47
[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Chabot Mathematics §3.4 Elasticity & Optimization

[email protected] MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

Embed Size (px)

Citation preview

Page 1: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 1

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

§3.4 Elasticity

& Optimization

Page 4: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 4

Bruce Mayer, PE Chabot College Mathematics

Absolute Extrema

A function f has an absolute maximum of

if for every x in an open interval containing c,

A function f has an absolute minimum of

if for every x in an open interval containing c,

)()( xfcf

)()( xfcf

Page 5: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 5

Bruce Mayer, PE Chabot College Mathematics

Example Absolute Extrema

Consider the Function Graph Shown at Right

The function appears to have an absolute maximum of 7 at x = 1, and an absolute minimum of 2 at x = 6 (and at x = 12).

maxmax , cfc

minmin , cfc

Page 6: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 6

Bruce Mayer, PE Chabot College Mathematics

Extreme Value Property

All absolute extrema of a continuous function on a closed interval are found at one of:• a CRITICAL point on the interval• an ENDPOINT of the interval

ReCall Critical Points: • Let c be an x-value in the domain of f• If [df/dx]c =0 OR [df/dx]c →±∞, then f has a

Critical Point at c

Page 7: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 7

Bruce Mayer, PE Chabot College Mathematics

Extreme Value Explained

The Absolute-Max or Absolute-Min over some x-span of any function occurs EITHER at • The ENDS• SomeWhere

in the Middle

• (Duh!!!)

Abs-MAX Abs-MAX

Abs-MIN

Page 8: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 8

Bruce Mayer, PE Chabot College Mathematics

Example Find Abs Extrema

Find the absolute extrema for the fcn at Right on the interval [−3,1]

SOLUTION: As indicated by the Extreme Value

Property, we need to check the values of the function at:• Any CRITICAL points and Both ENDpoints

– The LARGEST of these values is the absolute MAX, the smallest is the absolute min

2

2

x

xxf

Page 9: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 9

Bruce Mayer, PE Chabot College Mathematics

Example Find Abs Extrema

First, find critical points by setting the derivative equal to zero and solving:

Recall, however, that the interval of interest is [−3,1]• Thus x=4 is NOT

part of the Slon

2

'02

x

x

dx

dxf

2

2

2

12)2(0

x

xxx

2

2

2

22

2

4

2

420

x

xx

x

xxx

4or 0 xx

QuotientRule

ZeroProducts

Page 10: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 10

Bruce Mayer, PE Chabot College Mathematics

Example Find Abs Extrema

The endpoints are −3 and 1. So need compare the value of f(x) at x=−3 & x=1, and also at the critical point, x=0 on the interval. • Making a T-Table:

The Table shows that the absolute max is 0 (attained at x = 0) and absolute min is −1.8 (attained at x = −3).

x y=f (x )-3 -1.800 0.001 -1.00

13for

2

2

xx

xxf

Page 11: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 11

Bruce Mayer, PE Chabot College Mathematics

Example Find Abs Extrema

ThefcnGraph

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1-2

-1.5

-1

-0.5

0

0.5

x

y =

f(x)

= x

2 /(x-

2)

MTH15 • Bruce Mayer, PE

XYf cnGraph6x6BlueGreenBkGndTemplate1306.m

13for

2

2

xx

xxf

Page 12: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 12

Bruce Mayer, PE Chabot College Mathematics

Marginal Analysis for Max Profit Given:

• R ≡ annual Revenue in $

• C ≡ annual Cost in $• P ≡ annual Profit in $• q ≡ annual quantity

sold in Units

Then the absolute maximum of P occurs at the production level for which:

and

That is• where marginal revenue

equals marginal cost• The CHANGE in the R-

Slope is less than the CHANGE in the C-Slope

UNIT

$in

maxmax qqdq

qdC

dq

qdR

22

2

2

2

UNIT

$in

maxmax qqdq

qCd

dq

qRd

Page 13: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 13

Bruce Mayer, PE Chabot College Mathematics

Example Finding Max Profit

The Math Model for Pricingof “StillStomping” Staplers:• Where

– p ≡ Stapler Selling Price in $/Unit– q ≡ Qty of Staplers Sold in kUnit

The Total Cost model for the StillStomping Staplers:• Where

– C ≡ Stapler Production Cost in $k

210050 qqp

10

410 2 qqqC

Page 14: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 14

Bruce Mayer, PE Chabot College Mathematics

Example Finding Max Profit

Use marginal analysis to find the production level at which profit is maximized, as well as the amount of the maximum profit.

SOLUTION: The marginal analysis criterion for

maximum Profit specifies that we should examine where marginal revenue equals marginal cost

Page 15: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 15

Bruce Mayer, PE Chabot College Mathematics

Example Finding Max Profit

Now Total Revenue = [price]·[Qty-Sold]

• R in (kUnit)·($/Unit) = k$

The Marginal Analysis requires Derivatives for R & C

x

210050 qqqpqR

23 3005010050 qqqdq

d

dq

dR

12010

410 2

qqq

dq

d

dq

dC

Page 16: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 16

Bruce Mayer, PE Chabot College Mathematics

Example Finding Max Profit

Now set equal the two marginal functions and solve using the quadratic formula or a computer algebra system such as MuPAD (c.f., MTH25)

dq

dCqq

dq

dR 12030050 2

49203000 2 qq

4389.0or3722.030

3721

qqq

Qty, q, canNOT be Negative

Page 17: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 17

Bruce Mayer, PE Chabot College Mathematics

Example Finding Max Profit

The negative solution makes no sense in this context as production level is always non-negativve. Thus have one solution at q ≈0.372k, or 372 staplers.

The maximum profit is

372.0372.0max CRP

k296.11$max P

4.0372.0372.010372.0100372.050 23max P

Page 18: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 18

Bruce Mayer, PE Chabot College Mathematics

Ex:

Fin

d M

ax Pro

fit

0 0.1 0.2 0.3 0.4 0.5 0.60

2

4

6

8

10

12

Staplers (kUnit)

R &

C (

$)

MTH15 • Bruce Mayer, PE

RevenueCostMaxProfit,

Page 19: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 19

Bruce Mayer, PE Chabot College Mathematics

MA

TL

AB

Co

de

% Bruce Mayer, PE% MTH-15 • 01Aug13 • Rev 11Sep13% MTH15_Quick_Plot_BlueGreenBkGnd_130911.m%clear; clc; clf; % clf clears figure window%% The Domain Limitsxmin = 0; xmax = .6;% The FUNCTION **************************************x = linspace(xmin,xmax,10000); y1 = 50*x - 100*x.^3;y2 = 10*x.^2 + x + 4/10;% ***************************************************% the Plotting Range = 1.05*FcnRangeymin = min(min(y1),min(y2)); ymax = max(max(y1),max(y2)); % the Range LimitsR = ymax - ymin; ymid = (ymax + ymin)/2;ypmin = ymid - 1.025*R/2; ypmax = ymid + 1.025*R/2% % The ZERO Lineszxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ypmin*1.05 ypmax*1.05];%% mark max Profitqm = 0.372; Rm = 50*qm - 100*qm.^3; Cm = 10*qm.^2 + qm + 4/10;Q = [qm, qm]; P = [Cm,Rm] % make vertical line whose length is Max-Profit%% the 6x6 Plotaxes; set(gca,'FontSize',12);whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Greenplot(x,y1, x,y2, Q,P, '--md', 'LineWidth', 3),grid, axis([xmin xmax ypmin ypmax]),... xlabel('\fontsize{14} Staplers (kUnit)'), ylabel('\fontsize{14} R & C ($)'),... title('\fontsize{16}MTH15 • Bruce Mayer, PE'), legend('Revenue', 'Cost', 'MaxProfit,','Location','NorthWest')%holdplot(zxv,zyv, 'k', zxh,zyh, 'k', 'LineWidth', 2)hold off

Page 20: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 20

Bruce Mayer, PE Chabot College Mathematics

Marginal Analysis for Min Avg Cost

Given cost C as a function of production level q, then the production level at which the minimum average cost occurs satisfies:

In other words, Average Cost is Minimized when Average Cost equals Marginal Cost.

min

min dq

qdCqA

Page 21: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 21

Bruce Mayer, PE Chabot College Mathematics

Example Find Min Avg Cost

Recall from the previous example that to produce k-Staplers it costs StillStomping this amount in $k:

Use marginal analysis to find the production level at which average cost is minimized, as well as the minimum average cost amount.

10

410 2 qqqC

Page 22: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 22

Bruce Mayer, PE Chabot College Mathematics

Example Find Min Avg Cost

SOLUTION: The marginal analysis criterion for

minimum average cost specifies determination of where average cost equals marginal

Recall that

In thisCase

dQtyProduce

TotalCostAvgCost

q

qq

qq

q

qCqA

4.0110

4.010 2

Page 23: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 23

Bruce Mayer, PE Chabot College Mathematics

Example Find Min Avg Cost

ReCall also: Now equate these functions and solve

Again a Production Qty must be positive, so q = 0.2 kUnits at min cost

120 qdqdC

dq

dCq

qqqA 120

4.0110

204.010

104.0

104.0

qq

qq

qq

2.004.0 q

Page 24: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 24

Bruce Mayer, PE Chabot College Mathematics

Example Find Min Avg Cost

When producing 200 staplers, average cost is minimized at a value of

The units for Amin are $k/kUnit or $/Unit

Thus the factory incurs a minimum average cost of $5 per Stapler when producing 200 units

52122.0

4.012.010

4.0110

minmin

min

minmin

qq

q

qCA

Page 25: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 25

Bruce Mayer, PE Chabot College Mathematics

Ac &

dC

/dq

0.1 0.15 0.2 0.25 0.3 0.35 0.43

4

5

6

7

8

9

Staplers (kUnit)

Ac

& d

C/d

q (

$/U

nit)

MTH15 • Bruce Mayer, PE

AvgCostMarginal Cost

Page 26: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 26

Bruce Mayer, PE Chabot College Mathematics

Price Elasticity of Demand

If q = D(p) units of a commodity are demanded by the market at a unit price p, where D is a differentiable function, then the price elasticity of demand for the commodity is given by

This Expression has the interpretation: “the percentage rate of decrease in demand q produced by a 1% increase in price p.”

%

%

pdp

qdq

dp

dq

q

ppE

Page 27: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 27

Bruce Mayer, PE Chabot College Mathematics

Example Price Elasticity

The Weekly demand for a pair of high-end headphones follows the model

• Where– D ≡ Demand in Units– p ≡ Price in $/Unit

What is the price elasticity of demand when the headphones sell at $500 per pair? Interpret the result.

100002001.0 2 pppD

Page 28: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 28

Bruce Mayer, PE Chabot College Mathematics

Example Price Elasticity

SOLUTION: ReCall The price elasticity

of demand Formula Use the Quantity-Demanded Eqn:

Then

dp

dq

q

ppE

2002.0 p

Page 29: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 29

Bruce Mayer, PE Chabot College Mathematics

Example Price Elasticity

Then:

so

dp

dq

q

ppE

20)500(02.010000)500(20)500(01.0

500500

2

E

2

Page 30: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 30

Bruce Mayer, PE Chabot College Mathematics

Example Price Elasticity

A price elasticity of 2 means that we expect each 1% INcrease in price to cause an associated 2% DEcrease in demand for the product.

HiEnd Headphones are a luxury good, so it may make sense that demand would respond sharply to a change in price; i.e., the demand is very Elastic

Page 31: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 31

Bruce Mayer, PE Chabot College Mathematics

Hi Levels of Elasticity:

E(p)>1 signifies Elastic demand. The percentage decrease in demand is

greater than the percentage increase in price that caused it. Thus, demand is relatively sensitive to changes in price.

A decrease in price, conversely, causes an associated increase in revenue when demand is elastic.• i.e., Lowering/Raising the price produces

large changes in demand much

1pE

Page 32: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 32

Bruce Mayer, PE Chabot College Mathematics

Lo Levels of Elasticity:

E(p)<1 signifies INelastic demand. The percentage decrease in demand is

less than the percentage increase in price that caused it. Thus, demand is relatively insensitive to changes in price.

A decrease in price causes an associated decrease in revenue when demand is INelastic.• i.e., Lowering/Raising the price does NOT

change demand much

1pE

Page 33: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 33

Bruce Mayer, PE Chabot College Mathematics

Neutral Elasticity:

E(p)=1 signifies Neutral demand. Since the Demand is of unit elasticity,

The percentage changes in price and demand are approximately equal.

It can be shown that Revenue is maximized at a price for which demand is of unit elasticity

1pE

Page 34: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 34

Bruce Mayer, PE Chabot College Mathematics

Elasticity Illustrated The demand for headphones in the

previous example is Elastic at a unit price of $500 (because E = 2, which is greater than 1)• Change in price will cause a large change

in Demand

At a unit price of $200 per pair of headphones, E = 0.5, so the demand is INelastic at that price• A price change causes a small

Demand change

Page 37: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 37

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

Appendix

srsrsr 22

Page 38: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 38

Bruce Mayer, PE Chabot College Mathematics

ConCavity Sign Chart

a b c

−−−−−−++++++ −−−−−− ++++++

x

ConCavityForm

d2f/dx2 Sign

Critical (Break)Points Inflection NO

InflectionInflection

Page 39: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 39

Bruce Mayer, PE Chabot College Mathematics

Page 40: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 40

Bruce Mayer, PE Chabot College Mathematics

Page 41: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 41

Bruce Mayer, PE Chabot College Mathematics

Page 42: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 42

Bruce Mayer, PE Chabot College Mathematics

Page 43: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 43

Bruce Mayer, PE Chabot College Mathematics

Page 44: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 44

Bruce Mayer, PE Chabot College Mathematics

Page 45: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 45

Bruce Mayer, PE Chabot College Mathematics

P3.4-58 Plot by MuPAD

Page 46: BMayer@ChabotCollege.edu MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH15_Lec-16_sec_3-4_Optimization.pptx 46

Bruce Mayer, PE Chabot College Mathematics