Upload
ruby-hartman
View
28
Download
0
Tags:
Embed Size (px)
DESCRIPTION
EM based Multiuser detection in Fading Multipath Environments. Mohammad Jaber Borran, Željko akareski, Ahmad Khoshnevis, and Vishwas Sundaramurthy. Outline. Motivation Time-frequency representation Channel modeling. Outline (continued). Expectation Maximization algorithm - PowerPoint PPT Presentation
EM based Multiuser detection in Fading Multipath Environments
Mohammad Jaber Borran, Željko akareski,
Ahmad Khoshnevis, and Vishwas Sundaramurthy
• Motivation
• Time-frequency representation
• Channel modeling
Outline
• Expectation Maximization algorithm
• EM algorithm based detector
• Performance comparison
• Conclusions and future work
Outline(continued)
Environment
• Noise
• Multipath
• Fading
• MAI
Time-Frequency RepresentationWhat is TFR?
• A 2-D signal representation
• Facilitates signaling by exploiting multipath and Doppler
• Identifies Doppler as another dimension for diversity
T
mtj
ckmlk elTtsts
2
)()(
Canonical basis corresponding to the uniform grid
Tc
1/T
Multipath
Dop
pler
M
-M
Canonical Coordinates
, / cm TTL TBM d
L
Channel Modeling Requirements
• Multipath environment
• Independent paths
• Rayleigh fast fading
Channel ModelingOur approach
• Jakes’ model for individual paths
• Independence assured by having:
Spacing >> Tcoh ( ~ )
• Random delays for different multipath
components
• Canonical representation
dB1
Channel ModelingCharacterization
• Linear time-varying system
h(t, ) +s(t) x(t)
n(t)
r(t)
• Represented by its impulse response h(t, )
Channel ModelingCharacterization
• The output r(t) determined as :
)()(),()( tndtsthtr
• Incorporate the canonical model into h(t, )
m d
d
T B
B
tj ddtseHtx0
2 )( ),()(
Channel ModelingCharacterization
• Spreading function H(, )
• Canonical finite-dimensional representation :
, / cm TTL where TBM d
TttslTT
mH
T
Ttx
L
l
M
Mm
mlkc
ck
0 ,)(),()(1
0
Channel ModelingCharacterization
• Bandlimited approximation of H(, )
m d
d
T B
B
CTj
C
ddTsincTsinceHT
TH
0
)'( '')/)'(())'((),(),(ˆ
TBM d
• In our case
mN
ii
C
i
C T
mE
Tlsinc
T
tlmH
1
)()(),(ˆ
Channel ModelingCharacterization
where
TBM d
))(()( tEFFTE ii
Ei(t) : Jakes’ model rep. for path i
Tt 0
cc TT
11
EM AlgorithmIntroduction
• Goal:
K
R rf
11b
b
, s.t.
);(log maximize
)(),,,( 21 ygyyygr K
• K-dim problem, direct approach is difficult.
• Define complete data, i.e. y, such that
and
K
f
11b
byY
, s.t.
);(log maximize
ybybyby YYYY drffrfE RR );|();(log|);(log ||
EM AlgorithmIntroduction (cnt’d)
ybybybb YY drffU R )';|();(log)',( |
• Since y is unavailable,
• b is unknown,
• Provides an iterative method for ML estimation:– E step: Compute U(b,b(n))
– M step:
EM AlgorithmIterative Nature, Decomposition
),(maxarg )(
1,1
)1( nn UK
bbbb
• K 1-dim problems (with suitable complete data)
• The value of b(0) is important.
• The log-likelihood function
New Multiuser Detection SchemeComplete Data
T K
kkkR dttxbtrArf
0
2
12
)()(2
1);(log
b
K
kk
kkkk
tytr
Kktntxbty
1
)()(then
,...,1 ,)()()(
• Define complete data, y(t) = (y1(t), …, yK(t)), as
• Defining
New Multiuser Detection SchemeIterative Expression, Special Cases
K
kjj
jkjHj
njk
Hk
kkkHk
knkk
nk bbb
1
)()()1( )1(Resgn hRhzhhRh
2
2
k
k
kHkkb zhResgn)0( • Assuming
– k=1 Multistage– k=0 Time-Frequency RAKE receiver
TFRAKE
+MRC
r(t)
sgn I-b(0)
MAI Estimation &Cancellation
+ I- +sgn sgn
HHz
b(1) b(n-1) b(n)
...
...
...
New Multiuser Detection SchemeBlock Diagram
MAI Estimation &Cancellation
Simulation Results(3 paths, Bd=100Hz, 5 users, User 4)
-10 -5 0 5 10 1510
-4
10-3
10-2
10-1
100
User 4, beta = 0.7
SNR in dB
Bit
Err
or R
ate
TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage
Simulation Results(3 paths, Bd=100Hz, 5 users, User 3)
-10 -5 0 5 10 1510
-4
10-3
10-2
10-1
100
User 3, beta = 0.8
SNR in dB
Bit
Err
or R
ate
TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage
Conclusion
• Canonical representation + EM algorithm
New Detector for Fast Fading Multipath Env.
– Two special cases: TF RAKE and MultiStage
• Outperforms TF RAKE and MultiStage
• For rapid convergence use appropriate k
Future work
• Theoretical error probability analysis
• Near-Far resistance analysis
• Optimum value for k
• Extension to asynchronous case
That’s all Folks!
,)()(
21
22221
11211
*
kkkk
k
k
T
RRR
RRR
RRR
dtttR
ss
Cross correlation matrix
TMLk
LMk
Mk
MLk
Mkk
Tlkkl
tststststst
dtttR
)](),...,(),...,(),(),...,([)(
,)()(
)1(0)1(0
*
s
ss
where
Signal model
• The new log-likelihood function
• It can be shown that
New Multiuser Detection SchemeExpectation Calculation Step
K
k
T
kkkk
dttxbtyAf1 0
2
2)()(
2
1);(log
byY
K
k
K
jjkj
Hj
njk
Hk
kkkk
Hk
nk
k
kn bbb
U1 1
)(2
2)(
2)( Re),( hRhzhhRhbb
• The coordinates for each symbol of a particular user are computed by:
Kk
dtttr kk
..., ,1
)()( *
sz
a
Canonical RAKE
Simulation Results(3 paths, Bd=100Hz, 5 users, User 1)
-10 -5 0 5 10 1510
-4
10-3
10-2
10-1
100
User 1, beta = 0.6
SNR in dB
Bit
Err
or R
ate
TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage
Simulation Results(3 paths, Bd=100Hz, 5 users, User 2)
-10 -5 0 5 10 1510
-3
10-2
10-1
100
User 2, beta = 0.6
SNR in dB
Bit
Err
or R
ate
TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage
Simulation Results(3 paths, Bd=100Hz, 5 users, User 5)
-10 -5 0 5 10 1510
-4
10-3
10-2
10-1
100
User 5, beta = 0.8
SNR in dB
Bit
Err
or R
ate
TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage
Simulation Results(3 paths, Bd=200Hz, 5 users, User 1)
-10 -5 0 5 10 1510
-3
10-2
10-1
100
User 1, beta = 0.6
SNR in dB
Bit
Err
or R
ate
TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage
Simulation Results(3 paths, Bd=200Hz, 5 users, User 2)
-10 -5 0 5 10 1510
-3
10-2
10-1
100
User 2, beta = 0.6
SNR in dB
Bit
Err
or R
ate
TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage
Simulation Results(3 paths, Bd=200Hz, 5 users, User 3)
-10 -5 0 5 10 1510
-4
10-3
10-2
10-1
100
User 3, beta = 0.8
SNR in dB
Bit
Err
or R
ate
TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage
Simulation Results(3 paths, Bd=200Hz, 5 users, User 4)
-10 -5 0 5 10 1510
-3
10-2
10-1
100
User 4, beta = 0.7
SNR in dB
Bit
Err
or R
ate
TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage
Simulation Results(3 paths, Bd=200Hz, 5 users, User 5)
-10 -5 0 5 10 1510
-3
10-2
10-1
100
User 5, beta = 0.8
SNR in dB
Bit
Err
or R
ate
TF RAKE Multi-Stage 2-stageEM 2-stage Multi-Stage 3-stageEM 3-stage
Channel Modeling
TBM d
),(ˆ HVisualization of