36
EM based Multiuser detection in Fading Multipath Environments Mohammad Jaber Borran, Željko akareski, Ahmad Khoshnevis, and Vishwas Sundaramurthy

EM based Multiuser detection in Fading Multipath Environments

Embed Size (px)

DESCRIPTION

EM based Multiuser detection in Fading Multipath Environments. Mohammad Jaber Borran, Željko  akareski, Ahmad Khoshnevis, and Vishwas Sundaramurthy. Outline. Motivation Time-frequency representation Channel modeling. Outline (continued). Expectation Maximization algorithm - PowerPoint PPT Presentation

Citation preview

EM based Multiuser detection in Fading Multipath Environments

Mohammad Jaber Borran, Željko akareski,

Ahmad Khoshnevis, and Vishwas Sundaramurthy

• Motivation

• Time-frequency representation

• Channel modeling

Outline

• Expectation Maximization algorithm

• EM algorithm based detector

• Performance comparison

• Conclusions and future work

Outline(continued)

Environment

• Noise

• Multipath

• Fading

• MAI

Time-Frequency RepresentationWhat is TFR?

• A 2-D signal representation

• Facilitates signaling by exploiting multipath and Doppler

• Identifies Doppler as another dimension for diversity

T

mtj

ckmlk elTtsts

2

)()(

Canonical basis corresponding to the uniform grid

Tc

1/T

Multipath

Dop

pler

M

-M

Canonical Coordinates

, / cm TTL TBM d

L

Channel Modeling Requirements

• Multipath environment

• Independent paths

• Rayleigh fast fading

Channel ModelingOur approach

• Jakes’ model for individual paths

• Independence assured by having:

Spacing >> Tcoh ( ~ )

• Random delays for different multipath

components

• Canonical representation

dB1

Channel ModelingCharacterization

• Linear time-varying system

h(t, ) +s(t) x(t)

n(t)

r(t)

• Represented by its impulse response h(t, )

Channel ModelingCharacterization

• The output r(t) determined as :

)()(),()( tndtsthtr

• Incorporate the canonical model into h(t, )

m d

d

T B

B

tj ddtseHtx0

2 )( ),()(

Channel ModelingCharacterization

• Spreading function H(, )

• Canonical finite-dimensional representation :

, / cm TTL where TBM d

TttslTT

mH

T

Ttx

L

l

M

Mm

mlkc

ck

0 ,)(),()(1

0

Channel ModelingCharacterization

• Bandlimited approximation of H(, )

m d

d

T B

B

CTj

C

ddTsincTsinceHT

TH

0

)'( '')/)'(())'((),(),(ˆ

TBM d

• In our case

mN

ii

C

i

C T

mE

Tlsinc

T

tlmH

1

)()(),(ˆ

Channel ModelingCharacterization

where

TBM d

))(()( tEFFTE ii

Ei(t) : Jakes’ model rep. for path i

Tt 0

cc TT

11

EM AlgorithmIntroduction

• Goal:

K

R rf

11b

b

, s.t.

);(log maximize

)(),,,( 21 ygyyygr K

• K-dim problem, direct approach is difficult.

• Define complete data, i.e. y, such that

and

K

f

11b

byY

, s.t.

);(log maximize

ybybyby YYYY drffrfE RR );|();(log|);(log ||

EM AlgorithmIntroduction (cnt’d)

ybybybb YY drffU R )';|();(log)',( |

• Since y is unavailable,

• b is unknown,

• Provides an iterative method for ML estimation:– E step: Compute U(b,b(n))

– M step:

EM AlgorithmIterative Nature, Decomposition

),(maxarg )(

1,1

)1( nn UK

bbbb

• K 1-dim problems (with suitable complete data)

• The value of b(0) is important.

• The log-likelihood function

New Multiuser Detection SchemeComplete Data

T K

kkkR dttxbtrArf

0

2

12

)()(2

1);(log

b

K

kk

kkkk

tytr

Kktntxbty

1

)()(then

,...,1 ,)()()(

• Define complete data, y(t) = (y1(t), …, yK(t)), as

• Defining

New Multiuser Detection SchemeIterative Expression, Special Cases

K

kjj

jkjHj

njk

Hk

kkkHk

knkk

nk bbb

1

)()()1( )1(Resgn hRhzhhRh

2

2

k

k

kHkkb zhResgn)0( • Assuming

– k=1 Multistage– k=0 Time-Frequency RAKE receiver

TFRAKE

+MRC

r(t)

sgn I-b(0)

MAI Estimation &Cancellation

+ I- +sgn sgn

HHz

b(1) b(n-1) b(n)

...

...

...

New Multiuser Detection SchemeBlock Diagram

MAI Estimation &Cancellation

Simulation Results(3 paths, Bd=100Hz, 5 users, User 4)

-10 -5 0 5 10 1510

-4

10-3

10-2

10-1

100

User 4, beta = 0.7

SNR in dB

Bit

Err

or R

ate

TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage

Simulation Results(3 paths, Bd=100Hz, 5 users, User 3)

-10 -5 0 5 10 1510

-4

10-3

10-2

10-1

100

User 3, beta = 0.8

SNR in dB

Bit

Err

or R

ate

TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage

Conclusion

• Canonical representation + EM algorithm

New Detector for Fast Fading Multipath Env.

– Two special cases: TF RAKE and MultiStage

• Outperforms TF RAKE and MultiStage

• For rapid convergence use appropriate k

Future work

• Theoretical error probability analysis

• Near-Far resistance analysis

• Optimum value for k

• Extension to asynchronous case

That’s all Folks!

,)()(

21

22221

11211

*

kkkk

k

k

T

RRR

RRR

RRR

dtttR

ss

Cross correlation matrix

TMLk

LMk

Mk

MLk

Mkk

Tlkkl

tststststst

dtttR

)](),...,(),...,(),(),...,([)(

,)()(

)1(0)1(0

*

s

ss

where

Signal model

• The new log-likelihood function

• It can be shown that

New Multiuser Detection SchemeExpectation Calculation Step

K

k

T

kkkk

dttxbtyAf1 0

2

2)()(

2

1);(log

byY

K

k

K

jjkj

Hj

njk

Hk

kkkk

Hk

nk

k

kn bbb

U1 1

)(2

2)(

2)( Re),( hRhzhhRhbb

• The coordinates for each symbol of a particular user are computed by:

Kk

dtttr kk

..., ,1

)()( *

sz

a

Canonical RAKE

Simulation Results(3 paths, Bd=100Hz, 5 users, User 1)

-10 -5 0 5 10 1510

-4

10-3

10-2

10-1

100

User 1, beta = 0.6

SNR in dB

Bit

Err

or R

ate

TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage

Simulation Results(3 paths, Bd=100Hz, 5 users, User 2)

-10 -5 0 5 10 1510

-3

10-2

10-1

100

User 2, beta = 0.6

SNR in dB

Bit

Err

or R

ate

TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage

Simulation Results(3 paths, Bd=100Hz, 5 users, User 5)

-10 -5 0 5 10 1510

-4

10-3

10-2

10-1

100

User 5, beta = 0.8

SNR in dB

Bit

Err

or R

ate

TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage

Simulation Results(3 paths, Bd=200Hz, 5 users, User 1)

-10 -5 0 5 10 1510

-3

10-2

10-1

100

User 1, beta = 0.6

SNR in dB

Bit

Err

or R

ate

TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage

Simulation Results(3 paths, Bd=200Hz, 5 users, User 2)

-10 -5 0 5 10 1510

-3

10-2

10-1

100

User 2, beta = 0.6

SNR in dB

Bit

Err

or R

ate

TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage

Simulation Results(3 paths, Bd=200Hz, 5 users, User 3)

-10 -5 0 5 10 1510

-4

10-3

10-2

10-1

100

User 3, beta = 0.8

SNR in dB

Bit

Err

or R

ate

TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage

Simulation Results(3 paths, Bd=200Hz, 5 users, User 4)

-10 -5 0 5 10 1510

-3

10-2

10-1

100

User 4, beta = 0.7

SNR in dB

Bit

Err

or R

ate

TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage

Simulation Results(3 paths, Bd=200Hz, 5 users, User 5)

-10 -5 0 5 10 1510

-3

10-2

10-1

100

User 5, beta = 0.8

SNR in dB

Bit

Err

or R

ate

TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage

Channel Modeling

TBM d

),(ˆ HVisualization of