48
[email protected] MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Chabot Mathematics §5.1 Integratio n

[email protected] MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

Embed Size (px)

Citation preview

Page 1: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 1

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

§5.1Integrati

on

Page 3: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 3

Bruce Mayer, PE Chabot College Mathematics

§5.1 Learning Goals

Define AntiDerivative Study and compute

indefinite integrals Explore differential

equations and Initial/Boundary value problems

Set up and solve Variable-Separable differential equations

Page 4: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 4

Bruce Mayer, PE Chabot College Mathematics

Fundamental Theorem of Calculus

The fundamental theorem* of calculus is a theorem that links the concept of the derivative of a function with the concept of the integral.• Part-1: Definite Integral

(Area Under Curve)

• Part-2: AntiDerivative

* The Proof is Beyond the Scope of MTH15

b

aaFbFdxxf

xfdxxfdx

dxF

dx

ddxxfxF thenif

Page 5: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 5

Bruce Mayer, PE Chabot College Mathematics

AntiDifferentiation

Using the 2nd Part of the Theorem

F(x) is called the AntiDerivative of f(x)• Example:

Find f(x) when

• ONE Answer is

• As Verified by

dxxfxFxfdx

dFor

34xdx

xdf

4xxf

34 4xxdx

dxf

dx

d

Page 6: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 6

Bruce Mayer, PE Chabot College Mathematics

Fundamental Property of Antiderivs

The Process of Finding an AntiDerivavite is Called: InDefinite Integration

The Fundamental Property of AntiDerivatives:• If F(x) is an AntiDerivative of the

continuous fcn f(x), then any other AntiDerivative of f(x) has the formG(x) = F(x) + C, for some constant C

Page 7: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 7

Bruce Mayer, PE Chabot College Mathematics

Fundamental Property of Antiderivs

Proof of G(x) = F(x) + C Assertion: both G(x) & F(x)+C are

AntiDerivatives of f(x); that is:

Using DerivativeRules

CxFdx

dxfxG

dx

d

CxFdx

dxG

dx

d

?

dx

dC

dx

dF

dx

dG

?

0?

dx

dF

dx

dG

xfdx

dF

dx

dGxf

Derivative of a Sum

Derivative of a Const

Transitive Property

Page 8: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 8

Bruce Mayer, PE Chabot College Mathematics

The Indefinite Integral

The family of ALL AntiDerivatives of f(x) is written

The result of ∫f(x)dx is called the indefinite integral of f(x)

Quick Example for:

• u(x) has in INFINITE NUMBER of Results, Two Possibilities:

CxFdxxf )( )(

Cxdxxdxxu 43 4

2

or4

4

xxG

xxF

Page 9: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 9

Bruce Mayer, PE Chabot College Mathematics

The Meaning of “C”

The Constant, C, is the y-axis “Anchor Point” for the “natural Response” fcn F(x) for which C = 0.• C is then the y-intercept

of F(x)+C; i.e.,

Adding C to F(x) creates a “family” of functions, or curves on the graph, with the SAME SHAPE, but Shifted VERTICALLY on the y-axis

CFG 00

Page 10: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 10

Bruce Mayer, PE Chabot College Mathematics

The Meaning of “C” Graphically

-4 -3 -2 -1 0 1 2 3 4-10

-5

0

5

10

15

20

x

y =

G(x

) =

F(x

)+C

= 7

e-5x/

2 + 5

x -

8 +

CMTH15 • Familiy of AntiDerivatives

B. May er • 20Jul13

Page 11: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 11

Bruce Mayer, PE Chabot College Mathematics

MA

TL

AB

Co

de

% Bruce Mayer, PE% MTH-15 • 20Jul13% XYfcnGraph6x6BlueGreenBkGndTemplate1306.m%% The Limitsxmin = -4; xmax = 4; ymin = -10; ymax = 20;% The FUNCTIONx = linspace(xmin,xmax,1000); y = 7*exp(-x/2.5) + 5*x -8;% % The ZERO Lineszxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax];%% the 6x6 Plotaxes; set(gca,'FontSize',12);whitebg(['white']) % whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Greenplot(x,y, x,y+9,x,y-pi,x,y+sqrt(13),x,y-7, 'LineWidth', 4),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = G(x) = F(x)+C = 7e^-^5^x^/^2 + 5x - 8 + C'),... title(['\fontsize{16}MTH15 • Familiy of AntiDerivatives',]),... annotation('textbox',[.71 .05 .0 .1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'B. Mayer • 20Jul13','FontSize',7)hold onplot(zxv,zyv, 'k', zxh,zyh, 'k', [-1.4995, -1.4995], [ymin,ymax], '--m', 'LineWidth', 2)set(gca,'XTick',[xmin:1:xmax]); set(gca,'YTick',[ymin:5:ymax])

Page 12: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 12

Bruce Mayer, PE Chabot College Mathematics

Mu

PA

D C

od

e

Bruce Mayer, PEMTH15 20Jul13F(x) = 7*exp(-2*x/5) + 5*x -8 f(x) = int(G, x)G := 7*exp(-2*x/5) + 5*x -8dgdx := diff(G, x)assume(x > -6):xmin := solve(dgdx, x)xminNo := float(xmin)Gmin := subs(G, x = xmin)GminNo := float(Gmin)plot(G, x=-4..4, GridVisible = TRUE,LineWidth = 0.04*unit::inch)

Page 13: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 13

Bruce Mayer, PE Chabot College Mathematics

Evaluating C by Initial/Boundary

A number can be found for C if the situation provides a value for a SINGLE known point for G(x) → (x, G(x)); e.g., (xn, G(xn)) = (73.2, 4.58)• For Temporal (Time-Based) problems the

known point is called the INITIAL Value– Called Initial Value Problems

• For Spatial (Distance-Based) problems the known point is called the BOUDARY Value– Called Boundary Value Problems–

Page 14: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 14

Bruce Mayer, PE Chabot College Mathematics

Common Fcn Integration Rules

1. Constant Rule: for any constant, k

2. Power Rule:for any n ≠ −1

3. Logarithmic Rule:for any x ≠ 0

4. Exponential Rule:for any constant, k

Cxkdxk

Cn

xdxx

nn

1

1

Cxdxx

ln 1

Cek

dxe kxkx 1

Page 15: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 15

Bruce Mayer, PE Chabot College Mathematics

Integration Algebra Rules

1. Constant Multiple Rule: For any constant, a

2. The Sum or Difference Rule:

• This often called the Term-by-Term Rule

dxxuadxxua

dxxvdxxudxxvxu

dxxqdxxpdxxqxp

Page 16: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 16

Bruce Mayer, PE Chabot College Mathematics

Example Use the Rules

Find the family of AntiDerivatives corresponding to

SOLUTION: First Term-by-Term → break up each

term over addition and subtraction:

dxxx 122

dxdxxdxxdxxx 1 2 12 22

Page 17: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 17

Bruce Mayer, PE Chabot College Mathematics

Example Use the Rules

Move out the constant in the 2nd integral (2), and state sqrt as fractional power

Using the Power Rule

CleaningUp →

dxdxxdxxdxxx 1 2 12 2122

Cxxx

dxdxxdxx

1012/12

12 1 2

1012/1122/12

Cxxx

dxxx 2/33

2

3

4

3 12

Page 18: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 18

Bruce Mayer, PE Chabot College Mathematics

Example Propensity to Consume

The propensity to consume (PC) is the fraction of income dedicated to spending (as opposed to saving).

A Math Model for the marginal propensity to consume (MPC) for a certain population:

• Where – MPC is the rate of change in PC – x is the fraction of income that is disposable.

xexMPC 8.0

Page 19: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 19

Bruce Mayer, PE Chabot College Mathematics

Example Propensity to Consume

If the propensity to consume is 0.8 when disposable income is 0.92 of total income, find a formula for PC(x)

SOLUTION: From the Problem Statement that the

MPC is a marginal function discern that

Thus the PC fcn is the AntiDerivative of MPC(x)

,xPCdx

dxMPC

Page 20: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 20

Bruce Mayer, PE Chabot College Mathematics

Example Propensity to Consume

Find PC byIntegrating

This is satisfactory for a general solution, but need the particular solution so that PC(0.92) = 0.8

dxxMPCxPC

dxe x 8.0

Ce x

8.0

8.0

1

Ce x 8.025.1

Page 21: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 21

Bruce Mayer, PE Chabot College Mathematics

Example Propensity to Consume

Use the (x,PC) = (0.92,0.8) Boundary Value to Find a NUMBER for the Constant of Integration, C

With C ≈ 1.4, state the particular solution to this Boundary Value Problem

4.1

4.125.1 8.0 xexPC

Page 22: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 22

Bruce Mayer, PE Chabot College Mathematics

Differential Equations (DE’s)

A Differential Equation is an equation that involves differentials or derivatives, and a function that satisfies such an equation is called a solution

A Simple Differential Equation is an equation which includestwo differentials in the formof a derivative

)(xfdx

dy

Page 23: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 23

Bruce Mayer, PE Chabot College Mathematics

Differential Equations (DE’s)

For some function f. Such a Simple Differential Equation can be solved by integrating:

In summary the Solution, y, to a Simple DE can be found by the integration

dxxfdx

dx

dydxxf

dx

dyxf

dx

dy

1

dxxfydxxfdydxxfdydxxfdy )(1

dxxfy )(

Page 24: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 24

Bruce Mayer, PE Chabot College Mathematics

Example Simple DE

From the Previous Example

As previously solved for the general solution by Integration:

Then used the Boundary Value, (0.92, 0.8), to find the Particular Solution

xexPCdx

d 8.0

CexPC x 8.025.1

4.125.1 8.0 xexPC

Page 25: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 25

Bruce Mayer, PE Chabot College Mathematics

Variable-Separable DE’s

A Variable Separable Differential equation is a differential equation of the form• For some integrable functions f and g

Such a differential equation can be solved by separating the single-variable functions and integrating:

dxxfdyygdxxfdyygyg

xf

dx

dy

dx

yg

Page 26: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 26

Bruce Mayer, PE Chabot College Mathematics

Example Fluid Dynamics

The rate of change in volume (in cubic centimeters) of water in a draining container is proportional to the square root of the depth (in cm) of the water after t seconds, with constant of proportionality 0.044.

Find a model for the volume of water after t seconds, given that initially the container holds 400 cubic centimeters.

Page 27: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 27

Bruce Mayer, PE Chabot College Mathematics

Example Fluid Dynamics

SOLUTION: First, TRANSLATE the written

description into an equation:

• “rate of change in volume”

• “is proportional to thesquare root of volume”

• “with constant of proportionality equal to 0.044”

tVdt

d

Vk

044.0k

Page 28: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 28

Bruce Mayer, PE Chabot College Mathematics

Example Fluid Dynamics

So the (Differential)Equation

Note that the right side does not explicitly depend on t, so we can’t simply integrate with respect to t. • Instead move the expression

containing V to the left side:

The Variables are now Separated, allowing simple integration

Vdt

dV044.0

Page 29: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 29

Bruce Mayer, PE Chabot College Mathematics

Example Fluid Dynamics

Integrating

Where

SquaringBoth SidesFind:

122

1CCC

2022.0 CtV

Page 30: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 30

Bruce Mayer, PE Chabot College Mathematics

Example Fluid Dynamics

For The particular solution find the a number for C using the Initial Value: when t = 0, V = 400 cc:• Sub (0,400) into

DE Solution

Thus the volume of water in the Draining Container as a fcn of time:

20400 C

220022.0 ttV

Page 32: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 32

Bruce Mayer, PE Chabot College Mathematics

All Done for Today

LOTS moreon DE’s

in MTH25

Page 33: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 33

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

Appendix

srsrsr 22

Page 34: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 34

Bruce Mayer, PE Chabot College Mathematics

ConCavity Sign Chart

a b c

−−−−−−++++++ −−−−−− ++++++

x

ConCavityForm

d2f/dx2 Sign

Critical (Break)Points Inflection NO

InflectionInflection

Page 36: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 36

Bruce Mayer, PE Chabot College Mathematics

Page 37: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 37

Bruce Mayer, PE Chabot College Mathematics

Page 38: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 38

Bruce Mayer, PE Chabot College Mathematics

Page 40: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 40

Bruce Mayer, PE Chabot College Mathematics

Page 41: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 41

Bruce Mayer, PE Chabot College Mathematics

Page 42: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 42

Bruce Mayer, PE Chabot College Mathematics

Page 43: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 43

Bruce Mayer, PE Chabot College Mathematics

Page 44: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 44

Bruce Mayer, PE Chabot College Mathematics

Page 45: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 45

Bruce Mayer, PE Chabot College Mathematics

Page 46: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 46

Bruce Mayer, PE Chabot College Mathematics

Page 47: BMayer@ChabotCollege.edu MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-22_sec_5-1_Integration.pptx 47

Bruce Mayer, PE Chabot College Mathematics