75
Photo: Jeanne Moore, Sustainable Forest CURA, University of New Brunswick Climate change and the FSC Canadian Maritimes Standard: A literature review of proposed climate change strategies in forestry and an analysis of their consistency with FSC Principles and Criteria Nicole Lisa Klenk, PhD Faculty of Forestry and Environmental Management University of New Brunswick Email: [email protected]

Climate change and the FSC Canadian Maritimes · PDF filethe FSC Canadian Maritimes Standard: ... 23 1.3.8 Protected areas ... The last section summarizes the implications of proposed

  • Upload
    hoangtu

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

Photo: Jeanne Moore, Sustainable Forest CURA, University of New Brunswick

Climate change and

the FSC Canadian

Maritimes Standard:

A literature review of proposed

climate change strategies in forestry and

an analysis of their consistency with

FSC Principles and Criteria

Nicole Lisa Klenk, PhD

Faculty of Forestry and Environmental Management

University of New Brunswick

Email: [email protected]

1

Contents

Contents…………………………………………………………………………………………………………………………………………... 1

Introduction…………………………………………………………………………………………………………………………………………… 2

Part 1. Climate change and forest management……………………………………………………………………………….. 4

1.1 Climate change strategies………………………………………………………………………………………………….. 4

1.2 Levels of Planning and Decision-Making in Forestry………………………………………………………. 7

1.2.1 Strategic planning and decision-making………………………………………............................... 7

1.2.2 Tactical planning and decision-making……………………………………………………………………… 10

1.2.3 Operational planning and decision-making……………………………………………………………… 11

1.3 Recommendations for Climate Change Adaptation and Mitigation in Forestry………… 12

1.3.1 Forest values………………………………………………………………………………………………………………... 12

1.3.2 Preparing for disturbance…………………………………………………………………………………………… 13

1.3.3 Forest composition……………………………………………………………………………………………………... 15

1.3.4 Forest regeneration…………………………………………………………………………………………………….. 17

1.3.5 Harvesting ......................................................................................................................... 19

1.3.6 Landscape management ................................................................................................. 20

1.3.7 Carbon management ....................................................................................................... 23

1.3.8 Protected areas ................................................................................................................ 24

1.3.9 Infrastructure……………………………………………………………………………………………………. 25

1.3.10 Wood processing ............................................................................................... 26

1.4 Special case: A recent assessment of the CCFM Criteria & Indicators ............................. 27

1.5 Special Case: CSA Standards for sustainable forest management………………………………… 29

1.6 Special Case: The Sustainable Forestry Initiative Standard ............................................... 30

1.7 Special Case: The Climate, Community & Biodiversity Alliance Standard…………………… 31

1.8 Summary……………………………………………………………………………………………………………………………… 39

Part 2. Climate Change Considerations and FSC Certification............................................................. 40

2.1 FSC Exploration and Engagement with Climate Change .................................................... 40

2.2 FSC Maritimes Standard in relation to Climate Change Recommendations for SFM…. 42

Part 3. Key Questions and Challenges Ahead for the FSC Maritimes Standard ................................ 66

3.1 How to adapt forests (FSC certification) to a changing climate? ..................................... 66

3.2 Assisted Migration of Species ................................................................................................ 69

Conclusion ................................................................................................................................................... 71

Literature Cited............................................................................................................................................ 72

“The Sustainable Forest CURA at the faculty of Forestry and Environmental Management at the

University of New Brunswick (http://www.unb.ca/fredericton/forestry/forestcura/) would like to

acknowledge the Social Sciences and Humanities Research Council (SSHRC) for funding this report as a

component of the suite of projects and activities undertaken by this community-university research

alliance (CURA) to increase the capabilities of New Brunswick's province-wide forest community to

resolve conflict and cooperatively implement strategies for sustainable forest management.”

2

Introduction________________________________________________

Projected climate change impacts in New Brunswick include extreme weather and climate

capacity to variability, changes in forest fire, wind, insect and disease disturbance, effects on

physiological processes, productivity, composition, distribution, and the structure of the

Acadian forest (1).

For example, the rate and severity of insect pests such as the spruce budworm and the

hemlock woolly adelgid are expected to increase, acerbated by potential increases in wind-

throw, seasonal drought and milder winters projected in the next century for the Maritimes

Provinces.

Future outbreaks of spruce budworm are expected to be approximately 6 years longer with an

average of 15% greater defoliation (2). Dutch elm disease, butternut canker, and beech bark

disease are also likely to increase because of the stress that climate change will have on the

Acadian forest species (3, 4).

The distribution of native species in Atlantic Canada’s forests is expected to shift with future

climate change. Some trees may maintain their distribution, adapt and thrive in the new

climate conditions, but others may have difficulty persisting in the Maritimes (1).

For instance, a number of species are expected to decrease in abundance in northeastern

United States and some of these species may face a similar fate in New Brunswick: balsam fir,

paper birch, red spruce, bigtooth quaking aspen, black cherry, sugar maple, red maple, yellow

birch, eastern white pine, eastern hemlock, American beech and white ash (5).

Because tree species migration is a complex and slow process, and recent studies have

demonstrated a tree range contraction rather than expansion at both northern and southern

boundaries in the U.S.A. (6), an influx of tree species common to the Carolinian forest of the

northeastern United States is unlikely to occur during the 21st century unless assisted migration

of tree species is pursued as an adaptation practice in New Brunswick.

Planning for climate change in natural resource management is informed by predictive climate

models, local knowledge of ecosystems and the utilization of methods for decision-making in

the context of uncertainty (1,7). In addition to a need for improving predictive models and

engaging stakeholders in knowledge production for climate change planning (8), there is also a

need to consider unanticipated events and strengthen the forest sector’s assess vulnerabilities,

manage risks and respond to climate change impacts in a timely manner (1).

3

Challenges to planning for climate change in the forest sector include uncertainty in the

magnitude and timing of future climate change, compounded by uncertainties in future

markets for Canadian forest products (9).

In order to build “adaptive capacity”, the forest sector must consider the extent to which the

guiding values and principles, institutions, policies and decision-making processes structuring

sustainable forest management enable or constrain planning for climate change.

There are several parts to this report:

1. The first is based on a literature review and describes proposed climate change

strategies in forestry (resistance, resilience, response and mitigation) in relation to three

levels of decision-making: strategic, tactical and operational. Four examples are given of

how climate change considerations have been and/or could be integrated in forest

management standards (e.g., CCFM criteria and indicators of SFM, CSA Forest

Management Standard, the Sustainable Forestry Initiative Standard and the Climate,

Community and Biodiversity Alliance Standard).

2. The second describes how the FSC International Standard has engaged with climate

changed analyses the extent to which proposed climate change strategies in forestry are

(in) consistent with the FSC Canadian Maritimes Standard.

3. The third summarizes key questions and challenges raised by proposed climate change

strategies in forestry for FSC certification in the Maritimes. Key concepts are discussed

(e.g., resistance, resilience and response to climate change, historical baselines, passive

and active adaptation and mitigation). The “assisted migration” of species is used as an

illustration of the kinds of incongruities such pro-active adaptation measures presents

for forest certification according to FSC Standards.

4. The last section summarizes the implications of proposed climate change strategies in

forestry for the revision of the FSC Canadian Maritimes Standard.

Although certification standards promote sustainable forest management, it is unclear to

what extent they support or help develop “adaptive capacity” for climate change (10).

For instance, the extent to which the Canadian Maritimes Forest Stewardship Council

Standard addresses and/or is consistent with proposed climate change strategies in

forestry is an open question. This report seeks to answer this question.

4

Part 1: Climate Change and Forest Management____________________

1.1 Climate change strategies

Four broad climate change strategies have been repeatedly put forward in the forestry

literature: resistance, resilience, response (facilitation) and mitigation (11-18). The first three

focus on adaptation measures while the fourth is focused on mitigation measures that seek to

enhance carbon storage in forests and reduce greenhouse gas emissions, and the use of non-

renewable energy.

Resistance

Resistance to climate change in forestry entails trying to maintain the compositional, functional

and structural identity of a forest even against an increasing successional pressure due to

environmental change.

Planning for resistance gives the following issues high priority (17):

Protecting high-value resources.

Maintaining species and community diversity.

Controlling invasive plants and pests.

Evaluating infrastructure guidelines (e.g., road decommissioning, resizing culverts).

Resilience

A resilient response uses spontaneous adaptation processes in terms of natural succession and

species migration but does not actively assist in forest adaptation to climate change.

Resilience theory suggests that ecosystems persist within a range of critical controlling variables

and climate change may cause ecosystems to shift into a new state in which these variables

have different values (e.g., the transformation of a forest into a grassland due to persistent

drought) (19).

Resilience thinkers stress the need to anticipate thresholds or “tipping points” when eco-

systems are likely to undergo significant change of identity.

A “resilience” approach involves assessing and managing the vulnerability of the forest and

accepting inevitable surprises and uncertainties in natural resource management due to the

complex and dynamic nature of ecological and social systems (20).

5

There is a growing recognition that forest

sector vulnerability to climate change

needs to be addressed at the strategic,

tactical and operational tiers of forest

planning and decision-making (21,22).

Planning for resilience prioritizes (17):

Focusing on the short term for high value resources.

Maintaining species and community diversity at the landscape scale.

Enabling stand establishment (e.g., retention of desired species or genotype and

active early intervention to maintain desired species in stands).

Response (Facilitation)

The third climate change strategy involves actively responding to and facilitating change in

forest ecosystems. This strategy entails the use of silvicultural practices to change stand

structures and composition to enable the forest to more quickly adapt to climatic change

impacts than it otherwise would by natural processes.

Active adaptation prioritizes (17):

Long-term planning of landscapes and whole biomes and eco-regions (e.g., the

Acadian forest).

Enhancing landscape connectivity to facilitate species migration.

Adjusting growth and yield model assumptions and forest management plans for

the likelihood of seasonal operational challenges and potential increase in salvage

logging.

Reduction of rotation length, which may facilitate more timely adjustment in

species and genotypes and help minimize risk of major disturbance events.

Mitigation

Mitigation strategies seek to enhance carbon sequestration and to reduce greenhouse gases

from operational activities through forest

management (planning road development

and decommissioning, long rotations, and

large tracks of mature forests, etc.) and to

facilitate the development of new markets

and technologies for the use of forest

products made from lower quality wood or

different forest species.

6

Hypothetical situation

A hypothetical example illustrates how climate change represents challenges

for planning and decision-making at all three levels.

Let’s say climate change projections for the Maritimes Provinces indicate future

warmer temperatures, a seasonal shift from snow to rain and a reduction of

seasonal snow pack.

These conditions would cause the “peak flow” of water within a given

watershed to occur earlier in the spring and increase in total and maximum

volume

The volume of peak flow in a watershed would also be affected by the amount

of forest cover and the density of roads within the watershed.

In turn, an increase in peak flow would affect the sizing and number of culverts

and water diversions required to safely maintain water quality.

Maintaining water quality standards would likely require reducing or closely

managing the land area covered by roads and other non-forest types to avoid

increased negative impacts.

Watersheds with more severe topography and a high proportion of recent

harvests would be more vulnerable to changes in peak flow.

So in order to plan for climate change in this scenario, one would have to assess

regional strategic forestry priorities and values, enact this strategic vision

through landscape level modeling and tactical planning, which then would

require detailed and site- specific operational directives to implement the

higher level plans.

Hence to assess the extent to which the FSC certification standards are

(in)consistent with proposed climate change strategies in the forest sector, we

use a classification system broadly in line with the three tiers of planning and

decision-making described above.

However, it should be noted that these categories somewhat overlap and are

used simply to offer some guidance in the interpretation of proposed climate

change strategies in the forest sector.

8

In sum, strategic decisions are geared

towards ‘where one wants to go in the

long term,’ whereas tactical and

operational decisions are the means to

‘get there from here’ (25).

1.2 Levels of Planning and Decision-Making in Forestry

1.2.1 Strategic planning and decision-making

Strategic decisions represent broad target and principled choices. They are largely formulated

in upper-management echelons, are based on multi-factorial unstructured information, and are

projected over long temporal and/or spatial scales under high regimes of uncertainty and with

largely external and incomplete information (23).

Strategic decision-making requires scenario- based, predictive and forecasted inputs or

analyses, and generally produce highly normative and complex outcomes (24).

National or regional land tenure agreements or treaties, and national environmental policies

and charters are instances of forest-related strategic decision outputs.

A recent Canadian Forest Service Information

Report presents examples of strategic

questions raised by climate change for the

forest sector and usefully categorizes these

questions by their stakeholder group (26).

These questions are reproduced here to

illustrate the strategic level of planning and decision making in the forest sector.

Table 1. Strategic climate change questions for the forest sector Adapted from (26).

Federal

government

What are the impacts of climate change on the competitiveness of the

forest sector and how should the federal government respond?

How will climate change impact our ability to meet our obligations under

international agreements?

How should climate change impacts inform our negotiating positions?

What information can the federal government provide on climate change

and its impacts on Canadian forests at the national level?

Should current management approaches (little intervention) for parks and

wilderness areas change?

Provincial

governments/

Forest owners

Which forest and site types are less likely to meet management objectives

under climate change? In which ones will it be easier to reach these

objectives?

How should forest management polices/guidelines/ requirements facilitate

9

adaptive capacity/adaptation?

How will climate change affect competitiveness of the forest sector and

how should provincial/territorial governments respond?

How will disturbance regimes (fires, pests) change and how can forest

management practices be altered to reduce losses and protect human

lives?

What will be the impact of climate change on timber supply (cost, growth,

location, quantity, quality, timing, salvage)?

Should current management approaches (little intervention) for parks and

wilderness areas change?

What are future forests going to look like and do we want to try to

maintain them as they currently look (e.g., species composition, structures

and processes)?

Forest managers,

industry, and

woodlot owners

What will be the impact of climate change on timber supply (cost, growth,

location, quantity, quality, timing, salvage)?

How will climate change affect mill operations, product mix, and

investment decisions?

How should we change our forest management, planning, and practices?

When should we make these changes?

Which forest types and site types less likely to meet management

objectives under climate change? Which ones will make it easier to reach

these objectives?

What are future forests going to look like and do we want to try to

maintain them as they currently look (e.g., species composition, structures

and processes)?

Will climate change impacts make it more difficult to meet certification

standards?

Forest-dependent

communities,

including Aboriginal

communities

Might cumulative impacts require a fundamental change in forest

management practices in some areas?

How will impacts on forests affect ecological services (e.g., quantity/ timing

of water supply)?

Are our communities more at risk of fires and how can we prepare?

How can we prepare for potential changes in forest management

activities?

How would a change in species composition and overall forest health affect

my community?

10

David P. Shorthouse, University of Alberta, Bugwood.org

Tactical decisions are

essentially at the

confluence point

between long-term

strategic goals and

precisely-focused, site or

problem-specific

technical decisions.

1.2.2 Tactical planning and decision-making

The tactical tier of decision-making represents a point where higher-echelon managers

synthesize broad strategic goals with large scale and long range considerations, and translate

them into shorter mid-term and smaller scale actions, plans, and programs (23).

Tactical decisions focus on mid-term operative and directional tactics to meet longer term

goals, are moderately normative, and are characterized as being less ‘programmable’ than

technical decisions and their resultant outcomes (25).

Tactical decisions are generally geared towards larger scale

problems, which result in broader solutions, either in space

and time, such as organizational and infrastructural

developments and goals (27, 28).

Tactical choices and outcomes occur at the forest-level (i.e.,

between landscape and stand or site scales), over medium

time frames, and typically with an appreciable degree of

stakeholder integration or input (25).

11

As a result, technical decisions focus

on procedural ‘hands on’ directives,

techniques, and mitigative measures

that are tailored to discrete forest

sites or problems (25).

David J. Moorhead, University of Georgia, Bugwood.org

1.2.3 Operational planning and decision-making

The operational decision-making tier represents the ‘implementation’ stage of tactical and/or

strategic decision-making processes. Operational decision-making represents the processes,

plans, and choices that allow for action and elaboration of the directional and longer ranged

‘vision’ of tactical and strategic decisions (25).

It is generally characterized by lower degrees of uncertainty and normative judgment, tangible

degrees of outcome prediction or programmability, and focused on immediate or short term

problems and solutions.

As a result, technical decision-making draws on internal, process, performance, and

operationally-based information, experimentation and observation (28).

They typically involve a detailed record of the ecological conditions and the engineering and

silvicultural techniques to be employed at specific sites (29).

12

The most frequently cited recommendations

refer to engaging the public on a debate about

forest values in light of climate change,

diversifying society’s portfolio of forest assets

and modifying the objectives for sustainable

forest management and the means to achieve

them.

Jeanne Moore, Sustainable Forest CURA,

University of New Brunswick

1.3 Recommendations for Climate Change Adaptation and Mitigation in Forestry

A literature review of academic journal articles and reports from government (Canada and

United States) and non-government organizations (CIFOR, IUFRO, and other environmental

non-government organizations) resulted in a list of 92 recommendations for climate change

adaptation and mitigation measures in forestry.

To make sense of the recommendation these were organized according to 10 broad areas of

concern in forestry and within these groupings, the recommendations were categorized

according to the four climate change strategies—resistance, resilience, response and

mitigation—and to the three levels of planning and decision-making in forestry: strategic,

tactical and operational. Please note that the categories may overlap and recommendations

may fall within more than one category.

1.3.1 Forest values

The recommendations in the category of “forest values” refer to strategic level, long-term

planning and policy directives, forest governance arrangements and the social aspects of

forestry (e.g., community wellbeing) (Table 2).

Most of the propositions can be assigned to the three climate change strategies, except for

recommendations on engaging in public dialogue on forest values and changing forest values,

which are response strategies.

13

Table 2.Recommended climate change measures broadly related to forest values

Recommendations Strategy

1=.Resist

2=.Resilience

3=Response

4=Mitigation

Level

1=Strategic

2=Tactical

3=Operational

Citing

Articles

1. Diversify society's portfolio of forest assets 1,2,3 1 1,39,41

2. Redesign and or implement institutions that facilitate

cost effective and economically efficient adaptation and

that provide forest managers with the tools necessary to

achieve forest management objectives

1,2,3 1 1,39

3. Modify objectives for sustainable forest managementand the means we use to achieve them

2,3 1 1,36,37

4. Engage the public in a dialogue on values and

management under a changing climate 2,3 1

1,12,22,36,

39,41

5. Provide alternative coping mechanisms for vulnerablecommunities 1,2,3 1 41

6. Generate means to provide private owners with economicflexibility if they choose to use their land for forestry

1,2,3 1 41

7. Enhance local welfare through the promotion ofco community-based forest management and restoration

1,2,3 1 41

8. Improve community well-being throughpartnerships 1,2,3 1 41

9. Increase public participation in decision-making andplanning 1,2,3 1 41

1.3.2 Preparing for disturbance

The recommendations in the category “preparing for disturbance” mostly focus on climate

change impacts on forest disturbances and their implications for forest management planning.

Of the 10 recommendations in this category, all but 3 can be equally assigned to resistance,

resilience and response strategies (Table 3).

Those recommendations that stress anticipating and preparing for change in ecosystem

dynamics support letting change occur or facilitating change and thus fit within the resilience

and response strategies.

Overall, the recommendations include both strategic and tactical level of planning and decision-

making.

14

Table 3. Recommended climate change measures broadly related to preparing for

disturbance in forest management

Recommendations Strategy

1=.Resist

2=.Resilience

3=Response

4=Mitigation

Level

1=Strategic

2=Tactical

3=Operational

Citing

Articles

1. Monitor to determine when and what changes are

occurring 1,2,3 1 1,16

2. Adopt risk assessment and adaptive

management principles 1,2,3 1

1,33,37,39,

40,41

3. Agree on standardized climate scenarios for analysis 1,2,3 1 1

4. Include climate variables in growth and yield models

and incorporate climate change effects into long term

timber supply analysis and forest management plans

1,2,3 2 1,12,17,22,

39,41

5. Anticipate surprises and threshold effects 2,3 1 13

6. Anticipate variability and change and conduct

vulnerability assessment 2,3 1 39,41

7. Foster learning and innovation 1,2,3 1 39,41

8. Prepare for changes in disturbance regimes (e.g.,

increased wildfire activity, higher-elevation insect

outbreaks, species mortality events, altered fire regimes)

2,3 2 1,12,18,34,

38,41

9. Minimize or mitigate other threats or stresses (e.g., the

spread of insects and diseases, herbivory, alter forest

structure or composition to reduce risk or severity of fire,

establish fuelbreaks to slow the spread of catastrophic

fire, alter forest structure to reduce severity or extent of

wind damage)

1,2,3 2 1,12,16,32-

34,36,37,39

- 41

10. Actively manage forest disturbances (e.g., pests) 1,2,3 2 39,41

The most cited recommendation is to minimize or mitigate other

threats or stresses to forest ecosystems, followed by adopting risk

assessment and adaptive management principles, including climate

variables in growth and yield models, in timber supply analysis and

forest management plans and, more generally, preparing for change in

disturbance regimes.

15

Adjust species

composition is the most

cited recommendation in

this category followed by

the recommendation to

continue managing

invasive species.

Edward H. Holsten, USDA Forest Service, Bugwood.org

1.3.3 Forest composition

The recommendations in the category “forest composition” refer to forest species that should

be maintained, protected, adapted or favored (Table 4). This category includes

recommendations on species and genetic diversity as well as ecological benchmarks and their

associated values.

Several recommendations fall within the strategy of resistance by aiming to maintain current

forest composition despite successional pressures towards novel forest composition. It is in this

category, however, that the largest number of pro-active response strategies occurs.

These recommendations include changing species

distributions, expanding genetic diversity, favoring species

better adapted to projected climate change and

translocating species beyond their historic range.

Mostly, the recommendations are at the strategic and

tactical levels of planning and decision-making, but the

recommendation as to how to adjust species composition

refers to the operational level.

Table 4. Recommended climate change measures broadly related to forest composition

Recommendations Strategy

1=.Resist

2=.Resilience

3=Response

4=Mitigation

Level 1=Strategic

2=Tactical

3=Operational

Citing

Articles

1. Adjust species composition (e.g., plant alternative

genotype or new species in anticipation of future climate, 3 3 1,12,15,17,

22,30,31,33-

Debbie Miller, USDA Forest Service, Bugwood.org

16

planting less sensitive species, diversify species mix on

lower quality sites, favor current components that do not

decrease under projections, but don't discriminate against

species projected to decrease, maintain components

across all sites, especially mesic sites, underplant future

adapted species, emphasize drought and heat-tolerant

species and populations, manage for species and

genotypes with wide moisture and temperature

tolerances; move species to identified habitats under

climate change; consider replanting with different species,

shift desired species to new plantation or forest locations)

41

2. Rather than focusing only on historic distributions,

spread species over a range of environments according to

modeled future conditions

3 1 22,36, 37

3. Anticipate and respond to species decline 3 2 34

4. Expand genetic diversity guidelines (e.g., move

germplasm in the anticipated adaptive direction; expand

seed zones in all directions; relax seed transfer guidelines

to accommodate multiple habitat moves; introduce long

distance germplasm into seed mixes)

3 1 13,38

5. Increase species and genetic diversity in plantations 3 1 22,41

6. Maintain diverse gene pools 1,2,3 1 11,22,39,41

7. Prioritize and protect existing populations on unique

sites (may require active management for conifer species

lowlands)

1 2 34

8. Continue managing invasive species 1,2,3 1

17,18,22,30,

31, 34,36,

39-41

9. Identify and protect functional groups and

keystone species 1 1 11,39,41

10. Consider loss of species’ population on warm range

margins and do not attempt restoration there 2,3 2 38

11. Translocate species 3 1 32-34,36

12. Study response of species to climate change (e.g.,

physiological, behavioral, demographic changes) 1,2,3 1 32

17

The most cited recommendations

include revising site regeneration

objectives, modifying seed

transfer zones/seed provenances

and establishing or encouraging

new mixes of native species.

Jeanne Moore, Sustainable Forest CURA, University

of New Brunswick

1.3.4 Forest Regeneration

The recommendations in the category “forest regeneration” include revising site regeneration

objectives and practices, modifying seed provenances, changing the objectives of breeding

programs, the use of genetically modified species and the establishment of new mixes of native

species (“neo-native forests”) (Table 5). This category also includes a large number of

recommendations that fit within a strategy of pro-active adaptation measures.

Most of the recommendations for forest regeneration raise questions about ecological design

of future forests and the silvicultural practices that may facilitate desirable species.

Other recommendations support all three climate

change strategies, such as using thinning to promote

healthy and resilient stands.

Half the recommendations refer to the operational

level of planning and decision-making and the other

half span both the tactical and strategic levels.

18

Table 5. Recommended climate change measures broadly related to forest regeneration

Recommendations Strategy

1= Resist

2= Resilience

3= Response 4= Mitigation

Level

1= Strategic

2= Tactical

3=Operational

Citing

Articles

1. Revise site regeneration objectives: consider understory

treatments to create niches for resilient species

regeneration even where overstory isn't managed (e.g.,

prescribed fire), modify regeneration harvest prescriptions

to favor adapted commercial species, aggressive site

preparation, reintroduce fire or use herbaceous control

methods when appropriate, manage for asynchrony and use

establishment phase to reset succession, guide

species composition at early stages of stand development,

promptly revegetate sites after disturbance

3 3 13,17,22,30,

33-41

2. Practice high-intensity plantation forestry in selected

areas to promote growth of commercial tree species 3 2 22,39,41

3. Modify transfer zones/seed provenances 3 2

1,12,15,17,

18,22,33,

34,38-41

4. Maintain seed or nursery stock of desired species for use

following severe disturbance 2,3 2 34,36,41

5. Enrichment sowing and supplemental regeneration 1,2,3 3 18

6. Shift planting season 1,2,3 3 18

7. Establish or encourage new mixes of native species ("neo-

native forests") 3 2

13,18,34,

36-39,41

39,418. Use variable density thinning in dense young stands to

provide more resources to surviving individuals and

promote resilience and species and structural diversity

1,2,3 3 37,38,41

9. Facilitate natural selection and evolution by managing the

natural regeneration process to enhance disturbances that

initiate increased seedling development and genetic mixing

2,3 3 18,38,40

10. Allow forests to regenerate naturally following

disturbance 1,2 3 39,41

11. Plant genetically modified species and identify more

suitable genotypes 3 1 39,41

12. Breed for pest resistance and for a wider tolerance to a

range of climate stresses and extremes in specific genotypes 1,2,3 1 18,22,39,41

19

…one

recommendation is

aimed at climate

change mitigation:

extended rotations.

Rob Routledge, Sault College, Bugwood.org

1.3.5 Harvesting

In this category, recommendations are focused on harvesting practices (Table 6). Most of the

recommendations can be used across all three climate change strategies in forestry, but one

recommendation is aimed at climate change mitigation: extended rotations.

Overall, the recommendations mostly refer to a tactical level of planning and decision-making,

involving seasonal scheduling of silvicultural activities, timber supply analysis, and establishing

new rotation lengths.

The most cited recommendations are to develop alternative

harvesting systems and implement alternative harvesting

practices and shorten forest rotation length to enable quick

response to climate change.

20

Table 6. Recommended climate change measures broadly related to forest harvesting

Recommendations Strategy

1= Resist

2= Resilience

3= Response

4=Mitigation

Level

1= Strategic

2= Tactical

3=Operational

Citing

Articles

1. Be prepared to increase the amount of salvage logging 3 2 1,12,39

2. Prepare for variable timber supply 1,2,3 2 1,18

3. Plan for seasonal operational limitations (e.g., prepare for

reduced winter harvest 1,2,3 2 1,13,17,18

4. Develop alternative harvesting systems and implement

alternative harvesting practices (e.g., reduced winter-

harvest opportunities may result in the need for more roads

or the use of different types of harvesting equipment on

sensitive sites, older stem retention and group selection

openings, low impact logging techniques)

3 2

1,11-13,

17,18,22,

30, 31,39-

41

5. Shorten rotation length 3 2

1,12,15,

17,1822,

35,38,39,

41

6. Extended rotations 1,2,4 2 17,31,39

7. Pre-commercial and sanitation thinning 1,2,3 3 12,18,22,

39, 41

8. Adjust harvest schedules to harvest stands most

vulnerable to natural disturbances (e.g., insect outbreaks or

fire)

1,2,3 2 18,39,41

9. Limit harvesting operations to the winter in order to

minimize road construction and soil disturbance 1,2,3 2 39

1.3.6 Landscape Management

This category is a bit less coherent than the others because it includes a large number of

disparate recommendations that are all to a certain extent relevant to forest landscape

planning (Table 7).

The recommendations refer to reference conditions, landscape fragmentation and connectivity,

forest transitions to novel ecological systems, managing for refugia, forest structure, and land

use conversion, among other substantive issues.

21

Interestingly, it is

in this category

that divergent

approaches are

most evident.

The recommendations span the range of strategies from resistance, resilience, response to

mitigation. They also span all three levels of forest planning and decision-making.

For example, the most cited recommendations include, on the one

hand, a response strategy that supports facilitating species

movements through improved landscape connectivity. On the other

hand, another highly cited recommendation is to manage refugia to

maintain and protect species in their current distribution.

Similarly, two other highly cited, but contrasting recommendations, are to diversify

forest structure and to maintain forest health and diversity, which involves maintaining

structural diversity (rather than pro-actively changing it).

Table 7. Recommended climate change measures broadly related to forest landscape

management

Recommendations Strategy

1= Resist

2= Resilience

3= Response

4=Mitigation

Level

1= Strategic

2= Tactical

3=Operational

Citing

Articles

1. Maintain connectivity in a varied, dynamic landscape 2,3 2

1,11,13,17,

22,32-35,38-

41

2. Realign management targets to recognize significantly

disrupted conditions, rather than continuing to manage

for restoration to a reference condition that is no longer

realistic given climate change

3 1 36,38,39

3. Diversify risk by spreading habitats or plantations over a

range of environments rather than strictly within the

historic distribution

3 1 38

4. Use landscape-scale planning and partnerships to

reduce fragmentation and enhance connectivity 2,3 1 34

5. Manage for refugia (e.g., identify and manage refugia

for species that may otherwise be lost, try uneven-aged

management to add landscape heterogeneity and

"lifeboat" residual species, protect potential refugial

habitats, retain biological legacies)

1 1

11,13,16-

18,30,31,33,

34,36,37,

39-41

6. Avoid planting new forests in area likely to be subject to 2,3 3 41

22

natural disturbance (e.g., flood)

7. Minimize amount of edge created by human

disturbances 2,3 3 41

8. Promote diverse age classes 2,3 1 18,22,34,36,

38, 39, 41

9. Represent forest types 1 1 11,39,41

10. Increase redundancy and buffers (e.g., planting with

mixed species and age classes, increasing locations, sizes

and range of habitats for landscape-scale vegetation

treatments; increase the number of rare plant populations

targeted for restoration)

2,3 1 11,13,36,38,

39, 41

11. Maintain large areas of old growth forests 1,4 1 11,37,39,41

12. Maintain forest health and diversity during transition

(e.g., maintain stand vigor, maintain or restore soil quality

and nutrient cycling, maintain or restore hydrology,

maintain or restore riparian areas, restore habitat and

system dynamics, maintain species and structural

diversity, realign significantly disrupted conditions,

maintain or restore fire to fire-adapted ecosystems,

maintain and restore diversity of native tree species)

1,2,3 1

11,12,13,18,

22,30,31,

33-36, 39-41

13. Practice intensive management to secure populations

of high value 1 3 32,41

14. Enhance forest growth through forest fertilization 3 3 39,41

15. Employ vegetation control techniques to offset

drought 3 3 18,22,39,41

16. Focus on high productivity sites rather than poor sites 1 2 22

17. Assist transitions, population adjustments, range

shifts, and other natural adaptations (e.g., Facilitate

transition from forests to grasslands on shallow and sandy

soils)

3 2 13,16,22,36-

39,41

18. Increase the colonization capacity in the areas

between existing habitat and areas of potential new

habitat

3 1 41

19. Avoid land use conversion 1,4 1 11,31,39,41

20. Incorporate climate change into land use plans and

consider the possibility of land use change at specific

locales (forest to agriculture and vice versa)

3 1 1,12,22,32,

37

23

The most frequently cited

recommendation is to deactivate and

rehabilitate roads to maximize

productive forest area and forest sinks.

Billy Humphries, Forest Resource Consultants, Inc., Bugwood.org

1.3.7 Carbon Management

The recommendations on “carbon management” are mitigation measures that are mostly

focused on the operational level of planning

and decision-making (Table 8).

The recommendations refer to increasing

carbon storage, fire management, and

greenhouse gas emissions reduction.

Table 8. Recommended climate change measures broadly related to carbon management

Recommendations Strategy

1= Resist

2= Resilience

3= Response

4=Mitigation

Level1= Strategic

2= Tactical

3=Operational

Citing Articles

1. Deactivate and rehabilitate roads to maximize

productive forest area and forest sinks 4 3 13,18,39,41

2. Reduce emissions 4 3 13

3. Decrease impact of natural disturbances on carbon

stocks through fire management and pest management 4 2 39,41

4. Increase the use of forests or biomass energy 4 1 39,41

5. Fire suppression to enhance carbon storage 4 3 39

6. Assessment of GHG emissions from operations 4 3 39,41

7. Fuels management and community protection 4 3 18,39

Dale Wade, Rx Fire Doctor, Bugwood.org

24

The most highly cited recommend-

ations are in line with a resistance

strategy: increase reserves to

protect ecosystem diversity and

protect the most acutely

threatened species ex situ.

1.3.8 Protected areas

The recommendations in this category refer to biodiversity conservation and managing

habitats, corridors and reserves (Table 9).

These recommendations span the three climate

change strategies, but some fit in a single

strategy (e.g., increase reserves to protect

ecosystem diversity).

Most of the recommendations are at the

strategic level of planning and decision-making.

Table 9. Recommended climate change measures related to protected areas

Recommendations Strategy

1= Resist

2= Resilience

3= Response

4= Mitigation

Level

1= Strategic

2= Tactical

3=Operational

Citing

articles

1. Adapt reserves to climate change (e.g., expand reserve

network, establish artificial reserves for at-risk and

displaced species)

1,2 1 31

2. Increase reserves to protect ecosystem diversity 1 1 34,37,38,41

3. Protect the most acutely threatened species ex situ 1 3 11,22,39,41

4. Increased regional cooperation in species

management and protected areas management 1,2,3 1 41

5. Manage habitats over a range of sites and conditions,

expand the boundaries of reserves to increase diversity 2,3 1 34

6. Maintain and create habitat corridors through

reforestation or restoration 3 2 34,35,41

Jeanne Moore, Sustainable Forest CURA, University

of New Brunswick

25

Michelle Bowman, Bugwood.org

1.3.9 Infrastructure

The recommendations on “infrastructure” refer to forest engineering concerns with the

impacts of roads on forest hydrology and water quality, culvert sizing and revising

infrastructure guidelines to take into account climate change (Table 10).

Most of the recommendations span the three climate change strategies and the three levels of

planning and decision-making.

Table 10. Recommended climate change measures broadly related to forest infrastructure

Recommendations Strategy

1= Resist

2= Resilience

3= Response

4=Mitigation

Level 1= Strategic

2= Tactical

3= Operational

Citing

Articles

1. Minimize road networks 1 2 17,39,41

2. Adjust culvert size requirements and road design for

changes in peak flow 1,2,3 3

12,15,18,

39,41

3. Develop guidelines under which restoration projects

or rebuilding of human structures should occur after

climate disturbances

1,2,3 1 36

4. Avoid constructing roads in landslide-prone terrain

where increased precipitation and melting of permafrost

may increase the hazard of slope failure

1,2,3 3 39,41

5. Maintain, decommission, and rehabilitate roads to

minimize sediment runoff due to increased precipitation

and melting of permafrost

1,2,3 3 12,39,41

6. Ensure that infrastructure investments do not

interrupt conservation or riparian corridors 1 1 41

The most cited recommendation

is at the operational level and

concerns adjusting culvert size

requirements and road design for

changes in peak flow.

26

This recommendation seeks to

enable the forest sector to take

advantage of changing wood quality

and tree species composition under

climate change.

Doug Page, USDI Bureau of Land Management, Bugwood.org

1.3.10 Wood processing

The last category only contains one recommendation on wood processing technology (Table

11).

Table 11. Recommended climate change measure related to wood processing

Recommendations Strategy

1= Resist

2=Resilience

3=Response

4=Mitigation

Level

1= Strategic

2= Tactical

3=Operational

Citing

articles

1. Develop technology to use altered wood quality and tree

species composition, modify wood processing technology 3 1

12,22,39-

41

In order to grasp the significance of the climate change adaptation and mitigation

recommendations summarized above for revising the FSC Canadian Maritimes Standards, it is

helpful to take a closer look at recent initiatives that have sought to consider and/or integrate

climate change considerations in forest and environmental management certification

standards.

In the following sections three “special cases” are described and are meant to serve as

“food for thought”.

27

1.4 Special case: A recent assessment of the CCFM Criteria & Indicators

In a recent study, experts were asked to assess the Canadian Council of Forest Ministers Criteria

and Indicators of sustainable forest management with regards to the extent to which the C&I

are influenced by climate change and whether the C&I should integrate climate change

considerations (42).

The 2003 CCFM C&I contain 6 criteria: biological diversity; ecosystem condition and

productivity; soil and water; role in global ecological cycles; economic and social benefits;

society’s responsibility.

Out of the 46 indicators reviewed, 34 indicators were judged “influenced by climate change”

and of these, 11 were targeted for significant revision. New indicators were proposed for 4

criteria (Table 12).

Table 12. New sustainable forest management indicators for the CCFM C&I. Adapted from (42).

Biodiversity Conservation

Extent of connectivity between protected areas

Proportion of tenured forest area with seed transfer guidelines that account for climate change

Ecosystem Condition and Productivity

Average, minimum, and maximum temperature

Area of Crown forest with assisted migration

initiatives

Soil and Water Rate and form of precipitation

Role in Global Ecological Cycles Carbon emissions avoided through product

substitution

In addition, there were proposed modifications to current indicators. The suggested revisions

varied in nature, as described here.

1) Providing more precision with regards to targeted species such as in (italicized):

“population levels of selected species” (e.g., species unaffected by climate

change or for which there is a sound understanding of population dynamics

in a changing climate)

“area of forest disturbed by native and alien invasive forest-associated

species”

28

2) Adding issues to current indicators (italicized):

“investment in forest research, timber products industry research and

development, and education, and climate change adaptation and mitigation”

3) Changing the way the indicator is measured, such as in:

“total growing stock of both merchantable and non-merchantable tree species on

forest lands”

“area of forest disturbed, by cause”

“net change in forest ecosystem carbon”

“forest ecosystem carbon storage by forest type and age class”

“contribution of timber products to the gross domestic product”

“contribution of non-timber forest products and forest-based services to the gross

domestic product”

“forest area by timber tenure”

“Status of new or updated forest management guidelines and standards related to

ecological issues”

Many of the new indicators proposed by the team of experts seem to assume and implicitly

support a pro-active “response” climate change strategy in forest management.

For instance, they refer to measuring the degree of landscape connectivity which facilitates the

movement of species, changes in seed transfer guidelines that take into account climate

change, area of Crown forest with assisted migration initiatives and carbon emissions avoided

through product substitution. These indicators are in line with particular “response” strategy

recommendations for forest composition, regeneration, landscape management and carbon

management listed above.

However, the majority of CCFM indicators were retained as is and these explicitly support

resistance to climate change and to a lesser extent a resilience strategy by monitoring the

extent to which forest composition, structure and processes are maintained in relation to a

historic benchmarks.

29 

“This Standard sets a level of performance to be met using a prescribed management system. Performance is dealt with at three levels. First, a set of SFM elements and core indicators is required. Second, the public has the opportunity to assist in setting specific values, objectives, additional indicators, and targets at the local forest level for each of the SFM elements, as well as to participate in effectiveness monitoring. This Standard requires a public participation process to establish and monitor locally appropriate targets (including thresholds and limits). Moreover, this Standard identifies specific requirements for the public participation process. This approach to performance not only respects government‐recognized criteria for SFM but also allows the public to participate in the interpretation of the criteria and elements for local application. The third level is the assessment of actual changes in the forest as related to forecasts and results of management practices.”  

CAN/CSA‐Z809‐08, p. 2 

1.5 Special Case: CSA Standards for sustainable forest management 

The most recent version of the Canadian Standards Association National Standards for Sustainable Forest Management (43) has to a certain extent integrated climate change adaptation and mitigation considerations (10). This standard involves a combination of public participation, performance and management system requirements and uses the CCFM C&I as the basis of its sustainable forest management performance requirements.    

Climate change considerations are found in the performance requirements, under the SFM criteria of “Ecosystem condition and productivity” and “Role in global ecological cycles”. In the former criterion, the public participation process must include discussion of climate change impacts and adaptation to establish forest values and choose appropriate indicators.  In the latter criterion, the public participation process must include discussion of carbon emissions from fossil fuels used in forest operations and the performance requirement must use as a core indicator “net carbon uptake”.  

Although climate change considerations have been integrated in the newest CSA Sustainable Forest Management Standard, its reliance on the current CCFM C&I means that the standard mostly supports a resistance strategy to climate change and to a lesser extent a resilience strategy (as pointed out in the previous section).   

30

1.6 Special Case: The Sustainable Forestry Initiative Standard

As of the end of 2011, in Canada SFI certified area (55,074,441 ha) is less than CSA certified area

(57,103,722) but greater than FSC certified area (46,272,411 ha) (46).

Likewise, in the USA, SFI certified area (56 million acres) is greater than FSC certified area (34

million acres) (47).

In its most recent Standard (2010-2014), the SFI has begun to consider climate change

adaptation and mitigation.

Their climate change adaptation and mitigation objectives seem to represent a resilience

strategy by focusing on best practices in sustainable forest management already present in the

standard: “SFI certified forests result in healthy growing forests that absorb more carbon and

are less susceptive to fire, insects and disease, when compared to poorly managed forest”

(48: p.1).

Provisions related to climate change are tempered by the recognition that the science and

regulatory framework for climate change mitigation and adaptation are still evolving.

Climate change related provisions are found in:

“Performance Measure 15.3 Program Participants shall individually and/or through

cooperative efforts involving SFI Implementation Committees, associations or other

partners broaden the awareness of climate change impacts on forests, wildlife and

biological diversity.

Indicators:

1. Where available, monitor information generated from

regional climate models on long-term forest health,

productivity and economic viability.

2. Program Participants are knowledgeable about climate

change impacts on wildlife, wildlife habitats and conservation

of biological diversity through international, national, regional

or local programs.” (49: p. 15).

31

CCBA members include

Conservation International,

CARE, Rainforest Alliance,

The Nature Conservancy,

Wildlife Conservation

Society, BP, GFA Envest,

Intel, SC Johnson,

Sustainable Forestry

Management LTD.,

Weyerhaeuser, and

advising institutions.

1.7 Special Case: The Climate, Community & Biodiversity Alliance Standard

The social and environmental standards generated by the Climate, Community & Biodiversity

Alliance (CCBA) provide an interesting example of how to integrate climate change into the

development of forest protection, restoration and agroforestry initiatives (44).

The CCBA is a global partnership of companies and non-

governmental organizations created in 2003. It aims to

leverage policies and markets to promote climate

change adaptation and mitigation best practices in

forestry through carbon-based projects.

As of May 2011, 37 projects have completed validation,

14 projects have initiated the validation process and 2

projects have achieved verification.

Half of these projects are focused on afforestation,

reforestation and regeneration, one third of the

projects are focused on REDD (reducing emission from

deforestation and degradation), 7% of projects are focused

on improved forest management and 18% of projects combined different aims (44).

Of these projects, 42% are in Latin America, 26% in Africa, 17% in Asia, 9% in the U.S.A. and

Canada, 4% in Oceana and 2% in Europe.

Planned projects represent over 9 million ha of conservation and over 450,000 ha of restoration

of native forests with total estimated annual emissions reductions of over 17 million tons

annually (45).

The CCBA Standards “identify land-based projects that are designed to deliver robust and

credible greenhouse gas reductions while also delivering net positive benefits to local

communities and biodiversity” (44,p.7).

The “climate section” of the requirements focuses on measuring and monitoring carbon stocks,

GHG emissions, carbon “leakages” (i.e., abnormalities in carbon accounting), carbon emissions

impacts and benefits of the project (Table 13).

The criteria and indicators in this section refer to the tactical and operational levels of forest

planning and decision-making.

32

Table 13. Climate, Community & Biodiversity Alliance required “Climate Section” criteria and

indicators. Adapted from (44)

Criterion Indicators

Net positive

climate impacts

1. Estimate the net change in carbon stocks due to the project activities using

the methods of calculation, formulae and default values of the IPCC 2006 or

using a more robust and detailed methodology.

The net change is equal to carbon stock changes with the project minus carbon

stock changes without the project.

This estimate must be based on clearly defined and defendable assumptions

about how project activities will alter GHG emissions or carbon stocks over the

duration of the project or the project GHG accounting period.

2. Estimate the net change in the emissions of non-CO2 GHG emissions such as

CH4 and N2O in the with and without project scenarios if those gases are likely

to account for more than a 5% increase or decrease (in terms of CO2-

equivalent) of the project’s overall GHG emissions reductions or removals over

each monitoring period.

3. Estimate any other GHG emissions resulting from project activities.

Emissions sources include, but are not limited to, emissions from biomass

burning during site preparation, emissions from fossil fuel combustion, direct

emissions from the use of synthetic fertilizers, and emissions from the

decomposition of N-fixing species.

4. Demonstrate that the net climate impact of the project is positive.

The net climate impact of the project is the net change in carbon stocks plus

net change in non-CO2 GHGs where appropriate minus any other GHG

emissions resulting from project activities minus any likely project-related

unmitigated negative offsite climate impacts.

5. Specify how double counting of GHG emissions reductions or removals will

be avoided, particularly for offsets sold on the voluntary market and

generated in a country with an emissions cap.

Offsite climate

impacts

(“leakage”)

1. Determine the types of leakage that are expected and estimate potential off-

site increases in GHGs (increases in emissions or decreases in sequestration)

due to project activities.

Where relevant, define and justify where leakage is most likely to take place.

2. Document how any leakage will be mitigated and estimate the extent to

which such impacts will be reduced by these mitigation activities.

3. Subtract any likely project-related unmitigated negative offsite climate

impacts from the climate benefits being claimed by the project and

demonstrate that this has been included in the evaluation of net climate impact

of the project.

33

4. Non-CO2 gases must be included if they are likely to account for more than a

5% increase or decrease (in terms of CO2-equivalent) of the net change

calculations (above) of the project’s overall off-site GHG emissions reductions

or removals over each monitoring period.

Climate impact

monitoring

1. Develop an initial plan for selecting carbon pools and non-CO2 GHGs to be

monitored, and determine the frequency of monitoring.

Potential pools include aboveground biomass, litter, deadwood, belowground

biomass, wood products, soil carbon and peat.

Pools to monitor must include any pools expected to decrease as a result of

project activities, including those in the region outside the project boundaries

resulting from all types of leakage identified in CL2.

A plan must be in place to continue leakage monitoring for at least five years

after all activity displacement or other leakage causing activity has taken place.

Individual GHG sources may be considered ‘insignificant’ and do not have to be

accounted for if together such omitted decreases in carbon pools and increases

in GHG emissions amount to less than 5% of the total CO2-equivalent benefits

generated by the project.

Non-CO2 gases must be included if they are likely to account for more than 5%

(in terms of CO2-equivalent) of the project’s overall GHG impact over each

monitoring period.

Direct field measurements using scientifically robust sampling must be used to

measure more significant elements of the project’s carbon stocks.

Other data must be suitable to the project site and specific forest type.

2. Commit to developing a full monitoring plan within six months of the project

start date or within twelve months of validation against the Standards and to

disseminate this plan and the results of monitoring, ensuring that they are

made publicly available on the internet and are communicated to the

communities and other stakeholders.

The “community section” of the CCBA Standard refers to the use of appropriate

methodologies for estimating impacts on communities onsite and offsite and measures to

mitigate these impacts and the development of community-based values and variables to

be monitored (Table 14).

The criteria and indicators in this section refer to the tactical and operational levels of

forest planning and decision-making.

34

Table 14. Climate, Community & Biodiversity Alliance required “Community Section” criteria

and indicators. Adapted from (44).

Criterion Indicators

Net positive

community

impacts

1. Use appropriate methodologies to estimate the impacts on communities,

including all constituent socio-economic or cultural groups such as indigenous

peoples, resulting from planned project activities.

A credible estimate of impacts must include changes in community well-being

due to project activities and an evaluation of the impacts by the affected groups.

This estimate must be based on clearly defined and defendable assumptions

about how project activities will alter social and economic well-being, including

potential impacts of changes in natural resources and ecosystem services

identified as important by the communities ( including water and soil

resources),over the duration of the project.

The ‘with project’ scenario must then be compared with the ‘without project’

scenario of social and economic well-being in the absence of the project. The

difference (i.e., the community benefit) must be positive for all community

groups.

2. Demonstrate that no High Conservation Values will be negatively affected by

the project.

Offsite

stakeholder

impacts

1. Identify any potential negative offsite stakeholder impacts that the project

activities are likely to cause.

2. Describe how the project plans to mitigate these negative offsite social and

economic impacts.

3. Demonstrate that the project is not likely to result in net negative impacts on

the well-being of other stakeholder groups.

Community

impact

monitoring

1. Develop an initial plan for selecting community variables to be monitored and

the frequency of monitoring and reporting to ensure that monitoring variables

are directly linked to the project’s community development objectives and to

anticipated impacts (positive and negative).

2. Develop an initial plan for how they will assess the effectiveness of measures

used to maintain or enhance High Conservation Values related to community

well-being (G1.8.4-6) present in the project zone.

3. Commit to developing a full monitoring plan within six months of the project

start date or within twelve months of validation against the Standards and to

disseminate this plan and the results of monitoring, ensuring that they are made

publicly available on the internet and are communicated to the communities and

other stakeholders.

35

Be

cca

Ma

cDo

na

ld,

Sa

ult

Co

lle

ge

, B

ug

wo

od

.org

Bill C

oo

k, M

ichig

an

Sta

te U

niv

ersity

, Bu

gw

oo

d.o

rg

Paul Wray, Iowa State University, Bugwood.org

The “biodiversity section” of the CCBA Standard involves creating a “with project” scenario of

impacts on biodiversity and comparing this to the baseline “no project” biodiversity scenario

(Table 15).

The indicators refer to native and non-native species, invasive species and the prohibition in

using genetically engineered species. The indicators mostly reflect an operational level of

planning and decision-making.

Overall, these indicators support a strategy of resistance to climate change in protecting native

species and aiming for a “net biodiversity benefit” that uses current conditions as a benchmark.

36

Table 15. Climate, Community & Biodiversity Alliance required “Biodiversity Section” criteria and

indicators. Adapted from (44).

Criterion Indicators

Net positive

biodiversity impacts

1. Use appropriate methodologies to estimate changes in biodiversity as a result of

the project in the project zone and in the project lifetime.

This estimate must be based on clearly defined and defendable assumptions.

The ‘with project’ scenario should then be compared with the baseline ‘without

project’ biodiversity scenario.

The difference (i.e., the net biodiversity benefit) must be positive.

2. Demonstrate that no High Conservation Values will be negatively affected by the

project.

3. Identify all species to be used by the project and show that no known invasive

species will be introduced into any area affected by the project and that the

population of any invasive species will not increase as a result of the project.

4. Describe possible adverse effects of non-native species used by the project on

the region’s environment, including impacts on native species and disease

introduction or facilitation.

Project proponents must justify any use of non-native species over native species.

5. Guarantee that no GMOs will be used to generate GHG emissions reductions orremovals.

Offsite

biodiversity

Impacts

1. Identify potential negative offsite biodiversity impacts that the project is likely

to cause.

2. Document how the project plans to mitigate these negative offsite biodiversity

impacts.

3. Evaluate likely unmitigated negative offsite biodiversity impacts against the

biodiversity benefits of the project within the project boundaries. Justify and

demonstrate that the net effect of the project on biodiversity is positive.

Biodiversity impact

monitoring

1. Develop an initial plan for selecting biodiversity variables to be monitored and

the frequency of monitoring and reporting to ensure that monitoring variables are

directly linked to the project’s biodiversity objectives and to anticipated impacts

(positive and negative).

2. Develop an initial plan for assessing the effectiveness of measures used to

maintain or enhance High Conservation Values related to globally, regionally or

nationally significant biodiversity present in the project zone.

3. Commit to developing a full monitoring plan within six months of the project

start date or within twelve months of validation against the Standards and to

disseminate this plan and the results of monitoring, ensuring that they are made

publicly available on the internet and are communicated to the communities and

other stakeholders.

37

Project developers using CCBA’s 2008 Standards can earn two different levels of certification,

with the “gold” level reserved for projects that demonstrate some “extra” combination of,

among others, “exceptional community benefits, “exceptional biodiversity benefits,” and

“climate change adaptation benefits” (focusing on projects that “will provide significant support

to assist local communities and/or biodiversity to adapt to the impacts of climate change”)

(Table 16).

Table 16. Climate, Community & Biodiversity Alliance optional “Gold Standard” criteria and indicators. Adapted from (44).

Criterion Indicators

Climate change

adaptation

benefits

1. Identify likely regional climate change and climate variability scenarios and

impacts, using available studies, and identify potential changes in the local land-

use scenario due to these climate change scenarios in the absence of the project.

2. Identify any risks to the project’s climate, community and biodiversity benefits

resulting from likely climate change and climate variability impacts and explain

how these risks will be mitigated.

3. Demonstrate that current or anticipated climate changes are having or are likely

to have an impact on the well-being of communities and/or the conservation

status of biodiversity in the project zone and surrounding regions.

4. Demonstrate that the project activities will assist communities and/or

biodiversity to adapt to the probable impacts of climate change.

Exceptional

community

benefits

1. Demonstrate that the project zone is in a low human development country OR

in an administrative area of a medium or high human development country in

which at least 50% of the population of that area is below the national poverty

line.

2. Demonstrate that at least 50% of households within the lowest category of well-

being (e.g., poorest quartile) of the community are likely to benefit substantially

from the project.

3. Demonstrate that any barriers or risks that might prevent benefits going to

poorer households have been identified and addressed in order to increase the

probable flow of benefits to poorer households.

4. Demonstrate that measures have been taken to identify any poorer and more

vulnerable households and individuals whose well-being or poverty may be

negatively affected by the project, and that the project design includes measures

to avoid any such impacts.

Where negative impacts are unavoidable, demonstrate that they will be effectively

mitigated.

5. Demonstrate that community impact monitoring will be able to identify positive

and negative impacts on poorer and more vulnerable groups.

38

The social impact monitoring must take a differentiated approach that can identify

positive and negative impacts on poorer households and individuals and other

disadvantaged groups, including women.

Exceptional

biodiversity

benefits

1. Vulnerability

Regular occurrence of a globally threatened species (according to the IUCN Red

List) at the site:

1.1. Critically Endangered (CR) and Endangered (EN) species - presence of at

least a single individual; or

1.2. Vulnerable species (VU) - presence of at least 30 individuals or 10 pairs.

Or,

2. Irreplaceability

A minimum proportion of a species’ global population present at the site at any

stage of the species’ lifecycle according to the following thresholds:

2.1. Restricted-range species - species with a global range less than 50,000 km2

and 5% of global population at the site; or

2.2. Species with large but clumped distributions - 5% of the global population

at the site; or

2.3. Globally significant congregations - 1% of the global population seasonally

at the site; or

2.4. Globally significant source populations - 1% of the global population at the

site.

The CCBA’s Standard provides useful criteria and indicators for climate change mitigation

projects in forestry, which benefit communities and biodiversity, but it also provides means of

assessing meritorious climate change adaptation forestry projects.

The “Gold Standard” requirements reflect both the resistance and response strategies in

forestry, seeking to protect the most vulnerable populations of species and people (note the

“pro-poor” orientation of the Gold Standard “exceptional community benefits”) while at the

same time assisting their adaptation to climate change.

39

1.8 Summary

Out of the 92 climate change adaptation and mitigation recommendations extracted from the

forestry literature and summarized above, approximately one third (n=32) of these are

applicable to the three climate change adaptation strategies (e.g., resistance, resilience and

response). These recommendations provide a useful starting point for revising the FSC

Canadian Maritimes Standard as they reflect a common potential line of action for climate

change planning and management.

The other 60 recommendations reviewed above belong to one or two of the strategies and

therefore are useful in thinking about what climate change strategies are encompassed within

the FSC Standards. By comparing these 60 recommendations to the FSC C&I, one can get a

better understanding of the extent to which FSC certification favors a resistance, resilience,

response or mitigation strategies to climate change.

Moreover, the categorization of the 92 recommendations according to the three tiers of forest

planning and management provides additional material with which to deliberate on potential

revisions to current FSC Canadian Maritimes Standards.

In addition, four illustrative examples of certification standards were described because they

integrated to some extent climate change considerations within their social and environmental

C&I: CCFM C&I of SFM, the CSA and SFI Standards and the Climate, Community & Biodiversity

Alliance Standards. The “special cases” exemplify different levels of engagement with climate

change and provide additional fodder for thought about how the FSC Standards might assist or

constrain climate change adaptation and mitigation.

Part 2 of the report will pick up on these lines of thought by describing how the FSC Inter-national

Standard has engaged with climate change and by discussing the reviewed adaptation and

mitigation recommendations for forestry in relation to the FSC Canadian Maritimes Standard.

40

Part 2. Climate Change Considerations and FSC Certification_____________

2.1 FSC Exploration and Engagement with Climate Change There is no explicit climate change adaptation strategy promoted by the FSC, but it has initiated

a climate change mitigation strategy (50).

In response to a Policy Motion at the 2008 General Assembly, the FSC put into place a member-

constituted panel to discuss the opportunities, necessities and risks for FSC to develop a clearer

‘climate profile’ with regards to carbon management. The output of the FSC Forest Carbon

Working Group are described in the 2011 Strategic Framework for an FSC Climate Change

Engagement and consists of 4 broad objectives and 16 specific goals (Table 17).

The objectives refer to the recognition of carbon stocks as an environmental value, safe-

guarding the multiple values and benefits of forest management including carbon stocks, the

involvement of FSC operations in carbon accounting frameworks and building the FSC’s

institutional capacity to keep abreast of significant development in carbon management (e.g.,

policy, research, evolving carbon markets).

The goals specify in what ways the FSC, intends to engage with climate change mitigation:

safeguarding values attached to forests; responsible stewardship of carbon stocks; monitoring

the impacts of management practices on forest carbon resources; and quantifying carbon

sequestration or emission reduction accounting.

Table 17. FSC’s Strategic Framework on Climate Change Mitigation. Adapted from (50).

Objectives Goals

1. FSC forest management certification requires the management and assessment of the carbon stock as environmental value.

1. The FSC Principles & Criteria recognize the carbon stock as environmental value that needs to be maintained and/or restored over the long term.

2. FSC operations assess the qualitative and quantitative impacts of their management practices on the carbon stock, ensuring that these practices maintain and/or restore the carbon stock over the long term.

3. FSC demonstrates its contribution to reduce deforestation and forest degradation by maintaining ecosystem functions and high conservation values in natural forests.

4. FSC explores and promotes the important role that ecosystem based adaptation to climate change has for responsible forest management.

41

2. FSC is widely recognized as benchmark and leading certification scheme, including the carbon stewardship in forests, plantations and forest protected areas, thereby contributing to the growth of forest area under FSC certified management.

1. FSC’s leadership in ensuring social and environmental safeguards is recognized and promoted in the context of forest carbon financing.

2. FSC is applicable for management and maintenance of the carbon stock in the context of forest conservation and forest protected areas.

3. FSC has systems in place assessing the social and environmental safeguards of forest carbon projects and programmes at their design stage.

4. FSC is recognized by credible forest carbon schemes in order to facilitate and lead participants towards FSC certification.

5. FSC Network Partners play an active role in the architecture and implementation of REDD+ programmes in key countries.

6. National FSC forest stewardship standards are approved in key countries with REDD+ programmes and interlinked with REDD+ standards.

3. Involvement of FSC operations in carbon claims and reward mechanisms contributes to enhancing FSC’s reputation as a leader in forest stewardship.

1. FSC operations generating rewardable carbon claims comply with a defensible and credible carbon accounting standard

2. FSC standards constrain the use of FSC trademarks related to carbon claims by certificate holders and other parties.

3. FSC fosters multiple mechanisms to reward stewardship of forest carbon storage / sequestration and other ecosystem services.

4. FSC has the institutional capacity to keep up with the rapidly evolving policy framework and financing mechanisms for ecosystem services, to collaborate in research as necessary, and to implement strategic actions as resulting from this strategic framework.

1. The FSC Secretariat actively implements the actions and research resulting from this strategic framework and provides capacity building to the FSC network.

2. FSC establishes a Consultative Forum of experts, practitioners and researchers that discusses, analyzes and proposes strategic options for FSC’s future engagement in frameworks and initiatives related to the mitigation of or adaptation to climate change.

3. FSC establishes specialist advisory panels for reviews of the FSC Principles & Criteria, e.g. on how to address stewardship of ecosystem services.

42

2.2 FSC Maritimes Standard in relation to Climate Change Recommendations for SFM

The approach taken here is to relate the current FSC Maritimes Standard to the climate change

strategies and recommendations reviewed in Part I of the report (Tables 2-11). This analysis is

designed to guide a systematic reflection on climate change and the revision of the FSC

Maritimes Standard.

Of the 10 principles in the FSC Maritimes Standard, only Principle 2 (Tenure and Use Rights and

Responsibilities) was not considered relevant to climate change planning (Table 18).

For each of the other 9 Principles, Criteria and specifications were extracted when they were

deemed relevant to climate change planning (Table 19). I’ve indicated if the criterion reflects

one or more of the climate change strategies (resistance, resilience, response and/or

mitigation). I have also indicated which category of recommendations (forest composition,

forest regeneration, preparing for disturbance, etc.) and which recommendations are most

relevant to each of the Criteria and specifications of the FSC Maritimes Standard.

Recommendations that may be problematic or inconsistent with the current FSC Maritimes

Standard are italicized (Table 19).

Table 18. Climate Change Related FSC Principles

Generic FSC Principle Relevant to climate change

1. Compliance with laws and FSC Principles

2. Tenure and use rights and responsibilities

3. Indigenous people’s rights

4. Community relations and worker’s rights

5. Benefits from the forest

6. Environmental impact

7. Management plan

8. Monitoring and assessment

9. Maintenance of high conservation value forests

10. Plantations

43

Most criteria support more than one climate change strategy (15 out of 25 criteria).

Several criteria and specifications enabled all climate change strategies (10 out of 25 criteria

included in Table 19). These latter criteria and specifications are situated within Principles 1, 3,

4, 5, 6 and 7.

The majority of associated recommendations for these criteria are not problematic, although

some are:

shorten or lengthen rotation lengths;

realign management targets to recognize significantly disrupted conditions,

rather than continuing to manage for restoration to a reference condition

that is no longer realistic given climate change;

incorporate climate change into land use plans and consider the possibility

of land use change at specific locales (forest to agriculture and vice versa);

plant genetically modified species, and

identify more suitable genotypes.

A number of the criteria seem to support solely a Resistance strategy to climate change (7 out

of 25 criteria). These criteria and specifications are situated within Principles 3, 6, 9 and 10.

Associated recommendations that may be problematic include:

consider loss of species’ population on warm range margins and do not

attempt restoration there;

translocate species;

rather than focusing only on historic distributions, spread species over a

range of environments according to modeled future conditions;

assist transitions, population adjustments, range shifts, and other natural

adaptations;

practice high-intensity plantation forestry in selected areas to promote

growth of commercial tree species, and

diversify risk by spreading habitats or plantations over a range of

environments rather than strictly within the historic distribution.

44

Jason Sharman, Vitalitree, Bugwood.org

Only 3 out of 25 criteria seem to support solely a Resilience strategy and they are situated

within principles 6 and 10. Associated recommendations that may be problematic are the same

as those presented above.

There are 3 instances in which criteria or their specification may be interpreted as supporting a

Mitigation strategy and these are situated in Principles 5 and 6. No criterion seems to support a

solely Response strategy.

All the problematic recommendations are associated with Principles 5, 6, 7 and 10.

More detailed information on FSC criteria and specifications and their associated

recommendations are found in Table 19.

The significance of this analysis for the revision of the FSC Maritimes Standard is discussed in

Part 3 of the report.

45 

Table 19: Principles and Criteria of the FSC Maritimes Standard Relevant to Climate Change Strategies and Recommendations  

Principle  Criteria  Specification   Climate Change  Strategy  

Related Recommendations  

Principle 1.  Compliance with Laws and FSC Principles 

1.6 Forest managers shall demonstrate a long‐term  commitment to adhere to the FSC Principles and Criteria. 

1.6.2 The manager demonstrates a long‐term commitment to adhere to the FSC Principles and Criteria. Management planning based on ecological time frames of at least 100 years. 

All   Preparing for disturbance (Table 3)  3. Modify objectives for sustainable forestmanagement and the means we use to achieve them   4. Include climate variables in growth and yieldmodels and incorporate climate change effects into long term timber supply analysis and forest  management plans  

Landscape management (Table 7)  20. Incorporate climate change into land useplans and consider the possibility of land use change at specific locales (forest to agriculture and vice versa)  

Principle 3.  Indigenous  People’s Rights 

3.1 Indigenous peoples shall control forest management on their lands and territories unless they delegate control with free and informed consent to other agencies.  

3.1.2 The applicant applies best efforts towards obtaining agreement from each affected Aboriginal community verifying that their interests and concerns are clearly incorporated into the management plan. 

All   Forest Values (Table 2)  4. Engage the public in a dialogue on values andmanagement under a changing climate 5. Provide alternative coping mechanisms forvulnerable communities  7. Enhance local welfare through the promotionof community‐based forest management and  restoration  8. Improve community wellbeing throughpartnerships  9. Increase public participation in decision‐making and planning 

3.3 Sites of special cultural, ecological, economic or religious significance to Indigenous People(s) shall be clearly Indigenous People(s) 

Resistance 

46 

shall be clearly identified in cooperation with such Peoples, and recognized and protected by forest managers. 

Principle 4.  Community  Relations and  Worker’s Rights 

4.4 Management and planning operations shall incorporate the results of evaluations of social impact. Consultations shall be maintained with people and groups (both men and women) directly affected by management operations . 

 4.4.2 Local communities and community organizations directly affected by forestry activities must be given an opportunity to participate in the setting of forest management goals and in forest management planning. 

All  Forest Values (Table 2)  4. Engage the public in a dialogue on values andmanagement under a changing climate  8. Improve community wellbeing throughpartnerships  9. Increase public participation in decision‐making and planning 

Principle 5.  Benefits from the Forest 

5.1 Forest management should strive toward economic viability while taking into account the full environmental, social and operational costs of production, and ensuring investments necessary to maintain the ecological productivity of the forest. 

5.1.3 The owner/manager shall demonstrate that the acquisition and maintenance of new large equipment considers fuel efficiency, pollution and other environmental impacts. 

Mitigation  Forest Values (Table 2)  2. Redesign and or implement institutions thatfacilitate cost effective and economically efficient adaptation and that provide forest managers with the tools necessary to achieve forest management objectives  

Carbon Management (Table 8)  2. Reduce emissions6. Assessment of GHG emissions fromoperations 

5.4 Forest management should strive to strengthen and diversify the local economy, 

5. 4.1 A diversity of timber andnon‐timber forest products, compatible with site conditions and local economic 

All  Forest Values (Table 2)  1. Diversify society's portfolio of forest assets5. Provide alternative copingmechanisms for vulnerable communities 

47 

avoiding dependence on a single forest  product. 

objectives for strengthening and diversifying the local economy over time, are produced at present, and predicted to continue under management plan forecasts.  Adjustments to forest management practices to accommodate strengthening and diversifying the management unit’s contribution to the local economy from non‐timber forest uses, fish and wildlife 

Landscape management (Table 7)  12. Maintain forest health and diversity duringtransition (e.g., maintain stand vigor, maintain or restore soil quality and nutrient cycling, maintain or restore hydrology, maintain or restore riparian areas, restore habitat and system dynamics, maintain species and structural diversity, realign significantly disrupted conditions, maintain or restore fire to fire‐adapted ecosystems, maintain and restore diversity of native tree species) 

5.5 Forest management operations shall recognize, maintain and, where appropriate, enhance the forest services and resources such as water‐sheds and fisheries. 

5.5.1 The manager identifies forest services provided by the management unit including, but not necessarily limited to, watersheds, fisheries and recreation, drawing on existing information (relevant assessments, inventories, studies) and public consultation as applicable. 

All 

5.6 The rate of harvest of forest products shall not exceed levels which can be permanently sustained. 

5.6.2 Rates of harvest of any forest product shall be sustainable within ecological limits, and harvest levels shall be set within a justifiable growth period and growth area. 

All  Harvesting (Table 6)  1. Be prepared to increase the amount ofsalvage logging  2. Prepare for variable timber supply3. Plan for seasonal operational limitations (e.g.,prepare for reduced winter harvest) 4. Develop alternative harvesting systems andimplement alternative harvesting practices (e.g., 

48 

reduced winter‐harvest opportunities may result in the need for more roads or the use of different types of harvesting equipment on sensitive sites, older stem retention and group selection openings, low impact logging techniques) 5. Shorten rotation lengths (increasedflexibility)  6. Extended rotation lengths (carbonmitigation) 

Principle 6.  Environ‐  mental  Impact 

6.1 Assessment of environmental impact shall be completed ‐‐  appropriate to the scale, intensity of forest management and the uniqueness of the affected resources ‐‐ and adequately integrated into management systems. 

6.1.1 Environmental impacts shall be assessed prior to and following the commencement of site‐disturbance operations. Assessments shall include  landscape level considerations as well as the impacts of onsite processing facilities. 

All  Preparing for disturbance (Table 3)  9. Minimize or mitigate other threats or stresses(e.g., the spread of insects and diseases, herbivory, alter forest structure or composition to reduce risk or severity of fire, establish fuelbreaks to slow the spread of catastrophic fire, alter forest structure to reduce severity or extent of wind damage)  

Landscape management (Table 7)  12. Maintain forest health and diversity duringtransition (e.g., maintain stand vigor, maintain or restore soil quality and nutrient cycling, maintain or restore hydrology, maintain or restore riparian areas, restore habitat and system dynamics, maintain species and structural diversity, realign  significantly disrupted conditions, maintain or restore fire to fire adapted ecosystems, maintain and restore diversity of native tree species) 

6.2 Safeguards shall  6.2.1 Threatened and  Resistance  Forest composition (Table 4)  

49 

exist which protect rare, threatened and endangered species and their habitats (e.g., nesting and feeding areas). Conservation zones and protection areas shall be established, appropriate to the scale and intensity of forest management and the uniqueness of the affected resources. Inappropriate hunting, fishing, trapping and collecting shall be controlled. 

endangered species (as listed by provincial and federal bodies) and their habitat shall be protected or managed in accordance with approved recovery plans. Where recovery plans are not yet approved, a precautionary approach should be taken to avoid disturbance and protect the species and their habitats.  

3. Anticipate and respond to  species decline7. Prioritize and protect existing populations onunique sites (may require active management for conifer species lowlands)  9. Identify and protect functional groups andkeystone species  10. Consider loss of species’ population onwarm range margins and do not attempt restoration there 11. Translocate species12. Study response of species to climatechange (e.g., physiological, behavioral, demographic changes) 

Protected areas (Table 9)  1. Adapt reserves to climate change ( e.g.,expand reserve network, establish artificial reserves for at‐risk and displaced species)  3. Protect the most acutely threatened speciesex situ  4. Increased regional cooperation in speciesmanagement and protected areas management and protected areas management  5. Manage habitats over a range of sites andconditions, expand the boundaries of reserves to increase diversity  6. Maintain and create habitat corridorsthrough reforestation or restoration  

Landscape Management (Table 7)  

2. Realign management targets to recognizesignificantly disrupted conditions, rather than continuing to manage for restoration to a  

50  

 

                                

                                

     reference condition that is no longer realistic given climate change 

6.2.2 Forest owner/managers shall identify and implement measures within their sphere of influence to reduce the threat (from both timber and non‐timber activities) to species that are rare, vulnerable or under investigation by COSEWIC or their provincial equivalents. 

All  Preparing for disturbance (Table 3)  9. Minimize or mitigate other threats or stresses, (e.g., the spread of insects and diseases, herbivory, alter forest structure or composition to reduce risk or severity of fire, establish fuelbreaks to slow the spread of catastrophic fire, alter forest structure to reduce severity or extent of wind damage).   

6.2.3 Primordial forests, where such forests exist on the management unit, shall be included in the High Conservation Value Forest assessment described in Principle 9. 

Resistance  Forest composition (Table 4)  2. Rather than focusing only on historic distributions, spread species over a range of environments according to modeled future conditions.  7. Prioritize and protect existing populations on unique sites (may require active management for conifer species lowlands)   

Landscape management (Table 7)  5. Manage for refugia (e.g., identify and manage refugia for species that may otherwise be lost, try uneven‐aged management to add landscape heterogeneity and "lifeboat" residual species, protect potential refugial habitats, retain biological legacies)  11. Maintain large areas of old growth forests   

51  

                                 

      

Protected areas (Table 9)  2. Increase reserves to protect ecosystem diversity  5. Manage habitats over a range of sites and conditions, expand the boundaries of reserves to increase diversity 

6.3 Ecological functions and values shall be maintained intact, enhanced or restored, including:  a) Forest regeneration and  succession;  

b) Genetic, species and ecosystem diversity; and  

c) Natural cycles that affect the productivity of the forest ecosystem.  

 

6.3.1 The present and projected silviculture, harvest and regeneration methods shall result in a mix of tree species, stand types, landscape ecology and stand structures that mimic the natural variability and historic local pattern of the Acadian Forest.  

Resistance, resilience 

Forest composition (Table 4)  1. Adjust species composition  2. Rather than focusing only on historic distributions, spread species over a range of environments according to modeled future conditions 

    4. Expand genetic diversity guidelines  

Forest regeneration (Table 5)  1. Revise site regeneration objectives  3. Modify seed transfer zones/seed provenances  5. Enrichment sowing and supplemental regeneration  7. Establish or encourage new mixes of native species ("neo‐native forests")  8. Use variable density thinning in dense young stands to provide more resources to surviving individuals and promote resilience and species and structural diversity  9. Facilitate natural selection and evolution by managing the natural regeneration process to enhance disturbances that initiate increased seedling development and genetic mixing  11. Plant genetically modified species and identify more suitable genotypes  12. Breed for pest resistance and for a wider 

52 

tolerance to a range of climate stresses and extremes in specific genotypes  

Harvesting (Table 6)  1. Be prepared to increase the amount ofsalvage logging  4. Develop alternative harvesting systems andimplement alternative harvesting practices  5. Shorten rotation length6.Extended rotations

6.3.2 Silvicultural and harvesting practices shall result in canopy closure levels that are consistent with the natural disturbance pattern on the eco‐site. 

Resistance, resilience 

Preparing for Disturbance (Table 3)   3. Agree on standardized climate scenarios foranalysis  6. Anticipate variability and change and conductvulnerability assessment  8. Prepare for changes in disturbance regimes(e.g., increased wildfire activity, higher‐elevation insect outbreaks, species mortality events, altered fire regimes) 

6.3.3 Silviculture practices result in age, diameter, species and height class distributions that are within the range of natural variability. 

Resistance, resilience 

Landscape management (Table 7)  2. Realign management targets to recognizesignificantly disrupted conditions, rather than continuing to manage for restoration to a reference condition that is no longer realistic given climate change  8. Promote diverse age classes9. Represent forest types10. Increase redundancy and buffers (e.g.,planting with mixed species and age classes, increasing locations, sizes and range of habitats for landscape‐ scale vegetation treatments; increase the number of rare plant populations 

53  

targeted for restoration)  13. Practice intensive management to secure populations of high value  14. Enhance forest growth through forest fertilization  15. Employ vegetation control techniques to offset drought  16. Focus on high productivity sites rather than poor sites  

6.3.6 The rationale for all decisions to plant tree seedlings (instead of relying on natural regeneration) shall be well defended and documented in the management plan.  Where planting occurs, use of seed sources that are genetically appropriate to the site.  

Resistance, resilience 

Forest regeneration (Table 5) 1. Revise site regeneration objectives 2. Practice high‐intensity plantation forestry in selected areas to promote growth of commercial tree species  3. Modify seed transfer zones/seed provenances 4. Maintain seed or nursery stock of desired species for use following severe disturbance  7. Establish or encourage new mixes of native species ("neo‐native forests")  8. Use variable density thinning in dense young stands to provide more resources to surviving individuals and promote resilience and species and structural diversity  9. Facilitate natural selection and evolution by managing the natural regeneration  11. Plant genetically modified species and identify more suitable genotypes  12. Breed for pest resistance and for a wider tolerance to a range of climate stresses and extremes in specific genotypes  

54 

6.3.7 The owner/manager shall strive to approximate spatial patterns and distributions of forest communities representative of natural forest characteristics for the landscape level.  

Resistance, resilience 

Forest composition (Table 4)  1. Adjust species composition2. Rather than focusing only on historicdistributions, spread species over a range of environments according to modeled future conditions  4. Expand genetic diversity guidelines

6.3.8 Forest fragmentation is minimized and connectivity is maintained or restored between important wildlife habitats and key landscape features such as HCVFs, late seral stage forests and protected areas.  

Resilience  Landscape management (Table 7)  1. Maintain connectivity in a varied, dynamiclandscape  2. Realign management targets to recognizesignificantly disrupted conditions, rather than continuing to manage for restoration to a reference condition that is no longer realistic given climate change  3. Diversify risk by spreading habitats orplantations over a range of environments rather than strictly within the historic distribution  4. Use landscape‐scale planning and partnershipsto reduce fragmentation and enhance connectivity  17. Assist transitions, population adjustments,range shifts, and other natural adaptations (e.g., Facilitate transition from forests to grasslands on shallow and sandy soils) 18. Increase the colonization capacity in theareas between existing habitat and areas of potential new habitat 

55 

6.3.9 Local seed sources shall be maintained by ensuring that viable populations remain at the landscape level.  Evidence of consideration of the population dynamics of tree species  (viable population size, frequency of good seed years, seed dispersal characteristics, germination/ uptake conditions, etc.) in silvicultural and harvesting prescriptions  

Resilience and response 

Forest regeneration (Table 5)  3. Modify seed transfer zones/seed provenances11. Plant genetically modified species andidentify more suitable genotypes 12. Breed for pest resistance and for a widertolerance to a range of climate stresses and extremes in specific genotypes 

6.3.11 Management plans are in place and are implemented to protect water quality in watersheds and to prevent unnatural fluctuations in water temperature and discharge. 

Resistance, resilience 

Landscape management (Table 7)  12. Maintain forest health and diversity duringtransition (e.g., maintain stand vigor, maintain or restore soil quality and nutrient cycling, maintain or restore hydrology, maintain or restore riparian areas, restore habitat and system dynamics, maintain species and structural diversity, realign significantly disrupted conditions, maintain or restore fire to fire‐adapted ecosystems, maintain and restore diversity of native tree species) 

Infrastructure (Table 10)  2. Adjust culvert size requirements and roaddesign for changes in peak flow  3. Develop guidelines under which restorationprojects or rebuilding of human structures should occur after climate disturbances  6. Ensure that infrastructure investments do notinterrupt conservation or riparian corridors 

56 

6.4 Representative samples of existing ecosystems within the landscape shall be protected in their natural state and recorded on maps, appropriate to the scale and intensity of operations and the uniqueness of the affected resources.  

6.4.2 Representative samples of ecosystems that are present on the management unit and underrepresented in protected areas on the landscape are designated in the management plan and on maps and protected in their natural state. 

Resistance  Landscape management (Table 7)  3. Diversify risk by spreading habitats orplantations over a range of environments rather than strictly within the historic distribution  9. Represent forest types10. Increase redundancy and buffers (e.g.,planting with mixed species and age classes, increasing locations, sizes and range of habitats for landscape‐scale vegetation treatments; increase the number of rare plant populations targeted for restoration 17. Assist transitions, population adjustments,range shifts, and other natural adaptations (e.g., Facilitate transition from forests to grasslands on shallow and sandy soils) 20. Incorporate climate change into land useplans and consider the possibility of land use change at specific locales (forest to agriculture and vice versa)  

Protected areas (Table 9)  1. Adapt reserves to climate change (e.g., expandreserve network, establish artificial reserves for at‐risk and displaced species) 2. Increase reserves to protect ecosystemdiversity  4. Increased regional cooperation in speciesmanagement and protected areas management  5. Manage habitats over a range of sites andconditions, expand the boundaries of reserves to increase diversity  6. Maintain and create habitat corridors throughreforestation or restoration 

57 

6.5 Written guidelines shall be prepared and implemented to control erosion; minimize forest damage during harvesting, road construction and all other mechanical disturbances; and protect water resources. 

6.5.1 Road construction and maintenance must be conducted so as to minimize damage to the forest and water areas.  

Resilience, response and mitigation 

Carbon management (Table 8)  1. Minimize road networks4. Avoid constructing roads in landslide‐proneterrain where increased precipitation and melting of permafrost may increase the hazard of slope failure  5. Maintain, decommission, and rehabilitateroads to minimize sediment runoff due to increased precipitation and melting of permafrost 

6.8 Use of biological control agents shall be documented, minimized, monitored, and strictly controlled in accordance with national laws and internationally accepted scientific protocols. Use of genetically modified organisms shall be prohibited. 

6.8.3 Genetically modified organisms shall not be used.  

Resistance  Forest regeneration (Table 5)  11. Plant genetically modified species andidentify more suitable genotypes  12. Breed for pest resistance and for a widertolerance to a range of climate stresses and extremes in specific genotypes 

6.9 The use of exotic species shall be carefully controlled and actively monitored to avoid adverse ecological impacts.  

6.9.1 Exotic tree species shall not be introduced unless the owner/manager provides clear evidence that:  a) there is a known risk andlow risk of invasion or adverse effects on surrounding habitat; b) it is not introduced intoareas identified as of High Conservation Value under Principle 9;  c) it is limited to no more than5% of the management unit;  

Resistance, resilience 

Forest regeneration (Table 5)  1. Revise site regeneration objectives2. Practice high‐intensity plantation forestry inselected areas to promote growth of commercial tree species  3. Modify seed transfer zones/seed provenances7. Establish or encourage new mixes of nativespecies ("neo‐native forests")  9. Facilitate natural selection and evolution bymanaging the natural regeneration process to enhance disturbances that initiate increased seedling development and genetic mixing 

58 

d) there is not more than 50haof contiguous area of exotic species within an age class; and  e) the exotic species are notconcentrated in a particular eco‐site type.

6.10 Forest conversion to plantations or non‐forest land uses shall not occur, except in circumstances where conversion:  a) entails a very limitedportion of the forest management unit; and  b) does not occur onhigh conservation value forest areas; and  c) will enable clear,sustainable, additional, secure long‐term conservation benefits across the forest management unit. 

6.10.1 Forest conversion to plantations or non‐forest land uses shall not occur, except in circumstances where conversion:  a) does not take place in areasidentified as of High Conservation Value Forests under Principle 9;  b) is limited to no more than5% of the management unit;  c) is limited to no more than50ha of contiguous area of plantation conversions within an age class; and  d) is not concentrated in asingle eco‐site type. 

Resistance, resilience 

Forest Regeneration (Table 5)  2. Practice high‐intensity plantation forestry inselected areas to promote growth of commercial tree species  

Landscape management (Table 7)  3. Diversify risk by spreading habitats orplantations over a range of environments rather than strictly within the historic distribution  17. Assist transitions, population adjustments,range shifts, and other natural adaptations (e.g., Facilitate transition from forests to grasslands on shallow and sandy soils) 19. Avoid land use conversion20. Incorporate climate change into land useplans and consider the possibility of land use change at specific locales (forest to agriculture and vice versa) 

6.10.2 Management actions are undertaken to convert unused non‐forest areas (landings, gravel pits, camps, roads, trails, former agricultural lands) back to forest.

Resilience and mitigation 

Carbon management (Table 8)  1. Deactivate and rehabilitate roads tomaximize productive forest area and forest  

    sinks 

59 

Principle 7. Management Plan  

7.1 The management plan  and supporting documents shall provide:a) Managementobjectives;  b) Description of theforest resources to be managed, environmental limitations, land use and ownership status, socio‐ economic conditions, and a profile of adjacent lands;  c) Description ofsilvicultural and/ or other management system, based on the ecology of the forest in question and information gathered through resource inventories;  d) Rationale for rate ofannual harvest and species selection;  e) Provisions formonitoring of forest growth and dynamics;  f)Environmental safe

7.1.6 For all lands which do not have the physical or functional characteristics of the natural forest for that site (see  references in the Glossary definition of “eco‐site”), a restoration plan shall be included in the management plan which considers various options and which moves the site toward a condition more characteristic of an appropriate natural forest type.  

All  Landscape management (Table 7)  2. Realign management targets to recognizesignificantly disrupted conditions, rather than continuing to manage for restoration to a reference condition that is no longer realistic given climate change  

7.1.8 On management units larger than 500 hectares the management plan shall include a landscape level plan which the owner/manager has initiated or participated in, in accordance with the requirements of Criterion 4.4. 

All  Landscape management (Table 7)  20. Incorporate climate change into land useplans and consider the possibility of land use change at specific locales (forest to agriculture and vice versa)  

7.1.10 The predictable future influence of pests, pathogens and non‐commercial species on allowable harvests, timber values, stocking etc. shall be taken into account and prepared for in the management plan.  

All  Preparing for disturbance (Table 3)  8. Prepare for changes in disturbance regimes(e.g., increased wildfire activity, higher‐elevation insect outbreaks, species mortality events, altered fire regimes) 9. Minimize or mitigate other threats or stresses(e.g., the spread of insects and diseases, herbivory, alter forest structure or composition to reduce risk or severity of fire, establish fuelbreaks to slow the spread of catastrophic fire, alter forest structure to reduce severity or 

60 

guards based on environmental assessments;  g) Plans for theidentification and protection of rare, threatened and endangered species;  h) Maps describing theforest resource base including protected areas, planned management activities and land ownership; and  i) Description andjustification of harvesting techniques and equipment to be used.  

extent of wind damage)  10. Actively manage forest disturbances(e.g.,pest)  

7.1.12 The management plan shall include a strategy for monitoring forest changes and assessing the environmental and social impacts of forest management.  

All  Preparing for disturbance (Table 3)  1. Monitor to determine when and what changesare occurring  2. Adopt risk assessment and adaptivemanagement principles  3. Agree on standardized climate scenarios foranalysis  

7.2 The management plan shall be periodically revised to incorporate the results of monitoring or new scientific and technical information, as well as to respond to changing environmental, social and economic circumstances.  

7.2.1 Indicators of progress relative to objectives shall be identified and an effective and thorough plan for monitoring these indicators shall be in place.  

61  

Principle 8. Monitoring and Assessment   

8.2 Forest management should include the research and data collection needed to monitor, at a minimum, the following indicators:  (a) yield of all forest products harvested;  (b) growth rates, regeneration and condition of the forest; (c) composition and observed change in the flora and fauna;  (d) environmental and social impacts of harvesting and other operations;  (e) costs, productivity, and efficiency of forest management.  

8.2.2 Forest management should include the research and data collection needed to monitor species at risk, protected areas and other indicators of high biodiversity appropriate to scale.   

Resistance   

Preparing for disturbance (Table 3)  5. Anticipate surprises and threshold effects  6. Anticipate variability and change and conduct vulnerability assessment  7. Foster learning and innovation  

Principle 9. Maintenance of High Conservation Value Forests   

9.3 The management plan shall include and implement specific measures that ensure the maintenance and/or enhancement of the applicable conservation attributes consistent with the precautionary approach. These measures shall be specifically included in 

9.3.1 The management plan and supporting documents include specific strategies to ensure the maintenance and/or enhancement of the High Conservation Values identified in 9.1.1.   

Resistance   

Forest Composition (Table 4)  7. Prioritize and protect existing populations on unique sites (may require active management for conifer species lowlands) 

  Protected Areas (Table 9)  5. Manage habitats over a range of sites and conditions, expand the boundaries of reserves to increase diversity  

 

62  

the publicly available management plan summary.  

Principle 10. Plantations   

10.2 The design and layout of plantations should promote the protection, restoration and conservation of natural forests, and not increase pressures on natural forests. Wildlife corridors, streamside zones and a mosaic of stands of different ages and rotation periods shall be used in the layout of the plantation,  consistent with the scale of the operation. The scale and layout of plantation blocks shall be consistent with the patterns of forest stands found within the natural landscape.  

10.2.2 In proportion to the scale of operations, plantation blocks contain features that enhance ecological values, including but not limited to, shoreline and riparian areas, and, if applicable, wildlife corridors and a range of age classes and tree species.     

Resilience,  response                   

Forest Composition (Table 4)  5. Increase species and genetic diversity in plantations  

 Landscape management (Table 7)  6. Avoid planting new forests in area likely to be subject to natural disturbance (e.g., flood)  13. Practice intensive management to secure populations of high value  17. Assist transitions, population adjustments, range shifts, and other natural adaptations (e.g., Facilitate transition from forests to grasslands on shallow and sandy soils) 18. Increase the colonization capacity in the areas between existing habitat and areas of potential new habitat  19. Avoid land use conversion  20. Incorporate climate change into land use plans and consider the possibility of land use change at specific locales (forest to agriculture and vice versa)  

10.3 Diversity in the composition of plantations is preferred, so as to enhance economic, ecological and social stability. Such diversity may include the 

10.3.1 Plantation areas shall be planned and managed in a manner that contributes to site level and landscape level diversity.   

63  

size and spatial distribution of management units within the landscape, number and genetic composition of species, age classes and structures.  

10.4 The selection of species for planting shall be based on their overall suitability for the site and their appropriateness to the management objectives. In order to enhance the conservation of biological diversity, native species are preferred over exotic species in the establishment of plantations and the restoration of degraded ecosystems. Exotic species, which shall be used only when their performance is greater than that of native species, shall be carefully monitored to detect unusual mortality, disease, or insect 

10.4.1 The management plan shall include a rationale for the selection of all species used in plantations, including their overall site suitability and a justification for the use of any non‐native species.  

Resistance  Forest Regeneration (Table 5)  2. Practice high‐intensity plantation forestry in selected areas to promote growth of commercial tree species   Landscape management (Table 7)  3. Diversify risk by spreading habitats or plantations over a range of environments rather than strictly within the historic distribution  17. Assist transitions, population adjustments, range shifts, and other natural adaptations (e.g., Facilitate transition from forests to grasslands on shallow and sandy soils) 19. Avoid land use conversion  20. Incorporate climate change into land use plans and consider the possibility of land use change at specific locales (forest to agriculture and vice versa)      

64 

outbreaks and adverse ecological impacts.  

10.5 A proportion of the overall forest management area, appropriate to the scale of the plantation and to be determined in regional standards, shall be managed so as to restore the site to a natural forest cover.  

10.5.1 The total area of plantations shall not exceed 10% of the management unit.  

10.7 Measures shall be taken to prevent and minimize outbreaks of pests, diseases, fire and invasive plant introductions.  

10.7.1 The risk of damage to plantations by wind, fire, pests, and disease should be minimized through measures that include management for a diverse forest across the management unit in terms of age/height, species, structure and genetics.  

Resilience   Preparing for disturbance (Table 3)  9. Minimize or mitigate other threats or stresses(e.g., the spread of insects and diseases, herbivory, alter forest structure or composition to reduce risk or severity of fire, establish fuelbreaks to slow the spread of catastrophic fire, alter forest structure to reduce severity or extent of wind damage)  10. Actively manage forest disturbances(e.g.,pests) 

10.8 No species should be planted on a large scale until local trials and/or experience have shown that they are ecologically well‐adapted to the site, are not invasive, and do not have significant negative 

10.8.2 On management units where the total area of plantations is greater than 1000 hectares, a monitoring program shall include a specific focus on the impacts of the plantation(s) on:  

a) natural regeneration;b) water resources;

Resilience   Landscape management (Table 7)  20. Incorporate climate change into land useplans and consider the possibility of land use change at specific locales (forest to agriculture and vice versa)  

65 

ecological impacts on other ecosystems. Special attention will be paid to  social issues of land acquisition for plantations, especially the protection of local rights of ownership, use, or access.  

c) soil fertility;d) local welfare; ande) social wellbeing.

10.8.3 Before exotic species are planted on an operational basis the owner/manager ensures that field trials have been conducted in the region, sufficient to ensure full compliance with all aspects of Indicator 10.4.1.  

Resilience   Preparing for disturbance (Table 3)  1. Monitor to determine when and what changesare occurring  2. Adopt risk assessment and adaptivemanagement principles  3. Agree on standardized climate scenarios foranalysis  

Forest Regeneration (Table 5)  2. Practice high‐intensity plantation forestry inselected areas to promote growth of commercial tree species  

66  

Part 3. Key Questions and Challenges Ahead for the FSC Maritimes Standard 

3.1 How to adapt forests (FSC certification) to a changing climate?     The analysis in Part 2 of this report suggests that the majority of the criteria in the current FSC Maritimes Standard support a Resistance and/or Resilience approach to climate change in sustainable forest management.   Three criteria may be interpreted to support carbon management and thus climate change mitigation.    Several criteria may support a response strategy although such a strategy is in many ways inconsistent with the general direction of the FSC Principles.  For example, several problematic recommendations that exemplify a Response strategy were indicated in relation to Principles 5, 6, 7 and 10.  These problematic recommendations refer to pro‐ actively assisting forest transition either with regards to species composition, structure and function, but also ecosystem type and land‐use conversion (e.g., forest to non‐forest ecosystem).   Other problematic recommendations refer to disregarding historic conditions and limiting restoration efforts that seek to recreate past ecosystem conditions.    Among perhaps the most inconsistent recommendations with FSC Principles and Criteria are the use of genetically modified organisms, the use of intensive plantation forestry and the active translocation of species (i.e., assisted migration).   It appears that some of the ecological ideas structuring the FSC Maritimes Standard (both the Maritimes and generic Standard) such as the emulation of natural disturbance, relying of historic ecological benchmarks and favoring natural regeneration may require some thought in the context of climate change.   Each of these topics is complex and defies an easy solution with regards to how one would integrate it with climate change planning. However, there are questions one should probably ask with regards to each of these topics to at least begin thinking and debating the issue of climate change (Table 20).  

 

67  

Table 20. Key questions for the FSC Maritimes Standard in relation to climate change planning   

Idea   Questions 

Emulating Natural Disturbances   How are disturbance regimes expected to  change under climate change scenarios?   

Is emulating past disturbance regimes in  forest management increasing the adaptive  capacity of New Brunswick’s forests?   

 What range of variation in natural disturbance is appropriate to emulate given the other stresses New Brunswick forests are likely to confront because of climate change?  

Restoring the Acadian forest to historic  benchmark  

What are the benefits and risks of trying to maintain the Acadian forest as it has been over the last 200 years?   

What is the most sensible historic benchmark to use in restoring the Acadian forest given climate change projections (e.g., last glacial maximum, pre‐Aboriginal colonization, pre‐European colonization)?  

Favoring natural regeneration  How will one judge whether a current species or migrating species is native to New Brunswick (i.e., how long does a species need to be present within its current range to be native)?     

Should regeneration practices target the adaptive capacity of species to respond to climate change or some other criteria? To what extent are these criteria consistent?   

To what extent will natural regeneration facilitate climate change adaptation of species in New Brunswick’s forests?   

 

Another important challenge to customary thinking in sustainable forest management and embodied in the FSC Standard which may need reconsideration because of climate change is the belief (or hope that) it is possible to achieve the multiple benefits and values of forests using current best practices in sustainable forest management.    However, the values of carbon management, biodiversity conservation and maximizing forest products may require different and conflicting landscape management strategies (e.g., should 

68  

A pivotal idea that may shed some light as to how to integrate more‐or‐less pro‐active adaptation options for sustainable forest management is illustrated in current policy developments with regards to the assisted migration of species in Canada. 

Howard F. Schwartz, Colorado State University, Bugwood.org 

plantation forestry become a more prominent practice in forest management if it entails greater carbon sequestration, increased production of forest products and the ability to assist the migration of species)?  

The current FSC Maritimes Standard offers little guidance for how to resolve conflicting values and goals in forest management with regards to climate change adaptation and mitigation.  

As it stands the FSC Maritimes Standard has not broached the issues of the vulnerability of forests to climate change and the need to assess the risks involved in a business‐as‐usual versus a pro‐active climate change strategy in forest certification.  

 A short description of what is assisted migration and how it may provide some means of adapting forests to climate change while being mindful of maintaining genetic diversity and working within historic benchmarks are discussed next.                           

 

  

69  

For instance, recent policy changes in British Colombia allow forest practitioners to plant western larch beyond its range (assisted range expansion) based on its likely future suitable habitat given climate change projections.  

3.2 Assisted Migration of Species 

The assisted migration of species was proposed several decades ago as a means of addressing the impacts of climate change on species populations within protected areas (51).   While its risks and benefits have been debated in the conservation biology and forestry research communities, and suggestions for planning and management given, there is little consensus within the academic literature over whether to adopt it or not as a policy option (52).   The use of assisted migration in forestry, however, appears to be less contentious than in conservation biology, in which assisted migration has been proposed as a species rescue strategy in response to climate change impacts and projections. The translocation of threatened species beyond their historic range in an effort to avoid their extinction has generated a lot of debate due to risks of species invasiveness and other potential degradation of the recipient community, among other arguments (52).   In forest management the practice of moving populations of species within their historic range or slightly beyond their current range is not new (53). Seed (provenance and transfer) and species selection policy across Canada already address the suitability of species to current ecological conditions and in some jurisdictions, seed policies are being adjusted to improve the adaptive capacity of 43 populations of widespread commercial forestry tree species.    In forestry the potential use of assisted migration mainly targets widespread commercial tree species and seeks to change forest regeneration practices to protect the genetic diversity of these trees by moving populations of species within their historic range or slightly beyond this range.   The determination of a species’ range is somewhat different than that customarily used in current forest management. Rather than look to the near past (i.e., pre‐European colonization about 300 years ago), proponents of the assisted migration of species in forestry tend to look at the more distant past (i.e., recent glacial maximum about 20 000 years ago) to determine the extent of species range.   

70  

Thus, depending on which time scale you base your historic benchmark, the determination of native species may vary. 

These Response strategies are consistent with the “spirit” of the FSC Maritimes Standard. However, they may not be entirely consistent with the current FSC Maritimes Standard, depending on which historic benchmark is chosen.  

The choice of which historic baseline, however, involves value judgments that are not entirely encompassed within evolutionary genetics and ecology (e.g., while there may be some ecological value in envisioning a scenario in which large mammals are translocated to North America, this “re‐wilding” of our ecosystems is unlikely to get a social license even if rigorous evolutionary reasoning may support the idea (54)).  

 A more contentious approach to the assisted migration of species is the translocation of exotic tree species. However, the meaning of exotic can be ambiguous.  Are species (composition and abundance) that may have occurred in New Brunswick 10 000 years ago (in)consistent with the identity of the Acadian forest of the last 300 years (e.g., is Salix nigra found along the St‐John river a native or non‐native species)? 

Species translocated from other continents are more clearly understood as exotics and while this kind of translocation for forestry purposes is not new (e.g., Pinus radiata, Douglas fir) it is not generally considered a climate change adaptation option because the genetic diversity and productivity of native commercial tree species is deemed sufficient.    Thus the assisted migration of populations of commercial tree species and assisted range expansion are potential Response strategies that take future suitable habitat of species into consideration given climate change projections.   

 

 

 

 

These adaptation options would also require reconsidering the role of plantation forestry in adapting forests to future climate as well as discussing the merits of current ideas about the appropriate composition of the Acadian Forest and landscape scale planning objectives integrating new environmental values (e.g., carbon management).  Indeed, the idea of the assisted migration of species in its different forms can help clarify the kinds of issues requiring deliberation in the revision of the FSC Maritimes Standard.     

71  

Joseph O'Brien, USDA Forest Service, Bugwood.org 

Conclusion__________________________________________________________________       

The results of this literature review and analysis of the (in)consistencies of climate change recommendations for sustainable forest management in relation to the FSC Maritimes Standard suggests that in many respects, the current Standard supports a Resistance and Resilience climate change strategy.   Underlying these strategies is the hope that current best practices in sustainable forest management in accordance to the FSC certification standards should allow forests to adapt to climate change naturally and without need to incorporate an overly pro‐active Response strategy in the FSC Principles and Criteria. 

 Nevertheless, fundamental questions about the utility and appropriateness of some of the ecological assumptions structuring the FSC Principles and Criteria such as the emulation of natural disturbance, historic benchmarks and the (passive) role of humans in assisting the migration of species in forests requires much greater thought in the context of climate change.   These are questions that straddle ecology, environmental ethics and environmental policy and cannot be answered by science alone, e.g., the best available science cannot tell us whether we should or should not seek to recreate the Acadian forest as it has been in the last 300 years.    These are questions for which greater public debate is required to inform decision‐making processes and certification standards that will determine the nature of future forests in New Brunswick.  

 

 

72  

Literature Cited_________________________________________________    1. Williamson, T.B.; Colombo, S.J.; Duinker, P.N.; Gray, P.A.; Hennessey, R.J.; Houle, D.; Johnston, M.H.; Ogden, A.E.; Spittlehouse, D.L. 2009. Climate change and Canada’s forests: from impacts to adaptation. Sustain. For. Manag. Netw. and Nat. Resour. Can., Can. For. Serv., North. For. Cent., Edmonton, AB. 104 p.  

2.  Gray, D.R. 2008. The relationship between climate and outbreak characteristics of the spruce budworm in eastern Canada. Climatic Change 87: 361‐383.  

3. Ayres, M. and Lombardero, M. 2000. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment 262: 263‐286.  

4. Loo, J. and Ives, N. 2003. The Acadian forest: historical condition and human impacts. Forestry Chronicle 79(3): 462‐474. 

5. Iverson, L., Prasad, A. and Matthews, s. 2008. Modeling potential climate change impacts on the trees of the northeastern US. Mitigation and Adaptation Strategies for Global Climate Change 13: 487‐516.  

6. Zhu, K., Woodall, C.W., and Clark, J.S. 2012. Failure to migrate: lack of tree range expansion in response to climate change. Global Change Biology 18: 1042‐1052.  

7. Cross, M.S., Zalaveta, E.S., Bachelet, D., et al. 2012. The Adaptation for Conservation Targets (ACT) Framework: a tool for incorporating climate change into natural resource management. Environmental Management 50: 341‐351.  

8. Klenk, N.L., Adams, B.W., Bull, G.Q. et al. 2011. Climate change adaptation and sustainable forest management: A proposed reflexive research agenda. The Forestry Chronicle 87(3): 351‐ 357.  

9. Spittlehouse, D.L. 2005. Integrating climate change adaptation into forest management.  The Forestry Chronicle 81(5): 691‐695.  

10. Johnston, M. and Hesseln, H. 2012. Climate change adaptive capacity of the Canadian forest sector. In Press. Forest Policy and Economics.  

11. Noss, R.F. 2001. Beyond Kyoto: forest management in a time of rapid climate change. Conservation Biology 15(3): 578‐590.  

12. Spittlehouse, D.L. and Stewart, R.B. 2003. Adaptation to climcate change in forest management. BC Journal of Ecosystems and Management 4(1): 1‐11.  

13. Millar, C.I., Stephenson, N.L., and Stephens, S.L. 2007. Climate change and forests of the future: Managing in the face of uncertainty.  Ecological Applications 17(8): 2145‐2151.  

14. Millar, Constance I., Nathan L. Stephenson, and Scott L. Stephens, 2008. (February 5, 2008). Reframing forest and resource management strategies for a climate change context. U.S. 

73  

Department of Agriculture, Forest Service, Climate Change Resource Center. Media: millar020508.pdf  

15. Bolte, A., Ammer, C., Lof, M., Madsen, P., Nabuurs, G.‐J., Schall, P., Spathelf, P. and Rock,  J. 2009. Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scandinavian Journal of Forest Research 24: 473‐482.  

16. Galatowitsch S, Frelich L, Phillips‐Mao L. Regional climate change adaptation strategies for biodiversity conservation in a midcontinental region of North America. Biological Conservation 2009;142:2012‐2022.  

17. Gunn, J.S., Hagan, J.M. and Whitman, A.A. 2009. Forestry adaptation and mitigation in a changing climate. A forest resource manager’s guide for the Northeastern US. Manomet Center for Conservation Sciences Report NCI‐2009‐1. 16 pp. . Brunswick, ME. Available online at: www.manometmaine.org  

18. Kolstrom, M., Lindner, M., Vilen, T., Maroschek, M., Seidl, R., Lexer, M.J., Netherer, S., Kremer, A., Delzon, s., Barbati, A., Marchetti, M. and Corona, P. 2011. Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests 2: 961‐982.   

19. Gunderson, L.H. C.S. Holling. 2002. Panarchy: Understand Transformation in Human and Natural Systems.   

20. Holling CS and Meffe Gary K. 1996. Command and control and the pathology of natural resource management. Conservation Biology 10(2): 328‐337.  

21. Nitschke, C.R., and J.L. Innes. 2008. Integrating climate change into forest management in south‐central British Columbia: An assessment of landscape vulnerability and the development of a climate smart framework. Forest Ecology and Management 256(3): 313‐327.   

22.  Johnston, M.H.; Campagna, M.; Gray, P.A.; Kope, H.H.; Loo, J.A.; Ogden, A.E.; O’Neill, G.A.; Price, D.T.; Williamson, T.B. 2009. Vulnerability of Canada's tree species to climate change and management options for adaptation: an overview for policy makers and practitioners. Canadian Council of Forest Ministers. 44p.  

23. Miller, S., Hickson, D., Wilson, D., 2008. From Strategy to Action Involvement and Influence in Top Level Decisions. Long Range Planning 41, 606‐628.   

24. Baskerville, G., 1986. Understanding forest management. Forestry Chronicle 62, 339‐347.   25. Morin, G., Hickey, G. and Klenk, N.L. 2012. Publicly‐funded forest research in Canada:  distinguishing between different levels of substantive policy relevance. Submitted to  Environmental Science and Policy  

26. Lemprière, T.C.; Bernier, P.Y.; Carroll, A.L.; Flannigan, M.D.; Gilsenan, R.P.; McKenney, D.W.; Hogg, E.H.; Pedlar, J.H.; Blain, D. 2008. The importance of forest sector adaptation to climate change. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta. Information Report NOR‐X‐416E. 78 p.  

27. Davis, R.G., Martell, D.L., 1993. A decision‐support system that links short term sylvicultural 

74  

operating plans with long term forest‐level strategic plans. Can. J. For. Res.‐Rev. Can. Rech. For. 23, 1078‐1095.  

28. Beaudoin, D., Frayret, J.M., LeBel, L., 2008. Hierarchical forest management with anticipation: An application to tactical‐operational planning integration. Can. J. For. Res.‐Rev. Can. Rech. For. 38, 2198‐2211.  

29. Tittler, R., Messier, C., Burton, P.J., 2001. Hierarchical forest management planning and sustainable forest management in the boreal forest. Forestry Chronicle 77, 998‐1005.  

30. Janowiak, M.K., et al. 2010. Silvicultural decision‐making in an uncertain climate future: a workshop‐based exploration of considerations, strategies, and approaches. USFS, Northern Research Station, General Technical Report NRS‐81.  

31. Evans, A.M. and Perschel, R. 2009. A review of forestry mitigation and adaptation strategies in the Northeast US. Climatic Change 96: 167‐183.  

32. Heller NE, Zavaleta ES. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biological Conservation 2009; 142:14‐32.  

33. Lawler JJ. Climate change adaptation strategies for resource management and conservation planning. The Year in Ecology and Conservation Biology 2009;1162:79‐98.  

34. Swanson, c. and Janowiak, M. 2012. Forest adaptation resources: climate change tools and approaches for land managers. US Forest Service technical report NRS‐87, Newton Square, PA.  

35. Roberts, G., Parrotta, J. and Wreford, A. 2009. “Current adaptation measures and policies” p. 123‐133 in R. Seppala, A. Buck and P. Katila (Eds.) Adaptation of forests and people to climate change. A global assessment report. IUFRO World Series vol. 22. Helsinki. 224p.  

36. West, J.M., Julius, S.H., Kareiva, P., Enquist, C., Lawler, J.J., Petersen, B., Johnson, A.E., and Shaw, M.R. 2009. U.S. Natural resources and climate change: concepts and approaches for management adaptation. Environmental Management 44: 1001‐1021.  

37. Spies, T.A., Giesen, T.W., Swanson, F.J., Franklin, J.F., Lach, D., and Johnson, K.N. 2010. Climate change adaptation strategies for federal forests of the Pacific Northwest, USA: ecological, policy, and socio‐economic perspectives. Landscape Ecology 25: 1185‐1199.  

38. Joyce, L.A., Blate, G.M., McNulty, S.G., Millar, C.I., Moser, S., Neilson, R.P., and Peterson, D.L. 2009.  Managing for multiple resources under climate change: National forests. Environmental Management 44: 1022‐1032.    39. Ogden, A.E. and Innes, J.L. 2009. Application of Structured Decision Making to an Assessment of Climate Change Vulnerabilities and Adaptation Options for Sustainable Forest Management. Ecology and Society 14(1): 11.   40. Lawrence, A. and Gillett, S. 2011. Human dimensions of adaptive forest management and climate chance: a review of international experience. Forestry Commission Report. Forestry Commission, Edinburgh, 440.  

41. Innes, J., Joyce, L.A., Kellomaki, S., Louman, B., Ogden, A., Parrotta, J. and Thompson, I., Ayres, M., Ong, C., Santoso, H., Sohngren, B. and Wreford, A. 2009. Management for adaptation  p. 135‐185 p. 123‐133 in R. Seppala, A. Buck and P. Katila (Eds.) Adaptation of forests and 

75  

people to climate change. A global assessment report. IUFRO World Series vol. 22. Helsinki. 224p.  

42. Steenberg, J.W.N., Duinker, P.N., Van Damme, L. and Zielke, K. 2011. Indicators of sustainable forest management in a changing climate. Canadian Council of Forest Ministers. Ottawa, ON. 51p.  

43. Canadian Standard Association. 2008. Sustainable forest management. A national standard for Canada. CAN/CSA‐Z809‐08  

44. CCBA (Climate, Community, Biodiversity Alliance). 2008. Climate, community & Biodiversity Project Design Standards Second Edition. CCBA, Arlington, VA. December 2008. At: www.climate‐standards.org    

45. CCBA (Climate, Community, Biodiversity Alliance). 2011. Fact Sheet. CCBA, Arlington,  VA. Online: https://s3.amazonaws.com/CCBA/Upload/CCBStandards_FactSheet.pdf    

46. Forest Products Association of Canada. 2012. Certification Status of Canada. Online:  http://www.certificationcanada.org/english/status_intentions/status.php   

47. Fernholz, K., Bowyer, J., Stai, S., Bratkovitz, S., Howe, J. 2011. Difference between the FSC and the SFI certification standards for forest management. Dovetail Partners Inc. Minneapolis, MN. Online : http://dovetailinc.org/files/DovetailFSCSFIComparison32811.pdf    

48. Sustainable Forestry Initiative. 2010. Summary of significant revisions in the new SFI 2010‐ 2014 Standard. Online: http:// http://www.sfiprogram.org/files/pdf/sfi2010‐2014summarychangespdf/ 

49. Sustainable Forestry Initiative. 2010. Requirements for the SFI 2010‐2014 Program. Standards, rules for label use, procedures and guidance. Online: http://www.sfiprogram.org/files/pdf/sfirequirements2010‐2014pdf/    

50. Forest Stewardship Council. 2011. Strategic Framework for an FSC Climate Change  Engagement. Policy and Standards Unit, FSC International. Online:  http://ic.fsc.org/climate‐change‐engagement.127.htm    

51. Peters, R.L. and Darling, J.D.S. 1985. The greenhouse‐effect and nature reserves   Bioscience 35(11): 707‐717.   52. Hewitt N, Klenk NL, Smith AL, Bazely DR, Yan N, Wood S, et al. 2011. Taking stock of the assisted migration debate. Biological Conservation144: 2560‐2572.  

53. Pedlar, J.H., McKenney, D.W., Aubin, I., Beardmore, T., Beaulieu, J., Iverson, L., O’Neill, G.A., Winder, R.S. and Ste‐Marie, C. 2012. Planing forestry in the assisted migration debate. BioScience 62: 835‐842.  

54. Donlan, J., et al. 2005. Re‐wilding North America. Nature 436: 913‐914.