Communications Short Course

Embed Size (px)

Citation preview

  • 8/18/2019 Communications Short Course

    1/47

    Lecture 1 2

    Information

    Lecturer: Dr. Darren Ward, Room 811C

    Email: [email protected], Phone: (759) 46230

    Reference books: B.P. Lathi, Modern Digital and Analog Communication Systems,

    Oxford University Press, 1998 S. Haykin, Communication Systems, Wiley, 2001 L.W. Couch II, Digital and Analog Communication Systems,

    Prentice-Hall, 2001

    Course material: http://www.ee.ic.ac.uk/dward/ 

    Lecture 1 3

    Aims:

    The aim of this part of the course is to give you an understanding of

    how communication systems perform in the presence of noise.

    Objectives:

    By the end of the course you should be able to: Compare the performance of various communication systems Describe a suitable model for noise in communications Determine the SNR performance of analog communication systems Determine the probability of error for digital systems

    Understand information theory and its significance in determiningsystem performance

    Lecture 1 4

    Lecture 1

    1. What is the course about, and how does it fit together

    2. Some definitions (signals, power, bandwidth, phasors)

    See Chapter 1 of notes

    Lecture 1 16

    Definitions

    Signal: a single-valued function of time that conveys information

    Deterministic signal: completely specified function of time

    Random signal: cannot be completely specified as function of time

  • 8/18/2019 Communications Short Course

    2/47

    Lecture 1 17

    Definitions

    Analog signal: continuous function of time with continuous amplitude

    Discrete-time signal: only defined at discrete points in time, amplitude

    continuous

    Digital signal: discrete in both time and amplitude (e.g., PCM signals,see Chapter 4)

    Lecture 1 18

    Definitions

    Instantaneous power:

    Average power:

    For periodic signals, with period (see Problem sheet 1):

    22

    2

    )()()(

    t g Rt i R

    t v p   ===

     −∞→=2 / 

    2 / 

    2)(

    1lim

    T T dt t g

    T P

     −=2 / 

    2 / 

    2)(

    1   o

    o

    o

    dt t g

    P

    oT 

    Lecture 1 19

    Definitions

    Bandwidth: extent of the significant spectral content of a

    signal for positive frequencies

    Baseband signal, B/W = B Bandpass signal, B/W = 2B

    Lecture 1 20

    Bandwidth

    3dB bandwidth

    null-to-null bandwidth

    Magnitude-square spectrum

    noise equivalent bandwidth0

  • 8/18/2019 Communications Short Course

    3/47

    Lecture 1 21

    Phasors

    General sinusoid:

    )2cos()(  θ π    +=  ft  At  x

    { }t  f  j j e Aet  x   π θ  2)(   ℜ=

    Lecture 1 32

    Phasors

    Alternative representation:

    )2cos()(  θ π    +=  ft  At  x

    t  f  j jt  f  j jee

     Aee

     At  x

      π θ π θ  22

    22)(   −−+=

    Lecture 1 43

    Phasors

    Anti-clockwise rotation (positive frequency):

    Clockwise rotation (negative frequency): )2exp(   t  f  j   π −

    )2exp(   t  f  j   π 

    t  f  j jt  f  j jee

     Aee

     At  x

      π θ π θ  22

    22)(   −−+=

    Lecture 1 44

    Summary

    1. The fundamental question: How do communications

    systems perform in the presence of noise?

    2. Some definitions: Signals

    Average power

    Bandwidth: significant spectral content for  positive frequencies Phasors – complex conjugate representation (negative frequency)

    t  f  j jt  f  j j ee A

    ee A

    t  x   π θ π θ  22

    22)(   −−+=

     −∞→

    =

    2 / 

    2 / 

    2)(

    1lim

    T T dt t  x

    T P

  • 8/18/2019 Communications Short Course

    4/47

    Lecture 2 1

    Lecture 2

    1. Model for noise

    2. Autocorrelation and Power spectral density

    See Chapter 2 of notes, sections 2.1, 2.2, 2.3

    Lecture 2 2

    Sources of noise

    Lecture 2 3

    Sources of noise

    1. External noise synthetic (e.g. other users) atmospheric (e.g. lightning) galactic (e.g. cosmic radiation)

    2. Internal noise shot noise thermal noise

    Average power of thermal noise:

    Effective noise temperature:

    kTBP =

    kB

    PT e  =

    Temperature of fictitious thermal

    noise source at i/p, that would berequired to produce same noise

    power at o/p

    Lecture 2 4

    Example

    Consider an amplifier with 20 dB power gain and a bandwidth of

    Assume the average thermal noise at its output is

    1. What is the amplifier’s effective noise temperature?

    2. What is the noise output if two of these amplifiers are cascaded?

    3. How many stages can be used if the noise output must be less than 20

    mW?

    MHz20= B

     W102.2 11−×=oP

  • 8/18/2019 Communications Short Course

    5/47

    Lecture 2 5

    Gaussian noise

    Gaussian noise: amplitude of noise signal has a Gaussian probability

    density function (p.d.f.)

    Central limit theorem : sum of n independent random variables

    approaches Gaussian distribution as n→∞

    Lecture 2 6

    Noise model

    Model for effect of noise is additive Gaussian noise channel:

    For n(t) a random signal, need more info:

    What happens to noise at receiver?

    Statistical tools

    Lecture 2 7

    Motivation

    How often is a decision error made?

    1

    0

    Error for 0

    Error for 1

    Data

    Data +

    noise

    Noise

    only

    1 0 11 0

    Lecture 2 8

    Random variable

    A random variable x is a rule that assigns a real number xi to the ith

    sample point in the sample space

  • 8/18/2019 Communications Short Course

    6/47

    Lecture 2 9

    Probability density function

    Probability that the r.v. x is within a certain range is:

    Example, Gaussian pdf:

     =

  • 8/18/2019 Communications Short Course

    7/47

    Lecture 2 13

    Example

    Consider the signal:

    where θ is a random variable, uniformly distributed over 0 to 2π

    1. Calculate its average power using time averaging.

    2. Calculate its average power (mean-square) using statistical averaging.

    )()(

      θ ω    +=

      t  j ce At  x

    Lecture 2 14

    Autocorrelation

    How can one represent the

    spectrum of a random process?

    Autocorrelation:

    NOTE: Average power is

    { })()()(x   τ τ    +=   t  xt  x E  R

    { })0(

    )(

    x

    2

     R

    t  x E P

    =

    =

    Lecture 2 15

    Frequency content

     H(f)

    Original LPF 1kHzLPF 4kHz

    Original

    speech

    Filtered speech(smaller bandwidth)

    Lecture 2 16

    Power spectral density

    PSD measures distribution of power with frequency, units watts/Hz

    Hence,

    Average power:

    Wiener-Khinchine theorem:

    { })(FT

    )()(

    x

    2

    xx

    τ  

    τ  τ    τ  π  

     R

    d e R f S    f  j

    =

    =  −

    ∞− 

    df e f S  R  f  j   τ  π  

    τ  2

    xx )()(  ∞

    ∞−

    =

    df  f S  RP  ∞

    ∞−== )()0( xx

  • 8/18/2019 Communications Short Course

    8/47

    Lecture 2 17

    Power spectral density

    Thermal noise:   df kT 

    kTBP

     B

     B −==

    2

    White noise:

    PSD is same for all frequencies

    2)(   o

     N  f S    =

    Lecture 2 18

    Summary

    Power spectral density:

    Additive Gaussian noise channel:

    Expectation operator:{ }   dx x p xg xg E   

    ∞−

    = )()]([)( x

    pdf  random

    variable

    Autocorrelation:

    White noise:

    2

    )(   o N 

     f S    =

    { })()()(x

      τ  τ     +=   t  xt  x E  R

    τ  τ    τ  π  

    d e R f S   f  j2

    xx )()(  −

    ∞− =

  • 8/18/2019 Communications Short Course

    9/47

    Lecture 3 1

    Lecture 3

    Representation of band-limited noise Why band-limited noise?

    (See Chapter 2, section 2.4)

    Noise in an analog baseband system

    (See Chapter 3, sections 3.1, 3.2)

    Lecture 3 2

    Analog communication system

    Lecture 3 3

    Receiver

    Predetection filter: removes out-of-band noise has a bandwidth matched to the transmission bandwidth

    Predetection Filter Detector

    Lecture 3 6

    Bandlimited Noise

    For any bandpass (i.e., modulated) system, the predetection

    noise will be bandlimited

    Bandpass noise signal can be expressed in terms of two

    baseband waveforms

    )sin()()cos()()(   t t nt t nt n cscc   ω ω    −=

    PSD of n(t) is centred about  f c (and – f c)

    PSDs of nc(t) and ns(t) are centred about 0 Hz

    bandpass baseband carrier baseband carrier

  • 8/18/2019 Communications Short Course

    10/47

    Lecture 3 7

    PSD of n(t)

    In slice shown (for ∆ f  small):

    )2cos()(k k k k 

      t  f at n   θ π    +=

    2W 

    Lecture 3 8

    )cos()( k k k k    t at n   θ ω    +=

    [ ]t t at n ck ck k k    ω θ ω ω    ++−= )(cos)(

    cck k    ω ω ω ω    +−= )(let

    [ ]

    [ ] )sin()(sin

    )cos()(cos)(

    t t a

    t t at n

    ck ck k 

    ck ck k k 

    ω θ ω ω 

    ω θ ω ω 

    +−−

    +−=

     B A B A B A sinsincoscos)cos( use   −=+

    A B

      term)(t nc

      term)(t ns

    Lecture 3 9

    Example – frequency

    n(t)

    nc(t)

    ns(t)

    W=1000 Hz

    Lecture 3 10

    Example – time

    n(t)

    nc(t)

    ns(t)

    W=1000 Hz

  • 8/18/2019 Communications Short Course

    11/47

    Lecture 3 11

    Example – histogram

    n(t)

    nc(t)

    ns(t)

    W=1000 Hz

    Lecture 3 12

    Probability density functions

      +=k 

    k k k    t at n )cos()(   θ ω 

    Each waveform is Gaussian distributed Central limit theorem

    Mean of each waveform is 0

    [ ]   +−=k 

    k ck k c   t at n   θ ω ω  )(cos)(

    [ ]   +−=k 

    k ck k s  t at n   θ ω ω  )(sin)(

    Lecture 3 13

    Average power

    Power in ak cos(ω t+θ ) is  E{ak 2 } /2 (see Example 1.1, or study group sheet 2, Q1)

      +=k 

    k k k   t at n )cos()(   θ ω 

    =k 

    k n

    a E P

    2

    }{2

    ( )

    ( )

    +−=

    +−=

    k ck k s

    k ck k c

    t at n

    t at n

    θ ω ω 

    θ ω ω 

    )(sin)(

    )(cos)(

    Average power in n(t) is:

    Average power in nc(t) and ns(t) is: ,

    2

    }{2

    =k 

    k n

    a E P

    c   =k 

    k n

    a E P

    s

    2

    }{2

    n(t) , nc(t) and ns(t) all have same average power!

    Lecture 3 14

    Average power

    From Lecture 2:

    What is the average power in n(t) ?

    Find using the power spectral density (PSD):

    W  N W W  N 

    df  N 

    df  f S P

    oo

    W  f 

    W  f 

    oc

    c

    2)(2

    22

    2

    )(

    =−==

    =

    −+

    ∞−

     

     

    Average power in  n(t) ,  n c(t) and  n s(t) is:  2N  oW 

    (one for positive freqs,

    one for negative)

    2W 

  • 8/18/2019 Communications Short Course

    12/47

    Lecture 3 15

    Power spectral densities

    PSD of n(t):

    PSD of nc(t) and ns(t):

    2W 

    W --W 

    Lecture 3 16

    Example – power spectral densities

    n(t)

    nc(t)

    ns(t)

    W=1000 Hz

    Lecture 3 17

    Example - zoomed

    n(t)

    nc(t)

    ns(t)

    W=1000 Hz

    Lecture 3 18

    Phasor representation

    )sin()()cos()()(   t t nt t nt n cscc   ω    −=

    )()()(let t  jnt nt g sc   +=

    t t nt t  jn

    t t  jnt t net g

    cscs

    cccc

    t  j c

    ω ω 

    ω ω ω 

    sin)(cos)(

    sin)(cos)()(

    −+

    +=

    t  j cet gt n  ω 

    )()( so   ℜ=

  • 8/18/2019 Communications Short Course

    13/47

    Lecture 3 19

    Analog communication system

    Performance measure:

    Compare systems with same transmitted power

    outputreceiveratpowernoiseaverage

    outputreceiveratpowermessageaverage=oSNR

    Lecture 3 20

    Baseband system

    Lecture 3 21

    Baseband SNR

    W  N df  N 

    P oW 

    o N 

      ==  − 2

    Transmitted (message) power is: PT 

    Noise power is:

    SNR at receiver output:

    W  N PSNRo

    T =base

    Lecture 3 22

    Summary

    Bandpass noise representation:)sin()()cos()()(   t t nt t nt n

    cscc   ω −=

    All waveforms have same:

    Probability density function (zero-mean Gaussian)

    Average power

    nc(t) and ns(t) have same power spectral density

    Baseband SNR:

    W  N 

    PSNR

    o

    T =base

  • 8/18/2019 Communications Short Course

    14/47

    Lecture 4 1

    Lecture 4

    Noise (AWGN) in AM systems: DSB-SC AM, synchronous detection AM, envelope detection

    (See Chapter 3, section 3.3)

    Lecture 4 2

    Analog communication system

    Performance measure:

    outputreceiveratpowernoiseaverage

    outputreceiveratpowermessageaverage=oSNR

    Compare systems with same transmitted power

    Lecture 4 3

    Amplitude modulation

    Modulated signal:

    m(t) is message signal

    Modulation index:

    m p is peak amplitude of message

    [ ]   t t m At s cc   ω cos)()( AM   +=

    c

     p

     A

    m= µ 

    Lecture 4 4

    Amplitude modulation

  • 8/18/2019 Communications Short Course

    15/47

    Lecture 4 5

    DSB-SC

    t t m At scc

      ω cos)()( SC-DSB   =

    Lecture 4 6

    Synchronous detection

    Signal after multiplier:

    )2cos1)(()(   t t m At  y ccSC  DSB   ω +=−

    [ ][ ] )2cos1()(

    cos2cos)()(

    t t m A

    t t t m At  y

    cc

    ccc AM 

    ω 

    ω ω 

    ++=

    ×+=

    Lecture 4 7

    Noise in DSB-SC

    Transmitted signal:

    Predetection signal:

    Receiver output (after LPF):

    t t m At s cc   ω cos)()( SC-DSB   =

    t t nt t nt t m At  x cscccc   ω ω ω  sin)(cos)(cos)()(   −+=

    Transmitted signal Bandlimited noise

    )()()(   t nt m At  y cc   +=

    Lecture 4 8

    SNR of DSB-SC

    Output signal power:

    ( )   P At m AP ccs22

    )(   ==

    Output noise power:

    W  N df  N df P oW 

    W   o N      

      −

    ∞−

    === 2PSD

    Output SNR:

    W  N P ASNRo

    c

    2

    2

    SC-DSB   =

    power of message

    PSD of nc(t)

    PSD of bandpass noise n(t)

    PSD of baseband noise nc(t)

  • 8/18/2019 Communications Short Course

    16/47

    Lecture 4 9

    SNR of DSB-SC

    Transmitted power:

    Output SNR:

    baseSC-DSB   SNRW  N 

    PSNR

    o

    T ==

    DSB-SC has no performance advantage over baseband

    2)cos)((

    22   P A

    t t m AP  c

    ccT    ==   ω 

    Lecture 4 10

    Noise in AM (synch. detector)

    Predetection signal:

    Transmitted signal Bandlimited noise

    Receiver output:

    Output signal power:

    Output noise power:

    W  N P o N  2=

    Output SNR:

    )()()(   t nt m At  y cc   ++=

    [ ]   t t nt t nt t m At  x cscccc   ω ω  sin)(cos)(cos)()(   −++=

    Pt mPS    == )(2

    W  N 

    PSNR

    o

     AM 

    2

    =

    Lecture 4 11

    Noise in AM (synch. detector)

    Transmitted signal:

    Transmitted power:

    Output SNR:

    The performance of AM is always worse than baseband

    [ ]   t t m At s cc   ω cos)()( AM   +=

    22

    2 P AP   cT    +=

    base22  SNR

    P A

    P

    P A

    P

    W  N 

    PSNR

    cco

    T  AM 

    +

    =

    +

    =

    Lecture 4 13

    Predetection signal:

    Transmitted signal Bandlimited noise

    [ ]   t t nt t nt t m At  x cscccc   ω ω  sin)(cos)(cos)()(   −++=

    Noise in AM, envelope detector

  • 8/18/2019 Communications Short Course

    17/47

    Lecture 4 14

    Receiver output:

    Noise in AM, envelope detector

    )()]()([ of envelope)( 22

    t nt nt m A x(t)t  y

    scc   +++=

    =

     y(t)

    Lecture 4 15

    Small noise case:

    Large noise case:

    Envelope detector has a threshold effect

    Not really a problem in practice

    detectorssynchronouof output

    )()()(

    =

    ++≈   t nt m At  y cc

    )(cos)]([)()(   t t m At  E t  yncn   θ ++≈

    Noise in AM, envelope detector

    Lecture 4 16

    Example

    An unmodulated carrier (of amplitude  Ac and frequency  f c) and

    bandlimited white noise are summed and then passed through an ideal

    envelope detector.

    Assume the noise spectral density to be of height  N o /2 and bandwidth

    2W , centred about the carrier frequency.

    Assume the input carrier-to-noise ratio is high.

    1. Calculate the carrier-to-noise ratio at the output of the envelope detector,

    and compare it with the carrier-to-noise ratio at the detector input.

    Lecture 4 17

    Summary

    Envelope detector: threshold effect for small noise, performance is same as synchronous

    detector

    baseSC-DSB   SNRSNR   =

    Synchronous detector:

    base2  SNRP A

    PSNR

    c

     AM 

    +

    =

  • 8/18/2019 Communications Short Course

    18/47

    Lecture 5 1

    Lecture 5

    Noise in FM systems pre-emphasis and de-emphasis

    (See section 3.4)

    Comparison of analog systems

    (See section 3.5)

    Lecture 5 2

    Frequency modulation

    FM waveform:

    )(cos

    )(22cos)( FM

    t  A

    d mπ k t π  f  At s

    c

     f cc

    θ 

    τ τ 

    =

      

      

    +=    ∞−

    θ (t) is instantaneous phase

    Instantaneous frequency:

    Frequency is proportional to message signal

    )(

    )(

    2

    1

    t mk  f dt 

    t d  f 

     f c

    i

    +=

    =  θ 

    π 

    Lecture 5 4

    FM waveforms

    Message:

    AM:

    FM:

    Lecture 5 5

    FM frequency deviation

    Deviation ratio:

     p f  mk  f   =∆

     f ∆= β 

    where W is bandwidth of message signal

    Commercial FM uses: ∆ f =75 kHz and W =15 kHz

    Frequency deviation (max. departure of carrier wave from  f c):

    Instantaneous frequency varies between  f c-k  f  m p and  f c+k  f  m p,

    where m p is peak message amplitude

    B d id h id i FM i

  • 8/18/2019 Communications Short Course

    19/47

    Lecture 5 6

    Bandwidth considerations

    Carson’s rule:

    ( ) ( )W  f W  BT    +∆=+≈ 212   β 

    Lecture 5 7

    FM receiver

    Discriminator: output is proportional to deviation of instantaneous

    frequency away from carrier frequency

    Lecture 5 8

    Noise in FM versus AM

    AM: Amplitude of modulated

    signal carries message Noise adds directly to

    modulated signal Performance no better than

    baseband

    FM: Frequency of modulated

    signal carries message Zero crossings of modulated

    signal important Effect of noise should be less

    than in AM

    Lecture 5 9

    Noise in FM

    Predetection signal:

    ( )

       ∞−

    =

    −++=

     f 

    cscccc

    d mk t 

    t π  f t nt π  f t nt t π  f  At  x

    τ τ π φ 

    φ 

    )(2)(where

    )2sin()()2cos()()(2cos)(

    If carrier power is much larger than noise power:

    1. Noise does not affect signal power at output

    2. Message does not affect noise power at output

    Transmitted signal Bandlimited noise

    A ti A ti

  • 8/18/2019 Communications Short Course

    20/47

    Lecture 5 10

    Assumptions

    1. Noise does not affect signal power at output

    Signal component at receiver:( ))(2cos)(   t t π  f  At  x ccs   φ +=

    Instantaneous frequency:

    )()(

    2

    1)(   t mk 

    dt 

    t d t  f   f i   ==

    φ 

    π 

    Output signal power:

    Pk P  f S 2

    =

    power of message signal

    Lecture 5 11

    Assumptions

    2. Signal does not affect noise at output

    Message-free component at receiver:

    Instantaneous frequency:

     

    +

    ==  −

    c

    s

    cc

    si

     At n

    dt d 

    t n At n

    dt d 

    dt t d t  f  )(

    21

    )()(tan

    21)(

    21)( 1

    π π θ 

    π 

    We know the PSD of ns(t), but what about its derivative??

    ( ) )2sin()()2cos()(2cos)(   t π  f t nt π  f t nt π  f  At  x csccccn   −+=

    Lecture 5 12

    )(t nsdt 

     Acπ 2

    1)(t  f i

    Fourier theory property:

    )(2)(

    )()(

     f  X  f  jdt 

    t dx

     f  X t  x

    π ⇔

    )( f  N s   f  j Ac π π  22

    1

    )( f F i

    dt 

    t dn

     At  f    s

    c

    i

    )(

    2

    1)(

    π ≈

    Discriminator output:

    Lecture 5 13

    PSD property:

    PSD of discriminator output:

    )( f  X  )( f  H  )()()(   f  X  f  H  f Y    =

    )( f S  X 

    )()()(2

     f S  f  H  f S   X Y    =

    )( f  N sc A

     f  j )( f F i

    )(||

    )(2

    2

     f S  A

     f  f S   N 

    c

    F    =)( f S  N 

  • 8/18/2019 Communications Short Course

    21/47

    Lecture 5 14

    PSD of ns(t)

    PSD of 

    PSD after LPF

    dt 

    t dn

     A

    s)(

    2

    1

    π 

    Lecture 5 15

    PSD of LPF noise term:

    W  f  N 

     A

     f 

    dt 

    t dn

     A

     

      o

    c

    s

    c

    10

    Predetection signal is:

    Predetection SNR is:

    Threshold point is:

    Cannot arbitrarily increase SNR FM by increasing β  β  β  β 

    ( ) )2sin()()2cos()()(2cos)(   t π  f t nt π  f t nt t π  f  At  x cscccc   −++=   φ 

    T o

    c pre

     B N  ASNR

    2

    2=

    10)1(4

    2

    >

    + β W  N 

     A

    o

    c

    Pre emphasis and De emphasis Example

  • 8/18/2019 Communications Short Course

    22/47

    Lecture 5 19

    Pre-emphasis and De-emphasis

    Can improve output SNR by about 13 dB

    Lecture 5 20

    Example

    The improvement in output SNR afforded by using pre-

    emphasis and de-emphasis in FM is defined by:

    If  H de(f) is the transfer function of the de-emphasis filter,

    find an expression for the improvement,  I .

    emphasis- /de-prepower withnoiseoutputaverage

    emphasis- /de-preoutpower withnoiseoutputaverageemphasis- /de-prewithout

    emphasis- /de-prewith

    =

    =

    SNR

    SNR I 

    Lecture 5 21

    Analog system performance

    Parameters: Single-tone message Message bandwidth AM system FM system

    Performance:

    )2cos()(   t  f t m mπ =

    m f W   =

    1= µ 

    5= β 

    baseFM 

    base AM 

    baseSC  DSB

    SNRSNR

    SNRSNR

    SNRSNR

    275

    31

    =

    =

    =−

    W  B

    W  B

    W  B

    FM 

     AM 

    SC  DSB

    12

    2

    2

    =

    =

    =−

    Bandwidth:

    Lecture 5 22

    Analog system performance

    Summary

  • 8/18/2019 Communications Short Course

    23/47

    Lecture 5 23

    Summary

    Noise in FM: Increasing carrier power reduces noise at receiver output Has threshold effect

    Pre-emphasis

    Comparison of analog modulation schemes: AM worse than baseband DSB/SSB same as baseband FM better than baseband

    Lecture 6 Digital vs Analog

  • 8/18/2019 Communications Short Course

    24/47

    Lecture 6 1

    Lecture 6

    Digital communication systems Digital vs Analog communications Pulse Code Modulation

    (See sections 4.1, 4.2 and 4.3)

    Lecture 6 2

    Digital vs Analog

    Analog message:

    Digital message:

    Lecture 6 3

    Digital vs Analog

    Analog: Recreate waveform

    accurately Performance criterion is

    SNR at receiver output

    Digital: Decide which symbol was

    sent Performance criterion is

    probability of receiver

    making a decision error

    Advantages of digital:1. Digital signals are more immune to noise

    2. Repeaters can re-transmit a noise-free signal

    Lecture 6 4

    Sampling: discrete in time

    Nyquist Sampling Theorem:

    A signal whose bandwidth is limited to W Hz can be reconstructed

    exactly from its samples taken uniformly at a rate of R>2W Hz.

    Maximum information rate Pulse-code modulation

  • 8/18/2019 Communications Short Course

    25/47

    Lecture 6 5

    Maximum information rate

    How many bits can be transferred over a channel of bandwidth B Hz(ignoring noise)?

    Signal with a bandwidth of B Hz is not distorted over this channel

    Signal with a bandwidth of B Hz requires samples taken at 2B Hz

    Can transmit:

    2 bits of information per second per Hz

    Channel

     B Hz

    Lecture 6 6

    Pulse code modulation

    Represent an analog waveform in digital form

    Lecture 6 7

    Quantization: discrete in amplitude

    Round amplitude of each sample to nearest one of a finite number of

    levels

    Lecture 6 8

    Encode

    Assign each quantization level a code

    Sampling vs Quantization Quantization noise

  • 8/18/2019 Communications Short Course

    26/47

    Lecture 6 9

    p g Q

    Sampling: Non-destructive if f s>2W  Can reconstruct analog waveform exactly by using a low-pass filter

    Quantization: Destructive Once signal has been rounded off it can never be reconstructed

    exactly

    Lecture 6 10

    Q

    Sampled signal

    Quantized signal

    (step size of 0.1)

    Quantization error

    Lecture 6 11

    Quantization noise

    Let ∆ be the separation between quantization levels

    where L=2n is the no. of quantization levels

    m p is peak allowed signal amplitude

    Round-off effect of quantizer ensures that |q|< ∆ /2, where q is a

    random variable representing the quantization error

    Assume q is zero mean with uniform pdf, so mean square error is:

     L

    m p2=∆

    12

    )(}{

    22 / 

    2 / 

    12

    22

    ∆==

    =

     

     ∆

    ∆−   ∆

    ∞−

    dqq

    dqq pqq E 

    Lecture 6 12

    Quantization noise

    Let message power be P

    Noise power is:

    Output SNR of quantizer:

    or in dB:

    ( )n

     p L

    m

     N 

    m

    q E P

     p

    2

    2222

    2

    231212

    mean)zero(since}{

    ×==

    ∆=

    =

    n

     p N 

    S Q

    m

    P

    P

    PSNR 2

    22

    3×==

    dB 3

    log1002.6210

     

    +=

     p

    Qm

    PnSNR

    Bandwidth of PCM Nonuniform quantization

  • 8/18/2019 Communications Short Course

    27/47

    Lecture 6 13

    Each message sample requires n bits

    If message has bandwidth W Hz, then PCM contains 2nW bits per

    second

    Bandwidth required is:

    SNR can be written:

    Small increase in bandwidth yields a large increase in SNR

    nW  BT   =

    W  B

     p

    QT 

    m

    PSNR  / 2

    22

    3×=

    Lecture 6 15

    q

    For audio signals (e.g. speech), small signal amplitudes occur more

    often than large signal amplitudes

    Better to have closely spaced quantization levels at low signal

    amplitudes, widely spaced levels at large signal amplitudes

    Quantizer has better resolution at low amplitudes (where signal spendsmore time)

    Uniform quantization Non-uniform quantization

    Lecture 6 16

    Nonuniform quantization

    Uniform quantizer is easier to implement that nonlinear

    Compress signal first, then use uniform quantizer, then expand signal

    (i.e., compand)

    Lecture 6 17

    Companding

    Summary

  • 8/18/2019 Communications Short Course

    28/47

    Lecture 6 18

    Analog communications system: Receiver must recreate transmitted waveform Performance measure is signal-to-noise ratio

    Digital communications system: Receiver must decide which symbol was transmitted Performance measure is probability of error

    Pulse-code modulation:

    Scheme to represent analog signal in digital format

    Sample, quantize, encode

    Companding (nonuniform quantization)

    Lecture 7 Digital receiver

  • 8/18/2019 Communications Short Course

    29/47

    Lecture 7 1

    Performance of digital systems in noise: Baseband ASK

    PSK, FSK Compare all schemes

    (See sections 4.4, 4.5)

    Lecture 7 2

     

      

     

     

     

     

      

     

     

     s(t)Filter +

    Demodulator

    Lecture 7 3

    Baseband digital system

     

      

     

     

     

     

      

     

     

     

    s(t)

    Lecture 7 4

    Gaussian noise, probability

     =

  • 8/18/2019 Communications Short Course

    30/47

    Lecture 7 5

    White noise

    LPF (use for baseband)

    BPF (use for bandpass)

    W  N df  N 

    P oW 

    o==  

    − 2

    W  N 

    df  N df  N P

    o

    W  f 

    W  f 

    oW  f 

    W  f 

    oc

    c

    c

    c

    222

    =

    +=

        +−

    −−

    +

    NOTE: For zero-mean noise,

    variance ≡ average power

    i.e., σ  2=P

    Lecture 7 6

    Transmitted signal

    s0(t)

    Noise signal

    n(t)

    Received signal

     y0(t)= s0(t)+n(t)

    2 / )(if Error  At  yo   >  ∞

    =2 / 

    2

    0),0(

     Ae dnP   σ  N

    Lecture 7 7

    Baseband system – “1” transmitted

    Transmitted signal

    s1(t)

    Noise signal

    n(t)

    Received signal

     y1(t)= s1(t)+n(t)

    2 / )(if Error 1  At  y   <    ∞−

    =2 /  2

    1),(

     A

    e dn AP   σ  N

    Lecture 7 8

    Baseband system – errors

    Possible errors:

    1. Symbol “0” transmitted, receiver decides “1”

    2. Symbol “1” transmitted, receiver decides “0”

    Total probability of error:

    110 eeoe P pP pP   +=

    Probability of

    “0” being sent

    Probability of making an

    error if “0” was sent

    Baseband system – errors How to calculate Pe?

  • 8/18/2019 Communications Short Course

    31/47

    Lecture 7 9

    For equally-probable symbols:

    10

    2

    1

    2

    1eee PPP   +=

    Can show that Pe0 = Pe1

    Pe0Pe1

    Hence, Pe = ½ Pe0+ ½ Pe0= Pe0

     ∞

    =

    2 / 

    2),0(

     Ae

      dnP   σ  N

    Lecture 7 10

    1. Complementary error function (erfc in Matlab)

    dnn

    P A

    e    ∞

     

    −=

    2 /  2

    2

    2exp

    2

    1

    σ  π  σ  

     

    =

    −=  ∞

    22erfc

    )exp(2)erfc(

    21

    2

    σ  

    π  

     AP

    dnnu

    e

    u

    2. Q-function (tail function)

     

     

    =

     

     

    −=  

    σ  

    π  

    2

    2

    exp

    2

    1)(

    2

     AQP

    dnn

    uQ

    e

    u

    Lecture 7 11

    Baseband error probability

    Lecture 7 12

    Example

    Consider a digital system which uses a voltage level of 0 volts to

    represent a “0”, and a level of 0.22 volts to represent a “1”. The digital

    waveform has a bandwidth of 15 kHz.

    If this digital waveform is to be transmitted over a baseband channel

    having additive noise with flat power spectral density of N o /2=3 x 10-8 

    W/Hz, what is the probability of error at the receiver output?

    Amplitude-shift keying Synchronous detector

  • 8/18/2019 Communications Short Course

    32/47

    Lecture 7 13

    )cos()(

    0)(

    1

    0

    t  At s

    t s

    cω =

    =

    Lecture 7 14

    Identical to analog synchronous detector

    Lecture 7 15

    ASK – “0” transmitted

    Predetection signal:

    )sin()()cos()(0)(0   t t nt t nt  x cscc   ω ω    −+=

    ASK “0” Bandpass noise

    After multiplier:

    Receiver output:

    )()(0   t nt  y c=

    [ ] )2sin()()2cos(1)()cos()sin(2)()(cos2)(

    )cos(2)()(2

    00

    t t nt t n

    t t t nt t n

    t t  xt r 

    cscc

    ccscc

    c

    ω ω 

    ω ω ω 

    ω 

    −+=

    −=

    ×=

    Lecture 7 16

    ASK – “1” transmitted

    Predetection signal:

    )sin()()cos()()cos()(1   t t nt t nt  At  x csccc   ω ω ω    −+=

    ASK “1” Bandpass noise

    After multiplier:

    Receiver output:

    )()(1   t n At  y c+=

    [ ][ ][ ] )2sin()()2cos(1)(

    )cos()sin(2)()(cos2)(

    )cos(2)()(2

    11

    t t nt t n A

    t t t nt t n A

    t t  xt r 

    cscc

    ccscc

    c

    ω ω 

    ω ω ω 

    ω 

    −++=

    −+=

    ×=

    PDFs at receiver output Phase-shift keying

  • 8/18/2019 Communications Short Course

    33/47

    Lecture 7 17

    ASK – “0” transmitted:

    ASK – “1” transmitted:

    )()(of PDF 0   t nt  y c= )()(of PDF 1   t n At  y c+=

    Same as baseband!

     

    =

    22erfc

    21

    ASK,σ  

     APe

    Lecture 7 18

    )cos()(

    )cos()(

    1

    0

    t  At s

    t  At s

    c

    c

    ω 

    ω 

    =

    −=

    FSK

    PSK

    Lecture 7 19

    PSK demodulator

    Band-pass filter bandwidth matched to modulated signal bandwidth

    Carrier frequency is ω c

    Low-pass filter leaves only baseband signals

    Lecture 7 20

    PSK – “0” transmitted

    Predetection signal:

    )sin()()cos()()cos()(0   t t nt t nt  At  x csccc   ω ω ω    −+−=

    PSK “0” Bandpass noise

    After multiplier:

    Receiver output:

    )()(0   t n At  y c+−=

    [ ][ ][ ] )2sin()()2cos(1)(

    )cos()sin(2)()(cos2)(

    )cos(2)()(2

    00

    t t nt t n A

    t t t nt t n A

    t t  xt r 

    cscc

    ccscc

    c

    ω ω 

    ω ω ω 

    ω 

    −++−=

    −+−=

    ×=

    PSK – “1” transmitted

    PSK – PDFs at receiver output

  • 8/18/2019 Communications Short Course

    34/47

    Lecture 7 21

    Predetection signal:

    )sin()()cos()()cos()(1   t t nt t nt  At  x csccc   ω ω ω    −+=

    PSK “1” Bandpass noise

    After multiplier:

    Receiver output:

    )()(1   t n At  y c+=

    [ ][ ][ ] )2sin()()2cos(1)(

    )cos()sin(2)()(cos2)(

    )cos(2)()(2

    11

    t t nt t n A

    t t t nt t n A

    t t  xt r 

    cscc

    ccscc

    c

    ω ω 

    ω ω ω 

    ω 

    −++=

    −+=

    ×=

    Lecture 7 22

    PSK – “0” transmitted:

    PSK – “1” transmitted:

    )()(of PDF 0   t n At  y c+−= )()(of PDF 1   t n At  y c+=

    Set threshold at 0:

    "1"decide ,0 if 

    "0"decide ,0 if 

    >

    <

     y

     y

    Lecture 7 23

    PSK – probability of error

     

     ∞

     

    +−=

    −=

    0 2

    2

    0

    2

    0

    2

    )(exp

    2

    1

    ),(

    dn An

     APe

    σ  π  σ  

    σ  N

     

     

    ∞−

    ∞−

     

    −−=

    =

    0

    2

    2

    02

    1

    2

    )(exp

    2

    1

    ),(

    dn An

     APe

    σ  π  σ  

    σ  N

     

    =

    2erfc

    21PSK,

    σ   APe

    Probability of bit error:

    Lecture 7 24

    Frequency-shift keying

    )cos()(

    )cos()(

    11

    00

    t  At s

    t  At s

    ω 

    ω 

    =

    =FSK

    PSK

    FSK detector FSK

  • 8/18/2019 Communications Short Course

    35/47

    Lecture 7 25

    )cos()(

    )cos()(

    11

    00

    t  At s

    t  At s

    ω 

    ω 

    =

    =

    Lecture 7 26

    Receiver output:

    PDFs same as for PSK, but variance is doubled:

     

    =

    σ  2erfc

    21FSK,  APe

    [ ]

    [ ])()()(

    )()()(

    01

    1

    01

    0

    t nt n At  y

    t nt n At  y

    cc

    cc

    −+=

    −+−=

    Independent noise sources,

    variances add

    Lecture 7 27

    Digital performance comparison

    Lecture 7 28

    Summary

    Probability of error for PSK and FSK:

     

    =

    2erfc

    2

    1PSK,

    σ  

     APe

     

      =

    σ  2erfc

    2

    1FSK,

     APe

    Comparison of digital systems:

    PSK best, then FSK, ASK and baseband same

     

      

     ==  

    22erfc),0(

    21

    2 / 

    2

    σ  

    σ   A

    dnP A

    e  N

    For a baseband (or ASK) system:

    Lecture 8 Why information theory?

  • 8/18/2019 Communications Short Course

    36/47

    Lecture 8 1

    Information theory Why? Information

    Entropy Source coding (a little)

    (See sections 5.1 to 5.4.2)

    Lecture 8 2

    What is the performance of the “best” system?

    “What would be the characteristics of an ideal system, [one that] is not

    limited by our engineering ingenuity and inventiveness but limited

    rather only by the fundamental nature of the physical universe”

    Taub & Schilling

    Lecture 8 3

    Information

    The purpose of a communication system is to convey

    information from one point to another

    What is information?

    Definition:

    bits )(log1

    log)( 22   p p

    s I    −=

     

    =

    Information in

    symbol s

    Probability of 

    occurrence of 

    symbol s

    Conventional unit

    of information

    Lecture 8 4

    Properties of I(s)

    1. If p=1, I(s)=0

    (symbol that is certain to occur conveys no information)

    2.   0

  • 8/18/2019 Communications Short Course

    37/47

    Lecture 8 5

    Suppose we have two symbols:

    Each has probability of occurrence:

    Each symbol represents:

    In this example, one symbol = one information bit,but it is not always so!

    1

    0

    1

    0

    =

    =

    s

    s

    21

    10   == p p

    ( ) ninformatioof bit1log)(21

    2   =−=s I 

    Lecture 8 6

    Symbols: may be binary (“0” and “1”) can have more than 2 symbols, e.g. letters of the alphabet, etc.

    Sequence of symbols is random (otherwise no information is conveyed)

    Definition:

    If successive symbols are statistically independent, the information

    source is a zero-memory source (or discrete memoryless source)

    How much information is conveyed by symbols?

    Lecture 8 7

    Entropy

    Definition:

    ( )−=k 

    k k    p pS  H  all

    2log)(

    where  { } alphabetis ,,,

    21   K 

    sssS     =

    symbol

    k k    s p  symbolof occurenceof yprobabilitis

    Entropy: average information per symbol

    collection of all possible symbols

      =k 

    k  p

     all

    1 :thatNoteWe’re certain that the symbol

    comes from the known alphabet

    Lecture 8 8

    Example – binary source

    Alphabet:

    Probabilities:

    { } 10 , ssS   =

    10 1   p p   −=

    Entropy:

    ( )

    ( ) ( )121121 all

    2

    log1log)1(

    log)(

     p p p p

     p pS  H k 

    k k 

    −−−−=

    −=

    How to represent (encode) each symbol?

    1,0let 10   ==   ss 

    this requires 1 bit/symbol to transmit

    Example – three symbol alphabet

    l h b

    Example – three symbol alphabet

  • 8/18/2019 Communications Short Course

    38/47

    Lecture 8 9

    Alphabet:

    Probabilities:

    { } C  B AS  ,,=

    Entropy:

    1.0,2.0,7.0   === C  B A   p p p

    ( )

    lbits/symbo 157.1

    log)( all

    2

    =

    −= k 

    k k    p pS  H 

    How to represent (encode) each symbol?

    10

    01

    00let

    =

    =

    =

     B

     A 

    this requires 2 bits/symbol to transmit

    Lecture 8 10

    Symbols generated at

    rate of 1 symbol/sec

    Bitstream generated at

    rate of 2 bits/sec

    System needs to

    process 2 bits/sec

    Code words

    Lecture 8 11

    Source coding

    Amount of information we need to transmit, is determined

    (amongst other things) by how many bits we need to

    transmit for each symbol

    In the binary case, only 1 bit required to transmit each symbol

    In the {A,B,C} case, 2 bits required to transmit each symbol

    Lecture 8 12

    Examples

    Telephone:

    Cell phone:

    Speech waveform 8000 symbols/sec 64000 bits/secSystem needs to

    process 64 kb/s

    Speech waveform 8000 symbols/sec 13000 bits/secSystem needs to

    process 13 kb/s

    Source vs channel coding Source coding

  • 8/18/2019 Communications Short Course

    39/47

    Lecture 8 13

    Source coding: minimize the number of bits to be transmitted

    Channel coding: add extra bits to detect/correct errors

    Lecture 8 14

    All symbols do not need to be encoded with the same

    number of bits

    Example:

    1.0,2.0,7.0   === C  B A   p p p

    11

    10

    0let

    =

    =

    =

     B

     A 

    6 symbols 8 bits

    Lecture 8 15

    Average codeword length

    Definition:

    =k 

    k k   l p L all

    Probability of occurrenceof symbol sk 

    Number of bits used torepresent symbol sk 

    Example: 1.0,2.0,7.0   === C  B A   p p p

    11,10,0let   ===   C  B A 

    lbits/symbo3.1

    21.022.017.0

    =

    ×+×+×= L

    Lecture 8 16

    Source coding

    Use variable-length code words

    Symbol that occurs frequently (i.e., relatively high  pk )

    should have short code word

    Symbol that occurs rarely should have long code word

    Summary

    Information content (of a particular symbol):

  • 8/18/2019 Communications Short Course

    40/47

    Lecture 8 17

    Information content (of a particular symbol):

    bits )(log1

    log)( 22   p p

    s I    −=

     

    =

    Entropy (for a complete alphabet, is the average

    information content per symbol):

    ( ) lbits/symbo log)( all

    2−=k 

    k k    p pS  H 

    Source coding:

    How many bits do we need to represent each symbol?

    Lecture 9

    Source coding theorem

    Source coding

  • 8/18/2019 Communications Short Course

    41/47

    Lecture 9 1

    Source coding theorem

    Huffman coding algorithm

    (See sections 5.4.2, 5.4.3)

    Lecture 9 2

    All symbols do not need to be encoded with the same

    number of bits

    Example:

    1.0,2.0,7.0  ===

    C  B A   p p p11,10,0   ===   C  B A

    6 symbols 8 bits

    lbits/symbo3.1

    21.022.017.0

    =

    ×+×+×= L

    probabilities

    code words

    average codeword length

    Lecture 9 3

    Source coding

    How can we reduce the number of bits we need to transmit?

    What is the minimum number of bits we need for a

    particular symbol?

    (Source coding theorem)

    How can we encode symbols to achieve this minimum

    number of bits?

    (Huffman coding algorithm)

    Lecture 9 4

    Equal probability symbols

    Alphabet:

    Probabilities:

    { }  B AS  ,=

    5.0,5.0   ==  B A   p p

    Code words: 1,0   ==   B A

    Requires 1 bit for each symbol

    Example:

    In general, for n equally-likely symbols:

    Probability of occurrence of each symbol is p=1/n

    Number of bits to represent each symbol is

    ( )n p

    l22

    log1

    log   =

     

    =

    Unequal probabilities? Unequal probabilities ? (cont.)

  • 8/18/2019 Communications Short Course

    42/47

    Lecture 9 5

    Alphabet:

    Probabilities:

    { } K sssS  ,,, 21  =

    K  p p p ,,, 21  

    Any random sequence of N symbols (large N ):

    s1: N × p1 occurrences

    s2: N  × p2 occurrences

    Particular sequence of N symbols:

    Probability of this particular sequence occurring:

    { }  ,,,,,,, 1233121   sssssssS  N   =

     

     

    ××=

    ×××××××=

    21

    21

    1233121)( Np Np

     N 

     p p

     p p p p p p pS  p  

    Lecture 9 6

    Probability of any sequence of  N symbols occurring:

     ××=21

    21)(  Np Np

     N    p pS  p  

    Number of bits required to represent a sequence of  N symbols:

    ( )

    )()(log

    )(log)(log

    log)(

    1log

     all

    2

    222121

    212221

    S  H  N  p p N 

     p Np p Np

     p pS  p

    l

    k k 

     Np Np

     N 

     N 

    =−=

    −−−=

    ××−=

     

    =

     

     

    Average number of bits for one symbol is:

    )(S  H  N 

    l L   N  ==

    Lecture 9 7

    Source Coding Theorem:

    For a general alphabet S , the minimum average codeword

    length is given by the entropy,  H(S).

    Minimum codeword length

    Significance:

    For any practical source coding scheme, the average codeword length

    will always be greater than or equal to the source entropy, i.e.,

    How can we design an efficient coding scheme?

    lbits/symbo)(S  H  L  ≥

    Lecture 9 8

    Huffman coding algorithm

    Optimum coding scheme – yields the shortest average

    codeword length

    Example

    Consider a five-symbol alphabet having the probabilities

    Huffman coding algorithm

    Uniquely decodable

  • 8/18/2019 Communications Short Course

    43/47

    Lecture 9 9

    Consider a five symbol alphabet having the probabilities

    indicated:

    1. Calculate the entropy of the alphabet.

    2. Using the Huffman algorithm, design a source coding

    scheme for this alphabet, and comment on the average

    codeword length achieved.

    1.0,3.0,4.0,15.0,05.0:iesProbabilit

    ,,,,:Symbols

    ===== E  DC  B A   p p p p p

     E  DC  B A  

    Lecture 9 10

    Uniquely decodable

    i.e., only one way to break bit stream into valid code words

    Instantaneous

    i.e., know immediately when a code word has ended

    Lecture 9 11

    Summary

    Source coding theorem:

    For a general alphabet S , the minimum average codeword

    length is given by the entropy,  H(S).

    Huffman coding algorithm:

    Practical coding scheme that yields the shortest average

    codeword length

    Lecture 10

    How much information can be reliably transferred over a

    Reliable transfer of information

  • 8/18/2019 Communications Short Course

    44/47

    Lecture 10 1

    y

    noisy channel?

    (Channel capacity)

    What does information theory have to say about analog

    communication systems?

    (See sections 5.5, 5.6)

    Lecture 10 2

    If channel is noisy, can information be transferred reliably?

    How much information?

    Lecture 10 3

    Information rate

    Definition:

    Intuition:

     R can be increased arbitrarily by increasing symbol rate r 

    For noisy channel, errors are bound to occur

    Is there a value of  R where probability of error is arbitrarily small?

    bits/sec H r  R  =

    Avg no. of information

    bits transferred per second

    Avg. no. of symbols

    per second

    Avg. no. of information

    bits per symbol

    Lecture 10 4

    Channel capacity

    Definition:

    Channel capacity, C , is maximum rate of information

    transfer over a noisy channel with arbitrarily small

    probability of error

    Channel Capacity Theorem

    If  R≤  C , then there exists a coding scheme such that

    symbols can be transmitted over a noisy channel with

    an arbitrarily small probability of error

    Channel capacity theorem is a surprising result:

    Channel capacity Channel capacity

  • 8/18/2019 Communications Short Course

    45/47

    Lecture 10 5

    Channel capacity theorem is a surprising result:

    Gaussian noise has PDF

    This is non-zero for all noise amplitudes Sometimes (however infrequent) noise must over-ride signal → bit

    error But, theorem says we can transfer information without error!!

    Basic limitation due to noise is on speed ofcommunication, not on reliability

    So what is the channel capacity C ??

    Lecture 10 6

    Hartley-Shannon Theorem

    For an additive white Gaussian noise channel, the

    channel capacity is:

     

    +=

     N 

    P

    P BC  1log2

    Bandwidth of

    the channel

    Average signal power

    at the receiver

    Average noise power

    at the receiver

    Lecture 10 7

    Example

    Consider a baseband system

    Noise power is:

     B N df  N 

    P o B

     B

    o N     

    ==

    2

    Channel capacity:

     

    +=

     B N 

    P BC 

    o

    S 1log2

    Lecture 10 8

    Example

    Consider a baseband channel with a bandwidth of  B=4 kHz. Assume a

    message signal with an average power of Ps=10 W, is transmitted over

    this channel which has additive noise with a flat spectral density of

    height  No /2 with  No=10-6 W/Hz.

    1. Calculate the channel capacity of this channel.

    2. If the message signal is amplified by a factor of n before transmission,

    calculate the channel capacity when (a) n=2, and (b) n=10.

    3. If the bandwidth of the channel is doubled to 8 kHz, what is the

    channel capacity now?

    Example Comments

  • 8/18/2019 Communications Short Course

    46/47

    Lecture 10 9

    Ps=10

    No=10-6

    B=4000

    No=10-6

    Lecture 10 10

    More signal power increases capacity, but increase is slowCan increase capacity arbitrarily through P

    More bandwidth allows more symbols per second, but also increases

    the noise

    Can show that:

    Cannot increase capacity arbitrarily through B

     

    +=

     N 

    P

    P BC  1log2

    o

     B  N 

    PC  44.1lim   =

    ∞→

    Lecture 10 11

    More comments

     

    +=

     N 

    P

    P BC  1log2

    This is capacity of an ideal “best” system

    How can we design something that comes close? Through channel coding, modulation/demodulation

    schemes But, no deterministic method exists to do it !

    Lecture 10 12

    Information theory and analog

    Optimum communication system achieves the largest SNR at the

    receiver output

    Optimum analog system

    Maximum rate that information can arrive at receiver:

    Optimum analog system

    Assume that channel noise is AWGN having PSD: N /2

  • 8/18/2019 Communications Short Course

    47/47

    Lecture 10 13

    ( )inin

      SNR BC    += 1log2

    Maximum rate that information can leave receiver:

    ( )out out 

      SNRW C    += 1log2

    Ideally, no information is lost:

    inout   C C    =

    Equating gives:

    ( ) 11  /  −+=   W  Binout 

      SNRSNR

    For any increase in bandwidth, output SNR increases

    exponentially

    Lecture 10 14

    Assume that channel noise is AWGN, having PSD:  N o /2

    Average noise power at demodulator input is:   B N Po N 

      =

    SNR at receiver input:

    W  N 

    P

     B

     B N 

    PSNR

    o

    o

    in  ==

    Transmitted powerBaseband SNR

    SNR at receiver output:

    11 / 

     

    +=

    W  B

    baseout SNR

     B

    W SNR

    Bandwidth spreading ratio

    transmission bw/message bw

    Lecture 10 15

    Analog performance

    Ideal performance Actual performance

    Lecture 10 16

    Summary

    Information rate: R = r H  bits/sec

    Channel Capacity Theorem:

    If R≤  C , then there exists a coding scheme such that

    symbols can be transmitted over a noisy channel with an

    arbitrarily small probability of error

    Hartley-Shannon Theorem (Gaussian noise channel):

    Analog communication systems:

    Information theory tells us the best SNR

     

    +=

     N 

    P

    P BC  1log2 bits/sec