37
ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark Faust @ PSU ECE

ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Embed Size (px)

DESCRIPTION

Lecture 6 Topics –Combinational Logic Circuits Graphic Symbols (IEEE and IEC) Switching Circuits Analyzing IC Logic Circuits Designing IC Logic Circuits Detailed Schematic Diagrams Using Equivalent Symbols 3

Citation preview

Page 1: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

ECE 171Digital Circuits

Chapter 6Logic Circuits

Herbert G. Mayer, PSUStatus 1/16/2016

Copied with Permission from prof. Mark Faust @ PSU ECE

Page 2: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Syllabus

Combinatorial Logic Circuits Truth Tables Logic Functions References

Page 3: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Lecture 6

• Topics– Combinational Logic Circuits

• Graphic Symbols (IEEE and IEC)• Switching Circuits• Analyzing IC Logic Circuits• Designing IC Logic Circuits• Detailed Schematic Diagrams• Using Equivalent Symbols

3

Page 4: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Combinational Logic Circuits

• Combinational Logic– Outputs depend only upon the current inputs (not

previous “state”)• Positive Logic

– High voltage (H) represents logic 1 (“True”)– “Signal BusGrant is asserted High”

• Negative Logic– Low voltage (L) represents logic 1 (“True”)– “Signal BusRequest# is asserted Low”

4

Page 5: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

IEEE: Institute of Electricaland Electronics Engineers

IEC: International Electro-technical Commission

5

Page 6: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

n.o. = normally openn.c. = normally closed

6

Page 7: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

7

Page 8: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

8

Page 9: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

9

Page 10: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

10

Page 11: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

11

Page 12: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

12

Page 13: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

13

Page 14: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

All Possible Two Variable FunctionsQuestion: How many unique functions of twovariables are there?

Recall earlier question…

14

Page 15: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Truth Tables

B5 B4 B3 B2 B1 B0 F

0 0 0 0 0 0 0

0 0 0 0 0 1 1

0 0 0 0 1 0 1

0 0 0 0 1 1 0

.

.

.

1 1 1 1 1 1 1

0

1

2

3

.

.

.

63

26 = 64

Question: How many rows are there in a truth tablefor n variables?As many rows as unique combinationsof inputs

Enumerate by counting in binary

2n

15

Page 16: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Two Variable FunctionsQuestion: How many unique combinations of 2n bits?

Enumerate by counting in binary

22n

264

16

B5 B4 B3 B2 B1 B0 F

0 0 0 0 0 0 0

0 0 0 0 0 1 1

0 0 0 0 1 0 1

0 0 0 0 1 1 0

.

.

.

1 1 1 1 1 1 1

0

1

2

3

.

.

.

63

26 = 64

Page 17: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

All Possible Two Variable FunctionsQuestion: How many unique functions of twovariables are there? B1 B0 F

0 0 0

0 1 1

1 0 1

1 1 0

22 = 4 rows 4 bits

Number of unique 4 bit words = 24 = 16

17

Page 18: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

18

Page 19: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Analyzing Logic Circuits

Reference Designators (“Instances”)

X + Z

XX + Y

(X + Y)×(X + Z)

19

Page 20: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Analyzing Logic Circuits

C

A×B

B×C

A×B + B×C

20

Page 21: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Designing Logic Circuits

F1 = A×B×C + B×C + A×B

SOP form with 3 terms 3 input OR gate

21

Page 22: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Designing Logic Circuits

F1 = A×B×C + B×C + A×B

Complement already available

22

Page 23: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Some Terminology

F1 = A×B×C + B×C + A×BSignal line – any “wire” to a gate input or output

23

Page 24: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Some Terminology

F1 = A×B×C + B×C + A×BNet – collection of signal lines which are connected

24

Page 25: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Some Terminology

F1 = A×B×C + B×C + A×BFan-out – Number of inputs an IC output is driving

Fan-out of 2

25

Page 26: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Some Terminology

F1 = A×B×C + B×C + A×BFan-in – Number of inputs to a gate

Fan-in of 3

26

Page 27: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Vertical Layout Scheme – SOP Form

27

Page 28: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Vertical Layout Scheme – SOP Form

28

Page 29: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

>2 Input OR Gates Not Available for all IC Technologies

Solution: “Cascading” gates

29

Page 30: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Vertical Layout Scheme – POS Form

F2 = (X+Y)×(X+Y)×(X+Z)

30

Page 31: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Designing Using DeMorgan Equivalents

• Often prefer NAND/NOR to AND/OR when using real ICs– NAND/NOR typically have more fan-in– NAND/NOR “functionally complete”– NAND/NOR usually faster than AND/OR

31

Page 32: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

AND/OR forms of NAND

DeMorgan’s Theorem

32

Page 33: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Summary of AND/OR forms

Change OR to AND“Complement” bubbles

33

Page 34: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

Equivalent Signal Lines

34

Page 35: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

NAND/NAND Example

35

Page 36: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

NOR/NOR Example

36

Page 37: ECE 171 Digital Circuits Chapter 6 Logic Circuits Herbert G. Mayer, PSU Status 1/16/2016 Copied with Permission from prof. Mark PSU ECE

37