

er

10

0,0

00

Age-standardized incidence

All MV users in 197056

74

0

20

40

60

80

100

120

1975 1980 1985 1990 1995 2000 2005

Year

CR

C C

ase

s p

er

10

0,0

00

Age-standardized incidence

Worst case

Best case27

185

74

0

20

40

60

80

100

120

140

160

180

200

1975 1980 1985 1990 1995 2000 2005

Year

CR

C C

ase

s p

er

10

0,0

00

US Population

Age-standardized mortality

0

10

20

30

40

50

60

1975 1980 1985 1990 1995 2000 2005

Year

CR

C D

eath

s p

er

10

0,0

00

US population

Model population

Age-standardized mortality

0

10

20

30

40

50

60

1975 1980 1985 1990 1995 2000 2005

Year

CR

C D

eath

s p

er

10

0,0

00

Age-standardized mortality

Risk factor trends34

Flat trends since 1970

39

0

10

20

30

40

50

60

1975 1980 1985 1990 1995 2000 2005

Year

CR

C D

eath

s p

er

10

0,0

00

Age-standardized mortality

Worst case

Best case14

79

34

0

20

40

60

80

1975 1980 1985 1990 1995 2000 2005

Year

CR

C D

eath

s p

er

10

0,0

00

Concluding Remarks

• Trends in risk factors over the past 35 years account for a 13% decrease in both CRC incidence and mortality compared to “flat trends”

• Population-based simulation models provide an important tool for evaluating the impact of changing risk factors