24
Course No: ME 5243- Advanced Thermodynamics Estimating Different Thermodynamic Relations using Redlich- Kwong-Soave Equation of State. Final Project report Abu Saleh Ahsan,Md. Saimon Islam, Syed Hasib Akhter Faruqui 5-5-2016

Estimating Different Thermodynamic Relations using RKS equation

Embed Size (px)

Citation preview

Course No: ME 5243- Advanced Thermodynamics

Estimating Different Thermodynamic Relations using Redlich- Kwong-Soave Equation of State. Final Project report

Abu Saleh Ahsan,Md. Saimon Islam, Syed Hasib Akhter Faruqui 5-5-2016

1 | P a g e

Table of Contents Nomenclature: .............................................................................................................................................. 2

Abstract: ........................................................................................................................................................ 4

Introduction: ................................................................................................................................................. 5

Derivation...................................................................................................................................................... 6

(a) Evaluation of the Constants ................................................................................................................. 6

(b) Equation of State in Reduced Form ..................................................................................................... 9

c) Critical Compressibility Factor ............................................................................................................ 10

d) Express Z in terms TR, vRโ€™: .................................................................................................................. 12

e) Accuracy of EOS from Equation (d) ..................................................................................................... 13

f) Equation for Departure ....................................................................................................................... 15

๐’‰ โˆ— โˆ’๐’‰๐‘น๐‘ป๐’„ ......................................................................................................................................... 15

(u*-u)/RTc ........................................................................................................................................... 15

๐’” โˆ— โˆ’๐’”๐‘น ............................................................................................................................................... 15

g) Accuracy of EOS for equation (C) ........................................................................................................ 16

h) Derivation of Expressions: .................................................................................................................. 17

๐’‚ โˆ— โˆ’ ๐’‚๐‘น๐‘ป๐’„: ....................................................................................................................................... 17

๐’ˆ โˆ— โˆ’ ๐’ˆ๐‘น๐‘ป๐’„: ...................................................................................................................................... 17

i) Speed of sound .................................................................................................................................... 18

(j) Derive the Properties .......................................................................................................................... 19

Cp ........................................................................................................................................................ 19

Cv ........................................................................................................................................................ 19

1/v vp .................................................................................................................................. 19

k = v/p pv .................................................................................................................................... 19

kT ......................................................................................................................................................... 20

J ......................................................................................................................................................... 20

Summary: .................................................................................................................................................... 21

Appendix ..................................................................................................................................................... 22

MATLAB Code ......................................................................................................................................... 22

Reference .................................................................................................................................................... 23

2 | P a g e

Nomenclature:

P = Pressure

Pr = Reduced pressure

Pc = Critical pressure

v = Specific volume

vr = Reduced specific volume

vc = Critical volume

๐‘ฃ๐‘Ÿโˆ— = Specific volume of ideal gas

vrf = Reduced volume at liquid state

vrg = Reduced volume at gaseous state

T = Temperature

Tr = Reduced temperature

Tc= Critical temperature

R = Molar gas constant

Z = Compressibility factor

Zr = Reduced compressibility factor

Zc = Critical compressibility factor

๐‘” = Gibbs free energy

๐‘”0 = Gibbs free energy for ideal gas

โ„Ž = Specific enthalpy for real gas

โ„Ž0 = Specific enthalpy for ideal gas

๐‘ข = Specific internal energy for real gas

๐‘ข0 = Specific internal energy for ideal gas

3 | P a g e

๐‘  = Specific entropy for real gas

๐‘ 0 = Specific entropy for ideal gas

๐‘˜๐‘‡ = Isothermal expansion exponent

๐‘ = Speed of sound

๐›ฝ =Volumetric co-efficient of thermal expansion

๐ถ๐‘ = Constant pressure specific heat

๐ถ๐‘ฃ = Constant volume specific heat

4 | P a g e

Abstract: For the project we will be using โ€œRedlich- Kwong-Soaveโ€ Equation of State (EOS) to derive to Estimating

Different Thermodynamic Relations. Starting from โ€œRedlich- Kwong-Soaveโ€ equation we have calculated

the constants โ€œa(T)โ€ & โ€œbโ€. The EOS is again represented in its reduced form. Compressibility factor for

the selected EOS is calculated and expressed in terms of TR & VR. By using the EOS different thermodynamic

relations such as departure enthalpy, entropy, and change in internal energy has been evaluated. Again,

we have expressed different important parameters such as speed of sound, isothermal expansion

exponent, CP & CV in reduced form. As for the substance in question we are using โ€œNitrogenโ€.

5 | P a g e

Introduction: Real gases are different from that of ideal gases. Thus the evaluated properties of ideal gas cannot be

used as the same for real gases. To understand the characteristics of real gases we have to consider the

following-

compressibility effects;

variable specific heat capacity;

van der Waals forces;

non-equilibrium thermodynamic effects;

issues with molecular dissociation and elementary reactions with variable composition.

In our project, we have taken โ€œRedlich- Kwong-Soaveโ€ equation of state (EOS) into consideration to

derive the various fundamental relations of thermodynamics. The compressibility, enthalpy departure

and entropy departure, can all be calculated if an equation of state for a fluid is known which is

โ€œNitrogenโ€ in our case.

Now, the โ€œRedlich- Kwong-Soaveโ€ equation of state (EOS) is almost similar to Van Der Walls equation of state. The equation is-

๐‘ =๐‘…๐‘‡

๐‘ฃโˆ’๐‘โˆ’

๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ+๐‘) โ€ฆ โ€ฆ. โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (i)

In thermodynamics, a departure function is defined for any thermodynamic property as the difference between the property as computed for an ideal gas and the property of the species as it exists in the real world, for a specified temperature T and pressure P. Common departure functions include those for enthalpy, entropy, and internal energy.

Departure functions are used to calculate real fluid extensive properties (i.e properties which are computed as a difference between two states). A departure function gives the difference between the real state, at a finite volume or non-zero pressure and temperature, and the ideal state, usually at zero pressure or infinite volume and temperature.

6 | P a g e

Derivation

(a) Evaluation of the Constants

Taking the first and second derivative of pressure WRT to volume be โ€“

(i) =>

๐›ฟ๐‘

๐›ฟ๐‘ฃ)

๐‘‡= โˆ’

๐‘…๐‘‡

(๐‘ฃโˆ’๐‘)2+

๐‘Ž(๐‘‡)

๐‘ฃ2(๐‘ฃ+๐‘)+

๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ+๐‘)2 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (ii)

And,

๐›ฟ2๐‘

๐›ฟ๐‘ฃ2)๐‘‡

=2๐‘…๐‘‡

(๐‘ฃโˆ’๐‘)3+ ๐‘Ž(๐‘‡) [โˆ’

1

๐‘ฃ2(๐‘ฃ+๐‘)2โˆ’

2

๐‘ฃ3(๐‘ฃ+๐‘)โˆ’

1

๐‘ฃ2(๐‘ฃ+๐‘)2โˆ’

2

๐‘ฃ(๐‘ฃ+๐‘)3]

๐›ฟ2๐‘

๐›ฟ๐‘ฃ2)๐‘‡

=2๐‘…๐‘‡

(๐‘ฃโˆ’๐‘)3+ ๐‘Ž(๐‘‡) [โˆ’

2

๐‘ฃ2(๐‘ฃ+๐‘)2โˆ’

2

๐‘ฃ3(๐‘ฃ+๐‘)โˆ’

2

๐‘ฃ(๐‘ฃ+๐‘)3]

๐›ฟ2๐‘

๐›ฟ๐‘ฃ2)๐‘‡

=2๐‘…๐‘‡

(๐‘ฃโˆ’๐‘)3โˆ’ ๐‘Ž(๐‘‡) [

2

๐‘ฃ2(๐‘ฃ+๐‘)2+

2

(๐‘ฃ+๐‘)+

2

๐‘ฃ(๐‘ฃ+๐‘)3]

๐›ฟ2๐‘

๐›ฟ๐‘ฃ2)๐‘‡

=2๐‘…๐‘‡

(๐‘ฃโˆ’๐‘)3โˆ’ ๐‘Ž(๐‘‡) [

3๐‘ฃ2+3๐‘ฃ๐‘+๐‘2

๐‘ฃ3(๐‘ฃ+๐‘)3] โ€ฆ โ€ฆ โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. (iii)

Now at critical point first and second derivative of pressure WRT to volume be zero. So from equation

(ii) and (iii) we can write,

๐›ฟ๐‘

๐›ฟ๐‘ฃ)

๐‘‡= โˆ’

๐‘…๐‘‡๐‘

(๐‘ฃ๐‘โˆ’๐‘)2+

๐‘Ž(๐‘‡)

๐‘ฃ๐‘2(๐‘ฃ๐‘+๐‘)

+๐‘Ž(๐‘‡)

๐‘ฃ๐‘(๐‘ฃ๐‘+๐‘)2= 0

๐‘œ๐‘Ÿ, 0 = โˆ’๐‘…๐‘‡๐‘

(๐‘ฃ๐‘โˆ’๐‘)2+

๐‘Ž(๐‘‡)

๐‘ฃ๐‘2(๐‘ฃ๐‘+๐‘)

+๐‘Ž(๐‘‡)

๐‘ฃ๐‘(๐‘ฃ๐‘+๐‘)2

๐‘œ๐‘Ÿ,๐‘…๐‘‡๐‘

(๐‘ฃ๐‘โˆ’๐‘)2=

๐‘Ž(๐‘‡)

๐‘ฃ๐‘2(๐‘ฃ๐‘+๐‘)

+๐‘Ž(๐‘‡)

๐‘ฃ๐‘(๐‘ฃ๐‘+๐‘)2

๐‘œ๐‘Ÿ,๐‘…๐‘‡๐‘

(๐‘ฃ๐‘โˆ’๐‘)2=

๐‘Ž(๐‘‡) (2๐‘ฃ๐‘+๐‘)

๐‘ฃ๐‘2(๐‘ฃ๐‘+๐‘)2

โ€ฆ. โ€ฆ. .โ€ฆ โ€ฆ. โ€ฆ.. โ€ฆ.. โ€ฆ. โ€ฆ (iv)

And,

๐›ฟ2๐‘

๐›ฟ๐‘ฃ2)๐‘‡

=2๐‘…๐‘‡๐‘

(๐‘ฃ๐‘โˆ’๐‘)3โˆ’ ๐‘Ž(๐‘‡) [

3๐‘ฃ๐‘2+3๐‘ฃ๐‘๐‘+๐‘2

๐‘ฃ๐‘3(๐‘ฃ๐‘+๐‘)3

] = 0

๐‘œ๐‘Ÿ,2๐‘…๐‘‡๐‘

(๐‘ฃ๐‘โˆ’๐‘)3= ๐‘Ž(๐‘‡) [

3๐‘ฃ๐‘2+3๐‘ฃ๐‘๐‘+๐‘2

๐‘ฃ๐‘3(๐‘ฃ๐‘+๐‘)3

] โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. (v)

Now, Dividing Equation (iv) with equation (v) we get,

(๐‘ฃ๐‘ โˆ’ ๐‘) =(๐‘ฃ๐‘+๐‘).๐‘ฃ๐‘.(๐‘ฃ๐‘+๐‘)

3๐‘ฃ๐‘2+3๐‘ฃ๐‘๐‘+๐‘2

๐‘œ๐‘Ÿ, (๐‘ฃ๐‘ โˆ’ ๐‘)(3๐‘ฃ๐‘2 + 3๐‘ฃ๐‘๐‘ + ๐‘2) = (๐‘ฃ๐‘ + ๐‘). ๐‘ฃ๐‘ . (๐‘ฃ๐‘ + ๐‘)

7 | P a g e

๐‘œ๐‘Ÿ, 3๐‘ฃ๐‘3 + 3๐‘ฃ๐‘

2 + ๐‘2๐‘ฃ๐‘ โˆ’ 3๐‘๐‘ฃ๐‘2 โˆ’ 3๐‘ฃ๐‘๐‘

2 โˆ’ ๐‘3 = 2๐‘ฃ๐‘3 + 2๐‘ฃ๐‘

2 + ๐‘ฃ๐‘2๐‘ + ๐‘ฃ๐‘๐‘

2

๐‘œ๐‘Ÿ, ๐‘3 + 3๐‘2๐‘ฃ๐‘ + 3๐‘๐‘ฃ๐‘2 โˆ’ ๐‘ฃ๐‘

3 = 0

๐‘œ๐‘Ÿ, (๐‘ + ๐‘ฃ๐‘)3 = 2๐‘ฃ๐‘

3 = (โˆš23

๐‘ฃ๐‘)3

๐‘œ๐‘Ÿ, ๐‘ = (โˆš23

โˆ’ 1)๐‘ฃ๐‘ = (โˆš23

โˆ’ 1)๐‘ง๐‘๐‘…๐‘‡๐‘

๐‘๐‘

๐‘œ๐‘Ÿ, ๐‘ = (โˆš23

โˆ’ 1).1

3.๐‘…๐‘‡๐‘

๐‘๐‘= 0.08664

๐‘…๐‘‡๐‘

๐‘๐‘

๐‘œ๐‘Ÿ, ๐‘ = 0.08664 ๐‘…๐‘‡๐‘

๐‘๐‘ โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. (vi)

Note: Here, ๐‘ง๐‘ =1

3. As the original equation is from Redlich-Kwong equation, we will use the value of ๐‘ง๐‘

from the Redlich-Kwong equation.

Now putting the value of โ€˜bโ€™ and ๐‘ฃ๐‘ = ๐‘ง๐‘๐‘…๐‘‡๐‘

๐‘๐‘=

1

3.๐‘…๐‘‡๐‘

๐‘๐‘ in equation (iv) we get,

๐‘…๐‘‡๐‘

(๐‘ฃ๐‘โˆ’๐‘)2=

๐‘Ž(๐‘‡) (2๐‘ฃ๐‘+๐‘)

๐‘ฃ๐‘2(๐‘ฃ๐‘+๐‘)2

๐‘œ๐‘Ÿ, ๐‘Ž(๐‘‡) = ๐‘…๐‘‡๐‘ ๐‘ฃ๐‘

2(๐‘ฃ๐‘+๐‘)2

(2๐‘ฃ๐‘+๐‘) (๐‘ฃ๐‘โˆ’๐‘)2

๐‘œ๐‘Ÿ, ๐‘Ž(๐‘‡) = ๐‘…๐‘‡๐‘ [๐‘ง๐‘

๐‘…๐‘‡๐‘๐‘๐‘

]2(๐‘ง๐‘

๐‘…๐‘‡๐‘๐‘๐‘

+0.08664 ๐‘…๐‘‡๐‘๐‘๐‘

)2

(2๐‘ง๐‘๐‘…๐‘‡๐‘๐‘๐‘

+0.08664 ๐‘…๐‘‡๐‘๐‘๐‘

) (๐‘ง๐‘๐‘…๐‘‡๐‘๐‘๐‘

โˆ’0.08664 ๐‘…๐‘‡๐‘๐‘๐‘

)2

๐‘œ๐‘Ÿ, ๐‘Ž(๐‘‡) = ๐‘…๐‘‡๐‘ [๐‘ง๐‘

๐‘…๐‘‡๐‘๐‘๐‘

]2 (

๐‘…๐‘‡๐‘๐‘๐‘

)2 (

1

3+0.08664 )

2

(๐‘…๐‘‡๐‘๐‘๐‘

) (2

3+0.08664) (

๐‘…๐‘‡๐‘๐‘๐‘

)2 (

1

3โˆ’0.08664 )

2

๐‘œ๐‘Ÿ, ๐‘Ž(๐‘‡) = [

1

3.๐‘…๐‘‡๐‘๐‘๐‘

]2โˆ— (0.176377600711111)

(1

๐‘๐‘) (

2

3+0.08664) (

1

3โˆ’0.08664 )

2

๐‘œ๐‘Ÿ, ๐‘Ž(๐‘‡) = 0.42747๐‘…2๐‘‡๐‘

2

๐‘๐‘ โ€ฆ โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. โ€ฆ. (vii)

Now, this is for the critical point only. As for other points for the assigned substance Nitrogen we get

a(T)= 0.42747๐‘…2๐‘‡๐‘

2

๐‘๐‘(1 + [{0.0007T4 - 0.3012T3 + 45.74036T2 - 3068.87T + 76836.9287}]*T)

at critical point T=TR=1 thus we get again,

a(T)= 0.42747๐‘…2๐‘‡๐‘

2

๐‘๐‘

8 | P a g e

Figure-1: a(T) function determination

-50

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

a(T)

T

9 | P a g e

(b) Equation of State in Reduced Form

๐‘ =๐‘…๐‘‡

๐‘ฃโˆ’๐‘โˆ’

๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ+๐‘)

๐‘œ๐‘Ÿ, ๐‘๐‘Ÿ๐‘๐‘ =๐‘…๐‘‡๐‘Ÿ๐‘‡๐‘

๐‘ฃ๐‘Ÿ๐‘ฃ๐‘โˆ’0.08664 ๐‘…๐‘‡๐‘๐‘๐‘

โˆ’0.42747

๐‘…2๐‘‡๐‘2

๐‘๐‘(1+[{0.0007๐‘‡4 โˆ’ 0.3012๐‘‡3 + 45.74036๐‘‡2 โˆ’ 3068.87๐‘‡ + 76836.9287}]โˆ—๐‘‡)

๐‘ฃ๐‘Ÿ๐‘ฃ๐‘(๐‘ฃ๐‘Ÿ๐‘ฃ๐‘+0.08664 ๐‘…๐‘‡๐‘๐‘๐‘

)

๐‘œ๐‘Ÿ, ๐‘๐‘Ÿ =๐‘…๐‘‡๐‘Ÿ๐‘‡๐‘

(๐‘ฃ๐‘Ÿ๐‘ฃ๐‘โˆ’0.08664 ๐‘…๐‘‡๐‘๐‘๐‘

)๐‘๐‘

โˆ’0.42747

๐‘…2๐‘‡๐‘2

๐‘๐‘(1+[{0.0007๐‘‡4 โˆ’ 0.3012๐‘‡3 + 45.74036๐‘‡2 โˆ’ 3068.87๐‘‡ + 76836.9287}]โˆ—๐‘‡)

๐‘๐‘ ๐‘ฃ๐‘Ÿ๐‘ฃ๐‘(๐‘ฃ๐‘Ÿ๐‘ฃ๐‘+0.08664 ๐‘…๐‘‡๐‘๐‘๐‘

)

๐‘œ๐‘Ÿ, ๐‘๐‘Ÿ =

๐‘…๐‘‡๐‘Ÿ๐‘‡๐‘๐‘๐‘

(๐‘ฃ๐‘Ÿ๐‘ฃ๐‘โˆ’0.08664 ๐‘…๐‘‡๐‘๐‘๐‘

)โˆ’

0.42747๐‘…2๐‘‡๐‘

2

๐‘๐‘2 (1+[{0.0007๐‘‡4 โˆ’ 0.3012๐‘‡3 + 45.74036๐‘‡2 โˆ’ 3068.87๐‘‡ + 76836.9287}]โˆ—๐‘‡)

๐‘ฃ๐‘Ÿ๐‘ฃ๐‘(๐‘ฃ๐‘Ÿ๐‘ฃ๐‘+0.08664 ๐‘ฃ๐‘๐‘ง๐‘

)

๐‘œ๐‘Ÿ, ๐‘๐‘Ÿ =๐‘‡๐‘Ÿ (

๐‘ฃ๐‘๐‘ง๐‘

)

[๐‘ฃ๐‘Ÿ๐‘ฃ๐‘โˆ’0.08664 (๐‘ฃ๐‘๐‘ง๐‘

)]โˆ’

0.42747 (๐‘ฃ๐‘๐‘ง๐‘

)2(1+[{0.0007๐‘‡4 โˆ’ 0.3012๐‘‡3 + 45.74036๐‘‡2 โˆ’ 3068.87๐‘‡ + 76836.9287}]โˆ—๐‘‡)

๐‘ฃ๐‘Ÿ๐‘ฃ๐‘(๐‘ฃ๐‘Ÿ๐‘ฃ๐‘+0.08664 ๐‘ฃ๐‘๐‘ง๐‘

)

๐‘œ๐‘Ÿ, ๐‘๐‘Ÿ =๐‘‡๐‘Ÿ (

1

๐‘ง๐‘)

[๐‘ฃ๐‘Ÿโˆ’0.08664 (1

๐‘ง๐‘)]

โˆ’0.42747 (

1

๐‘ง๐‘)2(1+[{0.0007๐‘‡4 โˆ’ 0.3012๐‘‡3 + 45.74036๐‘‡2 โˆ’ 3068.87๐‘‡ + 76836.9287}]โˆ—๐‘‡)

๐‘ฃ๐‘Ÿ(๐‘ฃ๐‘Ÿ+0.08664 1

๐‘ง๐‘)

๐‘œ๐‘Ÿ, ๐‘๐‘Ÿ =3 ๐‘‡๐‘Ÿ

[๐‘ฃ๐‘Ÿโˆ’0.25992]โˆ’

0.0474967(1+[{0.0007(๐‘‡๐‘Ÿ๐‘‡๐‘)4 โˆ’ 0.3012(๐‘‡๐‘Ÿ๐‘‡๐‘)

3 + 45.74036(๐‘‡๐‘Ÿ๐‘‡๐‘)2 โˆ’ 3068.87(๐‘‡๐‘Ÿ๐‘‡๐‘) + 76836.9287}]โˆ—(๐‘‡๐‘Ÿ๐‘‡๐‘)

๐‘ฃ๐‘Ÿ(๐‘ฃ๐‘Ÿ+0.25992)

At critical point it becomes,

๐‘œ๐‘Ÿ, ๐‘๐‘Ÿ =๐‘‡๐‘Ÿ

0.3333 ๐‘ฃ๐‘Ÿโˆ’0.08664โˆ’

1

21.0541 ๐‘ฃ๐‘Ÿ2+5.472384 ๐‘ฃ๐‘Ÿ

10 | P a g e

c) Critical Compressibility Factor

๐‘๐‘ =๐‘…๐‘‡๐‘

๐‘ฃ๐‘ โˆ’ 0.08664 ๐‘…๐‘‡๐‘๐‘๐‘

โˆ’0.42747

๐‘…2๐‘‡๐‘2

๐‘๐‘

๐‘ฃ๐‘ (๐‘ฃ๐‘ + 0.08664 ๐‘…๐‘‡๐‘๐‘๐‘

)

๐‘œ๐‘Ÿ, ๐‘๐‘ =๐‘…๐‘‡๐‘

{๐‘ฃ๐‘ โˆ’ 0.08664 (๐‘ฃ๐‘๐‘ง๐‘

)}โˆ’

0.42747๐‘…2๐‘‡๐‘

2

๐‘๐‘

๐‘ฃ๐‘ (๐‘ฃ๐‘ + 0.08664 (๐‘ฃ๐‘๐‘ง๐‘

))

๐‘œ๐‘Ÿ, 1 =

๐‘…๐‘‡๐‘๐‘๐‘

๐‘ฃ๐‘ {1 โˆ’ 0.08664 (1๐‘ง๐‘

)}โˆ’

0.42747๐‘…2๐‘‡๐‘

2

๐‘๐‘2

๐‘ฃ๐‘2 (1 + 0.08664 (

1๐‘ง๐‘

))

๐‘œ๐‘Ÿ, 1 =(๐‘ฃ๐‘๐‘ง๐‘

)

๐‘ฃ๐‘ {1 โˆ’ 0.08664 (1๐‘ง๐‘

)}โˆ’

0.42747(๐‘ฃ๐‘๐‘ง๐‘

)2

๐‘ฃ๐‘2 (1 + 0.08664 (

1๐‘ง๐‘

))

๐‘œ๐‘Ÿ, 1 =(

1

๐‘ง๐‘)

{1โˆ’0.08664 (1

๐‘ง๐‘)}

โˆ’0.42747(

1

๐‘ง๐‘)2

(1+0.08664 (1

๐‘ง๐‘))

๐‘œ๐‘Ÿ, 1 =(

1

๐‘ง๐‘)(1+0.08664 (

1

๐‘ง๐‘))โˆ’ {1โˆ’0.08664 (

1

๐‘ง๐‘)} {0.42747(

1

๐‘ง๐‘)2}

{{1}2โˆ’{0.08664 (1

๐‘ง๐‘)}

2}

๐‘œ๐‘Ÿ, 1 โˆ’ {0.08664 (1

๐‘ง๐‘)}

2= (

1

๐‘ง๐‘) + 0.08664 (

1

๐‘ง๐‘)2โˆ’ 0.42747(

1

๐‘ง๐‘)2+ (0.42747 โˆ— .08664) (

1

๐‘ง๐‘)3

๐‘œ๐‘Ÿ, 0 = (1

๐‘ง๐‘) + 0.08664 (

1

๐‘ง๐‘)2โˆ’ 0.42747 (

1

๐‘ง๐‘)2+ (0.42747 โˆ— .08664) (

1

๐‘ง๐‘)3โˆ’ 1 + {0.08664 (

1

๐‘ง๐‘)}

2

๐‘œ๐‘Ÿ, ๐‘ง๐‘

2 + 0.08664 ๐‘ง๐‘ โˆ’ 0.42747 ๐‘ง๐‘ + (0.42747 โˆ— .08664) โˆ’ ๐‘ง๐‘3 + (0.08664)2 ๐‘ง๐‘

๐‘ง๐‘3 = 0

๐‘œ๐‘Ÿ, ๐‘ง๐‘2 + 0.08664 ๐‘ง๐‘ โˆ’ 0.42747 ๐‘ง๐‘ + (0.42747 โˆ— .08664) โˆ’ ๐‘ง๐‘

3 + (0.08664)2 ๐‘ง๐‘ = 0

๐‘œ๐‘Ÿ, ๐‘ง๐‘3 โˆ’ ๐‘ง๐‘

2 + (0.42747 โˆ’ 0.08664 โˆ’ 0.086642)๐‘ง๐‘ โˆ’ (0.42747 โˆ— .08664) = 0

Solving this equation numerically, we get,

๐‘ง๐‘ = 0.3471 (MATLAB Code at Appendix)

11 | P a g e

Figure-2: Solution for Critical Compressibility Factor

12 | P a g e

d) Express Z in terms TR, vRโ€™:

๐‘ =๐‘๐‘ฃ

๐‘…๐‘‡

From equation (i) substituting the value of p we get,

๐‘ =๐‘ฃ

๐‘…๐‘‡ [

๐‘…๐‘‡

๐‘ฃโˆ’๐‘โˆ’

๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ+๐‘)]

๐‘œ๐‘Ÿ, ๐‘ =๐‘ฃ

๐‘…๐‘‡ [

๐‘…๐‘‡

๐‘ฃโˆ’0.08664 ๐‘…๐‘‡๐‘๐‘๐‘

โˆ’

0.42747๐‘…2๐‘‡๐‘

2

๐‘๐‘(1+[{0.0007๐‘‡4 โˆ’ 0.3012๐‘‡3 + 45.74036๐‘‡2 โˆ’ 3068.87๐‘‡ + 76836.9287}]โˆ—๐‘‡

๐‘ฃ(๐‘ฃ+0.08664 ๐‘…๐‘‡๐‘๐‘๐‘

)]

๐‘œ๐‘Ÿ, ๐‘ = [๐‘ฃ

๐‘ฃโˆ’0.08664 ๐‘…๐‘‡๐‘๐‘๐‘

โˆ’

0.42747๐‘…๐‘‡๐‘

2

๐‘‡ ๐‘๐‘ (1+[{0.0007๐‘‡4 โˆ’ 0.3012๐‘‡3 + 45.74036๐‘‡2 โˆ’ 3068.87๐‘‡ + 76836.9287}]โˆ—๐‘‡

๐‘ฃ(๐‘ฃ+0.08664 ๐‘…๐‘‡๐‘๐‘๐‘

)]

๐‘œ๐‘Ÿ, ๐‘ =

[

๐‘ฃ

๐‘ฃ(1โˆ’0.08664 ๐‘…๐‘‡๐‘๐‘ฃ ๐‘๐‘

) โˆ’

0.42747๐‘‡๐‘๐‘‡

(1+[{0.0007๐‘‡4 โˆ’ 0.3012๐‘‡3 + 45.74036๐‘‡2 โˆ’ 3068.87๐‘‡ + 76836.9287}]โˆ—๐‘‡

(๐‘ฃ

๐‘…๐‘‡๐‘๐‘๐‘

+0.08664 )

]

๐‘œ๐‘Ÿ, ๐‘ = [1

(1โˆ’0.08664 1

๐‘ฃ๐‘…โ€ฒ

)

โˆ’

0.427471

๐‘‡๐‘… (1+[{0.0007(๐‘‡๐‘Ÿ๐‘‡๐‘)

4 โˆ’ 0.3012(๐‘‡๐‘Ÿ๐‘‡๐‘)3 + 45.74036(๐‘‡๐‘Ÿ๐‘‡๐‘)

2 โˆ’ 3068.87(๐‘‡๐‘Ÿ๐‘‡๐‘) + 76836.9287}]โˆ—(๐‘‡๐‘Ÿ๐‘‡๐‘)

(๐‘ฃ๐‘…โ€ฒ +0.08664 )

]

๐‘œ๐‘Ÿ, ๐‘ = [1

(1โˆ’0.08664 1

๐‘ฃ๐‘…โ€ฒ

)

โˆ’

0.427471

๐‘‡๐‘… (1+[{176433.1632(๐‘‡๐‘Ÿ)

4 โˆ’ 604113.552(๐‘‡๐‘Ÿ)3 + 726168.24(๐‘‡๐‘Ÿ)

2 โˆ’ 386568(๐‘‡๐‘Ÿ) + 76836.9287}]โˆ—(๐‘‡๐‘Ÿโˆ—126)

(๐‘ฃ๐‘…โ€ฒ +0.08664 )

]

At critical point,

๐‘œ๐‘Ÿ, ๐‘ = [1

(1โˆ’0.08664 1

๐‘ฃ๐‘…โ€ฒ

)

โˆ’0.42747

1

๐‘‡๐‘…

(๐‘ฃ๐‘…โ€ฒ +0.08664 )

]

13 | P a g e

e) Accuracy of EOS from Equation (d)

TR = 1

TR VR'

From Table

From Equation % Error

1 0.7 0.58 1.086951409 87.40542

1 0.8 0.635 0.919693232 44.83358

1 0.9 0.675 0.796209555 17.95697

1 1 0.701 0.70147159 0.067274

1 1.2 0.75 0.565944624 24.54072

1 1.4 0.775 0.473864828 38.85615

1 1.6 0.81 0.407336589 49.71153

1 1.8 0.83 0.357071096 56.97939

1 2 0.845 0.317780354 62.39286

TR = 1.05

TR VR'

From Table

From Equation % Error

1.05 0.7 0.64 1.112828194 73.87941

1.05 0.8 0.68 0.942651495 38.62522

1.05 0.9 0.71 0.816840904 15.04801

1.05 1 0.74 0.720204302 2.675094

1.05 1.2 0.77 0.581765455 24.44604

1.05 1.4 0.8 0.487557258 39.05534

1.05 1.6 0.419405385

1.05 1.8 0.367860496

1.05 2 0.327535613

TR = 1.10

TR VR'

From Table

From Equation

1.4 0.7 1.24221212

1.4 0.8 1.05744281

1.4 0.9 0.91999765

1.1 1 0.73723404

1.1 1.2 0.596148029

1.1 1.4 0.500004921

1.1 1.6 0.430377018

1.1 1.8 0.377669042

1.1 2 0.336404031

14 | P a g e

TR = 1.20

TR VR'

From Table

From Equation % Error

1.4 0.7 1.24221212

1.4 0.8 1.05744281

1.4 0.9 0.91999765

1.2 1 0.767036082

1.2 1.2 0.621317533

1.2 1.4 0.521788333

1.2 1.6 0.449577376

1.2 1.8 0.394833997

1.2 2 0.351923762

TR = 1.40

TR VR' From Table

From Equation % Error

1.4 0.7 1.24221212

1.4 0.8 1.05744281

1.4 0.9 0.91999765

1.4 1 0.813867863

1.4 1.2 0.660869611

1.4 1.4 0.556019408

1.4 1.6 0.479749366

1.4 1.8 0.421807498

1.4 2 0.37631191

15 | P a g e

f) Equation for Departure For simplicity of calculation we will consider the reduced equation at critical point,

๐’‰โˆ— โˆ’ ๐’‰

๐‘น๐‘ป๐’„

โ„Žโˆ— โˆ’ โ„Ž

๐‘…๐‘‡๐‘= โˆซ ๐‘๐‘ [(

๐œ•๐‘ƒ๐‘Ÿ

๐œ•๐‘‡๐‘Ÿ) โˆ’ ๐‘ƒ๐‘Ÿ] ๐‘‘๐‘ฃ๐‘Ÿ โˆ’ ๐‘‡๐‘Ÿ(1 โˆ’ ๐‘)

๐‘‰๐‘Ÿ

โˆž

= โˆซ ๐‘๐‘ [(๐œ•

๐œ•๐‘‡๐‘Ÿ) (

๐‘‡๐‘Ÿ

0.3333 ๐‘ฃ๐‘Ÿโˆ’0.08664โˆ’

1

21.0541 ๐‘ฃ๐‘Ÿ2+5.472384 ๐‘ฃ๐‘Ÿ

) โˆ’๐‘‡๐‘Ÿ

0.3333 ๐‘ฃ๐‘Ÿโˆ’0.08664โˆ’

๐‘‰๐‘Ÿ

โˆž

1

21.0541 ๐‘ฃ๐‘Ÿ2+5.472384 ๐‘ฃ๐‘Ÿ

] ๐‘‘๐‘ฃ๐‘Ÿ โˆ’ ๐‘‡๐‘Ÿ(1 โˆ’ ๐‘)

= โˆซ ๐‘๐‘ [(1

0.3333 ๐‘ฃ๐‘Ÿโˆ’0.08664โˆ’

๐‘‡๐‘Ÿ

0.3333 ๐‘ฃ๐‘Ÿโˆ’0.08664+

1

21.0541 ๐‘ฃ๐‘Ÿ2+5.472384 ๐‘ฃ๐‘Ÿ

] ๐‘‘๐‘ฃ๐‘Ÿ โˆ’ ๐‘‡๐‘Ÿ(1 โˆ’ ๐‘) ๐‘‰๐‘Ÿ

โˆž

= ๐‘๐‘ [(ln(0.3333 ๐‘ฃ๐‘Ÿโˆ’0.08664)

0.3333 โˆ’

๐‘‡๐‘Ÿ ln(0.3333 ๐‘ฃ๐‘Ÿโˆ’0.08664)

0.3333 +

ln(5.472384

๐‘ฃ๐‘Ÿ)+21.0541

5.472384 ] โˆ’ ๐‘‡๐‘Ÿ(1 โˆ’ ๐‘)

= 0.873 ln(0.333๐‘ฃ๐‘Ÿ โˆ’ 0.08664) [1 โˆ’ ๐‘‡๐‘Ÿ] + 0.053 ln (5.472384

๐‘ฃ๐‘Ÿ) + 1.12 โˆ’ ๐‘‡๐‘Ÿ(1 โˆ’ ๐‘)

(u*-u)/RTc Now to derive departure from internal energy

๐‘ขโˆ— โˆ’ ๐‘ข

๐‘…๐‘‡๐‘= โˆ’โˆซ ๐‘๐‘ [๐‘‡๐‘Ÿ (

๐œ•๐‘ƒ๐‘Ÿ

๐œ•๐‘‡๐‘Ÿ) โˆ’ ๐‘ƒ๐‘Ÿ] ๐‘‘๐‘ฃ๐‘Ÿ

๐‘‰๐‘Ÿ

โˆž

= โˆซ ๐‘๐‘ [๐‘‡๐‘Ÿ (๐œ•

๐œ•๐‘‡๐‘Ÿ) (

๐‘‡๐‘Ÿ

0.3333 ๐‘ฃ๐‘Ÿโˆ’0.08664โˆ’

1

21.0541 ๐‘ฃ๐‘Ÿ2+5.472384 ๐‘ฃ๐‘Ÿ

) โˆ’๐‘‡๐‘Ÿ

0.3333 ๐‘ฃ๐‘Ÿโˆ’0.08664โˆ’

๐‘‰๐‘Ÿ

โˆž

1

21.0541 ๐‘ฃ๐‘Ÿ2+5.472384 ๐‘ฃ๐‘Ÿ

] ๐‘‘๐‘ฃ๐‘Ÿ

= โˆซ ๐‘๐‘ [(๐‘‡๐‘Ÿ

0.3333 ๐‘ฃ๐‘Ÿโˆ’0.08664โˆ’

๐‘‡๐‘Ÿ2

0.3333 ๐‘ฃ๐‘Ÿโˆ’0.08664+

๐‘‡๐‘Ÿ

21.0541 ๐‘ฃ๐‘Ÿ2+5.472384 ๐‘ฃ๐‘Ÿ

] ๐‘‘๐‘ฃ๐‘Ÿ ๐‘‰๐‘Ÿ

โˆž

= ๐‘๐‘ ๐‘‡๐‘Ÿ [(ln(0.3333 ๐‘ฃ๐‘Ÿโˆ’0.08664)

0.3333 โˆ’

๐‘‡๐‘Ÿ ln(0.3333 ๐‘ฃ๐‘Ÿโˆ’0.08664)

0.3333 +

ln(5.472384

๐‘ฃ๐‘Ÿ)+21.0541

5.472384 ]

= 0.873 ๐‘‡๐‘Ÿ ln(0.333๐‘ฃ๐‘Ÿ โˆ’ 0.08664) [1 โˆ’ ๐‘‡๐‘Ÿ] + 0.053Tr ln (5.472384

๐‘ฃ๐‘Ÿ) + 1.12

๐’”โˆ— โˆ’ ๐’”

๐‘น

๐‘ โˆ— โˆ’ ๐‘ 

๐‘…= โˆซ ๐‘๐‘ [(

๐œ•๐‘ƒ๐‘Ÿ

๐œ•๐‘‡๐‘Ÿ) โˆ’ (

1

๐‘‰๐‘Ÿ)] ๐‘‘๐‘ฃ๐‘Ÿ โˆ’ ln(๐‘ง)

๐‘‰๐‘Ÿ

โˆž

=โˆซ ๐‘๐‘ [(1

0.3333 ๐‘ฃ๐‘Ÿโˆ’0.08664โˆ’

1

๐‘‰๐‘Ÿ ] ๐‘‘๐‘ฃ๐‘Ÿ โˆ’ ln(๐‘ง)

๐‘‰๐‘Ÿ

โˆž

= ๐‘๐‘ [(ln(0.3333 ๐‘ฃ๐‘Ÿโˆ’0.08664)

0.3333 โˆ’ (

1

ln๐‘ฃ๐‘Ÿ) ]โ€“ ln (z)

16 | P a g e

g) Accuracy of EOS for equation (C) From table A1 for Nitrogen we get,

Zc=0.291

And at part (c) we calculated,

Zc=0.3471

Thus, Accuracy=(0.3471โˆ’0.291)

0.291=0.192783=19.2783%

17 | P a g e

h) Derivation of Expressions: For simplicity of calculation we will consider the reduced equation at critical point,

๐’‚โˆ— โˆ’ ๐’‚

๐‘น๐‘ป๐’„:

We know,

๐‘Žโˆ— โˆ’ ๐‘Ž

๐‘…๐‘‡๐‘= โˆ’โˆซ ๐‘๐‘ [(

๐œ•๐‘ƒ๐‘Ÿ

๐œ•๐‘‡๐‘Ÿ) โˆ’

๐‘‡๐‘Ÿ

๐‘‰๐‘Ÿ]๐‘‘๐‘ฃ๐‘Ÿ + ๐‘‡๐‘Ÿ๐‘™๐‘›(๐‘)

๐‘‰๐‘Ÿ

โˆž

๐‘œ๐‘Ÿ,๐‘Žโˆ— โˆ’ ๐‘Ž

๐‘…๐‘‡๐‘= โˆ’โˆซ ๐‘๐‘ [(

๐œ•

๐œ•๐‘‡๐‘Ÿ(

๐‘‡๐‘Ÿ

0.3333 ๐‘ฃ๐‘Ÿ โˆ’ 0.08664โˆ’

1

21.0541 ๐‘ฃ๐‘Ÿ2 + 5.472384 ๐‘ฃ๐‘Ÿ

)) โˆ’๐‘‡๐‘Ÿ

๐‘‰๐‘Ÿ] ๐‘‘๐‘ฃ๐‘Ÿ

๐‘‰๐‘Ÿ

โˆž

+ ๐‘‡๐‘Ÿ๐‘™๐‘›(๐‘)

Or, ๐‘Žโˆ—โˆ’๐‘Ž

๐‘…๐‘‡๐‘= โˆ’โˆซ ๐‘๐‘ [

1

0.33โˆ—๐‘‰๐‘Ÿโˆ’0.086โˆ’

๐‘‡๐‘Ÿ

๐‘‰๐‘Ÿ] ๐‘‘๐‘‰๐‘Ÿ + ๐‘‡๐‘Ÿ๐‘™๐‘›(๐‘)

๐‘‰๐‘Ÿ

โˆž

or, ๐‘Žโˆ—โˆ’๐‘Ž

๐‘…๐‘‡๐‘= โˆ’๐‘๐‘[(

ln(|165๐‘‰๐‘Ÿโˆ’43|)

0.33โˆ’ ๐‘‡๐‘Ÿ๐‘™๐‘›|๐‘‰๐‘Ÿ|] + ๐‘‡๐‘Ÿ๐‘™๐‘›(๐‘)

After putting the value of Zc we get,

๐‘Žโˆ— โˆ’ ๐‘Ž

๐‘…๐‘‡๐‘= โˆ’0.291[(

ln(|165๐‘‰๐‘Ÿ โˆ’ 43|)

0.33โˆ’ ๐‘‡๐‘Ÿ๐‘™๐‘›|๐‘‰๐‘Ÿ|] + ๐‘‡๐‘Ÿ๐‘™๐‘›(๐‘)

๐’ˆโˆ— โˆ’ ๐’ˆ

๐‘น๐‘ป๐’„:

We know,

๐‘”โˆ— โˆ’ ๐‘”

๐‘…๐‘‡๐‘= โˆซ [๐‘๐‘๐‘ƒ๐‘Ÿ โˆ’

๐‘‡๐‘Ÿ

๐‘‰๐‘Ÿ]๐‘‘๐‘ฃ๐‘Ÿ + ๐‘‡๐‘Ÿ(๐‘™๐‘›๐‘ง + 1 โˆ’ ๐‘ง)

๐‘‰๐‘Ÿ

โˆž

๐‘”โˆ— โˆ’ ๐‘”

๐‘…๐‘‡๐‘= โˆซ [๐‘๐‘ (

๐‘‡๐‘Ÿ

0.3333 ๐‘ฃ๐‘Ÿ โˆ’ 0.08664โˆ’

1

21.0541 ๐‘ฃ๐‘Ÿ2 + 5.472384 ๐‘ฃ๐‘Ÿ

) โˆ’๐‘‡๐‘Ÿ

๐‘‰๐‘Ÿ]๐‘‘๐‘‰๐‘Ÿ + ๐‘‡๐‘Ÿ(๐‘™๐‘›๐‘ง + 1

๐‘‰๐‘Ÿ

โˆž

โˆ’ ๐‘ง)

๐‘”โˆ— โˆ’ ๐‘”

๐‘…๐‘‡๐‘= โˆ’

๐‘‡๐‘Ÿ๐‘™๐‘›(|1375๐‘‰๐‘Ÿ โˆ’ 361|)๐‘๐‘

0.33+

ln (|1368096

๐‘‰๐‘Ÿ + 5263525|)๐‘๐‘

5.47+ ๐‘‡๐‘Ÿ(๐‘™๐‘›๐‘ง + 1 โˆ’ ๐‘ง)

After putting the value of Zc we get,

๐‘”โˆ— โˆ’ ๐‘”

๐‘…๐‘‡๐‘= โˆ’

๐‘‡๐‘Ÿ๐‘™๐‘›(|1375๐‘‰๐‘Ÿ โˆ’ 361|) โˆ— .291

0.33+

ln (|1368096

๐‘‰๐‘Ÿ + 5263525|) โˆ— .291

5.47+ ๐‘‡๐‘Ÿ(๐‘™๐‘›๐‘ง + 1 โˆ’ ๐‘ง)

18 | P a g e

i) Speed of sound

๐‘ = โˆšโˆ’๐‘ฃ2 โˆš (๐œ•๐‘

๐œ•๐‘ฃ)๐‘ 

(๐œ•๐‘

๐œ•๐‘ฃ)๐‘ =

๐œ•

๐œ•๐‘ฃ{

๐‘…๐‘‡

๐‘ฃ โˆ’ ๐‘โˆ’

๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ + ๐‘) }

=๐‘…๐‘‡(โˆ’1)

(๐‘ฃ โˆ’ ๐‘)2+

๐‘Ž(๐‘‡) (2๐‘ + ๐‘)

(๐‘ฃ + ๐‘)2๐‘ฃ2

= โˆ’๐‘…๐‘‡

(๐‘ฃ โˆ’ ๐‘)2+

๐‘Ž(๐‘‡) (2๐‘ + ๐‘)

(๐‘ฃ + ๐‘)2๐‘ฃ2

๐’„ = โˆšโˆ’๐’—๐Ÿ{โˆ’๐‘น๐‘ป

(๐’—โˆ’๐’ƒ)๐Ÿ+

๐’‚(๐‘ป) (๐Ÿ๐’ƒ+๐’ƒ)

(๐’—+๐’ƒ)๐Ÿ๐’—๐Ÿ }

19 | P a g e

(j) Derive the Properties

Cp We can directly derive Cp and Cv from Uj. Now we know Cp and Cv,

๐ถ๐‘ = โˆ’1

๐‘ˆ๐‘—[๐‘‡ [

๐‘…๐‘‡๐‘ฃ โˆ’ ๐‘

โˆ’๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ + ๐‘)

โˆ’๐‘…๐‘‡

(๐‘ฃ โˆ’ ๐‘)2 +๐‘Ž(๐‘‡)

๐‘ฃ2(๐‘ฃ + ๐‘)+

๐‘Ž(๐‘‡)๐‘ฃ(๐‘ฃ + ๐‘)2

] + ๐‘ฃ]

Cv Also the relation between Cp and Cv is,

๐‘๐‘‰ =๐ถ๐‘

๐‘˜

So,

๐ถ๐‘ฃ = โˆ’1

๐‘ˆ๐‘—๐พ[๐‘‡ [

๐‘…๐‘‡๐‘ฃ โˆ’ ๐‘

โˆ’๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ + ๐‘)

โˆ’๐‘…๐‘‡

(๐‘ฃ โˆ’ ๐‘)2 +๐‘Ž(๐‘‡)

๐‘ฃ2(๐‘ฃ + ๐‘)+

๐‘Ž(๐‘‡)๐‘ฃ(๐‘ฃ + ๐‘)2

] + ๐‘ฃ]

1/v vp

ฮฒ = (1/๐‘ฃ)(๐œ•๐‘ฃ

๐œ•๐‘‡)๐‘

(๐œ•๐‘ฃ

๐œ•๐‘ก)๐‘ = โˆ’

(๐œ•๐‘ƒ

๐œ•๐‘‡)๐‘ฃ

(๐œ•๐‘ƒ

๐œ•๐‘ฃ)๐‘‡

=

๐‘…

๐‘ฃโˆ’๐‘โˆ’

๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ+๐‘)

โˆ’๐‘…๐‘‡

(๐‘ฃโˆ’๐‘)2+

๐‘Ž(๐‘‡)

๐‘ฃ2(๐‘ฃ+๐‘)+

๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ+๐‘)2

ฮฒ = โˆ’1

๐‘ฃ[

๐‘…

๐‘ฃโˆ’๐‘โˆ’

๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ+๐‘)

โˆ’๐‘…๐‘‡

(๐‘ฃโˆ’๐‘)2+

๐‘Ž(๐‘‡)

๐‘ฃ2(๐‘ฃ+๐‘)+

๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ+๐‘)2

]

k = v/p pvIsentropic expansion coefficient:

๐‘˜ = โˆ’๐‘ฃ

๐‘ƒ (

๐œ•๐‘

๐œ•๐‘ฃ) ๐‘ 

= -๐‘ฃ

๐‘ƒ [โˆ’

๐‘…๐‘‡

(๐‘ฃโˆ’๐‘)2+

๐‘Ž(๐‘‡)

๐‘ฃ2(๐‘ฃ+๐‘)+

๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ+๐‘)2]

๐‘˜ =โˆ’๐‘ฃ

(๐‘…๐‘‡

๐‘ฃโˆ’๐‘โˆ’

๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ+๐‘)) [

โˆ’๐‘…๐‘‡

(๐‘ฃโˆ’๐‘)2+

2๐‘Ž

๐‘‡ (๐‘ฃ+๐‘)3]

20 | P a g e

kT

We know,

๐พ๐‘‡ = โˆ’1

๐‘ฃ

๐›ฟ๐‘

๐›ฟ๐‘ฃ)

๐‘‡

= -1

๐‘ฃ [โˆ’

๐‘…๐‘‡

(๐‘ฃโˆ’๐‘)2+

๐‘Ž(๐‘‡)

๐‘ฃ2(๐‘ฃ+๐‘)+

๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ+๐‘)2]

J

We know,๐‘ˆ๐‘— = (๐œ•๐‘ƒ

๐œ•๐‘‡) ๐‘ฃ

Also,

๐‘‘โ„Ž = ๐ถ๐‘๐‘‘๐‘‡ + [๐‘ฃ โˆ’ ๐‘‡(๐œ•๐‘ฃ

๐œ•๐‘‡)๐‘]

From isentropic process,

h= constant

so, ๐‘‘โ„Ž = 0

(๐œ•๐‘‡

๐œ•๐‘ƒ) โ„Ž =

๐‘‡ (๐œ•๐‘ฃ

๐œ•๐‘‡)๐‘โˆ’๐‘ฃ

๐‘๐‘

Now, (๐œ•๐‘ฃ

๐œ•๐‘‡) ๐‘ = -

(๐œ•๐‘ƒ

๐œ•๐‘‡)๐‘ฃ

(๐œ•๐‘ƒ

๐œ•๐‘ฃ)๐‘‡

๐‘ˆ๐‘— = (๐œ•๐‘‡

๐œ•๐‘ƒ) โ„Ž

=

๐‘‡[โˆ’(๐œ•๐‘ƒ๐œ•๐‘‡

)๐‘ฃ

(๐œ•๐‘ƒ๐œ•๐‘ฃ

)๐‘‡]โˆ’๐‘ฃ

๐‘๐‘

๐‘ˆ๐‘— =

โˆ’๐‘‡

๐‘…๐‘ฃโˆ’๐‘

โˆ’๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ+๐‘)

โˆ’๐‘…๐‘‡

(๐‘ฃโˆ’๐‘)2+

๐‘Ž(๐‘‡)

๐‘ฃ2(๐‘ฃ+๐‘)+

๐‘Ž(๐‘‡)

๐‘ฃ(๐‘ฃ+๐‘)2

โˆ’๐‘ฃ

๐‘๐‘

21 | P a g e

Summary:

In our project we firstly evaluated the Two parameters of the Redlich- Kwong-Soave equation. Then converted the equation into reduced form. With the help of MATLAB and Excel we estimated tabulated data and calculations.

22 | P a g e

Appendix

MATLAB Code

clc; clear; x = 1; zc = 1;

while x v2 = zc^3 - zc^2 + (.42747-.08664-.08664^2)*zc + (-.42747*.08664);

if abs(v2) <= 0.00000025 x = 0; clc; fprintf('%d',zc); else zc = zc - 0.000025; end

end

23 | P a g e

Reference 1) http://en.wikipedia.org/

2) http://webbook.nist.gov/chemistry/fluid/

3) http://www.boulder.nist.gov/div838/theory/refprop/MINIREF/MINIREF.HTM

4) https://www.bnl.gov/magnets/staff/gupta/cryogenic-data-handbook/Section6.pdf

5) http://www.swinburne.edu.au/ict/success/cms/documents/disertations/yswChap3.pdf

6) https://www.e-education.psu.edu/png520/m10_p5.html

7) Advanced Engineering Thermodynamics-Adrian Bejan.

8) Thermodynamics, An Engineering Approach- Yunus A Cengel and M.B Boles

9) Provided class lectures and notes.