Bjt Small Signal Amplifier

Embed Size (px)

DESCRIPTION

analaysis and circuit of bjt amplifier

Citation preview

  • Small Signal BJT Amplifi ers

    3 Chapter ObjectivesX Develop h-parameter model of BJT for AC analysis.X Analyze various CE, CB and CC ampli ers

    to determine input impedance, output impedance, voltage gain and current gain.

    X Compare the performance of CE, CB and CC ampli ers.

    X Learn method to increase input impedance such as Darlington circuit and bootstrapping technique.

    3.1INTRODUCTIONThe basic construction, characteristics and DC biasing of the bipolar junction transistors were discussed in Chapter 1. The purpose of biasing is to establish a Q-point about which variations in current and voltage can occur in response to an AC input signal. The term small signal refers to the use of signals that take up a relatively small percentage of an amplifi ers operational range. The amplifi ers designed to handle these small AC signals are called small signal ampli-fi ers. The h-parameter equivalent model is commonly used in the small signal AC analysis of bipolar junction transistors. We will defi ne this model and analyze the amplifi er characteristics in terms of this model.

    3.2SMALL SIGNAL BJT AMPLIFIERFigure 3.1 shows a voltage divider biased transistor amplifier. The capacitor CC1 couples the sinusoidal AC source to the base of the transistor. The capacitor CC2 couples the output to the load. These coupling capacitors block DC and thus prevents the source resistance RS and the load resistance RL from changing the DC bias voltages at the base and collector. The capacitors act as short circuits to the signal voltage. The emitter resistor RE improves the stability of the system but provides negative feedback which reduces the gain of the amplifier. This AC degeneration can be avoided by connecting the capacitor CE in parallel with resistor RE. For DC operation, capacitor CE acts as open circuit and improves the stability. For AC operation, capacitor CE acts as short circuit and bypasses the resistor RE.

    M03_XXXXXXXX_XX_C03.indd 1M03_XXXXXXXX_XX_C03.indd 1 7/21/12 9:54 AM7/21/12 9:54 AM

  • 3.2Electronic Circuits I

    Hence, CE is known as the emitter bypass capacitor. The input signal voltage Vi causes the base voltage to vary sinusoidally above and below its DC bias level. The resulting variation in base current produces a larger variation in collector current. As the collector current increases, the collector voltage decreases. The collector current varies above and below its Q-point value in phase with the base current. The collector to emitter voltage varies above and below its Q-point value 180o out of phase with the base voltage, as shown in Fig. 3.2.

    IC

    VCC

    IBQ

    ICQ

    VCEQ

    VCE

    Q

    0

    Fig. 3.2Small Signal Waveforms

    VS

    RS

    RE CE

    R1 RC

    CC1Vo

    +VCC

    CC2

    RLR2

    Fig. 3.1Common-emi er Amplifi er

    M03_XXXXXXXX_XX_C03.indd 2M03_XXXXXXXX_XX_C03.indd 2 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.3h-parameter Model of BJT3.3

    3.3h-PARAMETER MODEL OF BJTConsider the black box representation of the BJT as shown in Fig. 3.3.

    V1

    +

    V2

    +

    I2I1

    BJT

    Fig. 3.3Two-port Network

    The two-port network equations in terms of h-parameter are given by

    V1 = h11 I1 + h12 V2I2 = h21 I1 + h22 V2

    where h11, h12, h21 and h22 are h-parameters.

    h-parameter(a) Case I: When output port is shorted, i.e. V2 = 0.

    h11 = VI

    V

    1

    1 02 =

    It is called input impedance and is denoted by hi.

    h21 = II

    V

    2

    1 02 =

    It is called forward current gain and is denoted by hf.

    (b) Case II: When input port is opened, i.e. I1 = 0.

    h12 = VV

    I

    1

    2 01 =

    It is called reverse voltage gain and is denoted by hr.

    h22 = IV

    I

    2

    2 01 =

    It is called output admittance and is denoted by ho.

    Since these four parameters represent input impedance, voltage gain, current gain and out-put admittance, these parameters are called hybrid parameters.

    Let V1 = Vi, I1 = Ii, I2 = Io and V2 = Vo

    M03_XXXXXXXX_XX_C03.indd 3M03_XXXXXXXX_XX_C03.indd 3 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.4Electronic Circuits I

    Hence, these equations can be written as

    Vi = hi Ii + hr VoIo = hf Ii + ho Vo

    The fi rst equation represents Kirchhoffs voltage law to the input circuit which can be rep-resented as shown in Fig. 3.4.

    Vi

    +

    Ii hi

    hrVo

    Fig. 3.4Input Circuit

    The second equation represents Kirchhoffs current law to the output circuit which can be represented as shown in Fig. 3.5.

    hoVo

    +

    Io

    hf Ii 1

    Fig. 3.5Output Circuit

    Combining these two circuits, the h-parameter model is obtained, which is shown in Fig. 3.6.

    hoVo

    +

    Io

    hf Ii 1Vi

    +

    Ii hi

    hrVo

    Fig. 3.6h-parameter Model for BJT

    The h-parameter model is used for representing transistor in CB, CE and CC confi gurations. The h-parameters, however, will change with each confi guration. A second subscript is added to the h-parameter notation. For the CB confi guration, the letter b is added. For CE and CC confi gurations, the letter e and c are added, respectively.

    M03_XXXXXXXX_XX_C03.indd 4M03_XXXXXXXX_XX_C03.indd 4 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.3h-parameter Model of BJT3.5

    3.3.1h-parameter Model for CB ConfigurationFigure 3.7 shows the transistor in the CB confi guration.

    E

    B

    C

    B

    Ie Ic

    Ve

    +

    Vc

    +

    Fig. 3.7Common-base Confi guration

    h-parameter equations are written as,

    Ve = hib Ie + hrb VcIc = hfb Ie + hob Vc

    The h-parameter model for the CB confi guration is shown in Fig. 3.8.

    hob

    Ic

    hf bIe1

    Ie hib

    hrbVc

    C

    B

    E

    B

    Vc

    +

    Ve

    +

    Fig. 3.8h-parameter Model for CB Confi guration

    3.3.2h-parameter Model for CE ConfigurationFigure 3.9 shows transistor in the CE confi guration.

    Ic

    Ib

    Vb

    Vc

    C

    EE

    B

    +

    +

    Fig. 3.9Common-emi er Confi gurationh-parameter equations are written as,

    Vb = hie Ib + hre VcIc = hfe Ib + hoe Vc

    M03_XXXXXXXX_XX_C03.indd 5M03_XXXXXXXX_XX_C03.indd 5 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.6Electronic Circuits I

    The h-parameter model for the CE confi guration is shown in Fig. 3.10.

    hoe

    Ic

    hf eIb1

    Ib hie

    hreVc

    C

    E

    B

    E

    Vc

    +

    Vb

    +

    Fig. 3.10h-parameter Model for CE Confi guration

    3.3.3h-parameter Model for CC ConfigurationFigure 3.11 shows transistor in the CC confi guration.

    Ie

    Ib

    Vb

    Ve

    E

    C

    B

    C

    +

    +

    Fig. 3.11Common-collector Confi guration

    h-parameter equations are written as,

    Vb = hic Ib + hrc VeIe = hfc Ib + hoc Ve

    The h-parameter model for the CC confi guration is shown in Fig. 3.12.

    hoc

    Ie

    hf cIb1

    Ib hic

    hrcVe

    B

    C

    E

    C

    Ve

    +

    Vb

    +

    Fig. 3.12h-parameter Model for CC Confi guration

    M03_XXXXXXXX_XX_C03.indd 6M03_XXXXXXXX_XX_C03.indd 6 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.3h-parameter Model of BJT3.7

    3.3.4h-parameter Conversion Generally h-parameter values for the CE confi guration are given in transistor data sheet. The h-parameter values for CB and CC confi gurations can be calculated from h-parameter values for the CE confi guration. Table 3.1 gives h-parameter conversion formulae from CE to CB and from CE to CC confi gurations.

    Table 3.1h-parameter Conversion Formulae

    Conversion from CE to CB Conversion from CE to CC

    (i) hib = h

    h1ie

    fe+ (i) hic = hie

    (ii) hob = h

    h1oe

    fe+ (ii) hfc = (1 + hfe)

    (iii) h =

    hh1fe

    fe+ (iii) hoc = hoe

    (iv) hrb = h h

    h1oe ie

    fe+ hre (iv) hrc = 1 hre

    For CC confi guration hic = hie hfc = (1 + hfe) hfe hoc = hoe hrc = 1 hre 1

    Hence, the h-parameter model of the CE confi guration is used for AC analysis of CC amplifi er.

    3.3.5Advantages of h-parameter Model1. The h-parameter model consists of all linear elements. Hence, the analysis of the tran-

    sistor circuit becomes easier by using Kirchhoffs voltage and current laws.2. h-parameters can easily be obtained from input and output characteristics of transistor.3. h-parameters are normally specifi ed by transistor manufacturer.4. It is useful at low frequency operations.

    3.3.6Disadvantages of h-parameter Model1. It is not suitable at high frequency operations.2. h-parameter vary with device and temperature.

    M03_XXXXXXXX_XX_C03.indd 7M03_XXXXXXXX_XX_C03.indd 7 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.8Electronic Circuits I

    3.4GRAPHICAL DETERMINATION OF h-PARAMETERS The relationship between VBE and IC in terms of IB and VCE for the CE amplifi er is given by

    VBE = f1 (IB, VCE)IC = f2 (IB, VCE)

    The input characteristics give the relationship between the input voltage VBE and the input current IB for different values of output voltage VCE. The output characteristics give the relationship between the output voltage VCE and the output current IC for different values of input current IB. The h-parameters can be determined graphically from input and output characteristics of the amplifi er. Determination of hie: From the defi nition of hie,

    hie = VIBE

    B V = constantCE

    = Q

    1Slope of input characteristic at the -point

    The parameter hie can be obtained as the change in base-emitter voltage, VBE2 VBE1 , divided by the change in base current, IB2 IB1, for a constant collector-emitter voltage VCE at the quiescent point Q. The reciprocal of the slope of input characteristic at the quiescent point Q gives the value of hie as shown in Fig. 3.13.

    VCE1VCEQ

    VCE2

    VBE

    IB

    VBE

    IB

    0

    Fig. 3.13Determination of hie

    Determination of hre: From the defi nition of hre,

    hre = VV

    BE

    CE I = constantB

    M03_XXXXXXXX_XX_C03.indd 8M03_XXXXXXXX_XX_C03.indd 8 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.4Graphical Determination of h-parameters 3.9

    The parameter hre can be obtained as the change in base-emitter voltage, VBE2 VBE1, divided by the change in collector-emitter voltage, VCE2 VCE1, for a constant base current IB at the quiescent point Q. A horizontal line on the input characteristics of Fig. 3.14 represents a constant base current.

    VCE1VCEQ

    VCE2

    VBE

    IBQ

    VBE1 VBE2

    IB

    0

    Fig. 3.14Determination of hre

    Determination of hfe: From the defi nition of hfe,

    hfe = II

    C

    B V = constantCE

    The parameter hfe can be obtained as the change in collector current, IC2 IC1, divided by the change in base current, IB2 IB1, for a constant collector-emitter voltage VCE at the quies-cent point Q. A vertical line on the output characteristics of Fig. 3.15 represents a constant collector-emitter voltage.

    IC2 IB2

    IB1

    IBQ

    IC1

    0

    IC

    VCE VCEQ

    Fig. 3.15Determination of hfe

    M03_XXXXXXXX_XX_C03.indd 9M03_XXXXXXXX_XX_C03.indd 9 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.10Electronic Circuits I

    Determination of hoe: From the defi nition of hoe,

    hoe = I

    VC

    CE I = constantB

    = Slope of output characteristic at the Q-pointThe parameter hoe can be obtained as the change in collector current, IC2 IC1 , divided by

    the change in collector-emitter voltage VCE2 VCE1 for a constant base current IB at the quiescent point Q. The slope of output characteristic at the quiescent point Q gives the value of hoe as shown in Fig. 3.16.

    VCE IC

    IB2

    IB1

    IBQ

    0

    IC

    VCE

    Fig. 3.16 Determination of hoeSimilarly, common-base h-parameters can be determined graphically from input and output

    characteristics of the CB confi guration as shown in Figs. 3.173.20.Determination of hib

    hib = VIBE

    E V = constantCB

    = Q

    1Slope of input characteristic at the -point

    VCB2 VCBQVCB1

    VBE

    IE

    0

    IE

    VBE

    Fig. 3.17Determination of hib

    M03_XXXXXXXX_XX_C03.indd 10M03_XXXXXXXX_XX_C03.indd 10 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.4Graphical Determination of h-parameters 3.11

    Determination of hrb

    hrb = VV

    BE

    CB I = constantE

    IEQ

    VCB1

    VBE1VBE2

    VCBQVCB2

    VBE

    IE

    0

    Fig. 3.18Determination of hrb

    Determination of hfb

    hfb = II

    C

    E V = constantCB

    IC1

    IC

    IE1

    IE2

    IEQ

    VCBQVCB0

    IC2

    Fig. 3.19Determination of h

    M03_XXXXXXXX_XX_C03.indd 11M03_XXXXXXXX_XX_C03.indd 11 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.12Electronic Circuits I

    Determination of hob

    hob = I

    VC

    CB I = constantE

    = Slope of output characteristic at the Q-point

    VCB IC

    IC

    IE1

    IE2

    IEQ

    VCB0

    Fig. 3.20Determination of hob

    3.5EXACT ANALYSIS OF TRANSISTOR AMPLIFIER Figure 3.21 shows the general h-parameter equivalent circuit with load RL connected to the output.

    ho RL

    Io

    hf Ii1

    RS

    VS

    Ii hi

    hrVo

    Zi Zo

    Vo

    +

    Vi

    +

    Fig. 3.21General h-parameter Equivalent Circuit

    Current gain (Ai)

    It is the ratio of output current Io to the input current Ii.

    Ai = II

    o

    i

    M03_XXXXXXXX_XX_C03.indd 12M03_XXXXXXXX_XX_C03.indd 12 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.5Exact Analysis of Transistor Amplifi er 3.13

    Applying Kirchhoffs current law to the output circuit,

    Io = hf Ii + hoVoBut Vo = IoRL Io = hf Ii ho IoRL (1 + ho RL) Io = hf Ii

    Io = h Ih R1f i

    o L+

    Ai = II

    o

    i

    = hh R1

    f

    o L+

    Voltage gain (Av)

    It is the ratio of output voltage Vo to the input voltage Vi.

    Av = VV

    o

    i

    Applying Kirchhoffs voltage law to the input circuit,

    Vi hi Ii hr Vo = 0 Vi = hi Ii + hr Vo

    We know that, II

    o

    i

    = hh R1

    f

    o L+

    Ii = I h R

    h(1 )o o L

    f

    +

    But Io = VR

    o

    L

    Ii = VR

    h Rh

    (1 )oL

    o L

    f

    +

    Hence, Vi = hV h R

    h R(1 )i o o L

    f L

    ++ hr Vo

    = h h R h h h R

    h Rf r L i i o L

    f L

    Vo

    M03_XXXXXXXX_XX_C03.indd 13M03_XXXXXXXX_XX_C03.indd 13 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.14Electronic Circuits I

    VV

    o

    i

    = h R

    h h h R h h Rf L

    i i o L f r L +

    Av = VV

    o

    i

    = h R

    h h h R h h Rf L

    i i o L f r L

    +

    = h R

    h h h h h R( )f L

    i i o f r L

    +

    = h R

    h h Rf L

    i L+ , where h = hi ho hf hr

    Input impedance (Zi)

    It is the ratio of input voltage Vi to the input current Ii.

    Zi = VI

    i

    i

    Applying Kirchhoffs voltage law to the input circuit,

    Vi hi Ii hrVo = 0 Vi = hi Ii + hr Vo = hi Ii hr Io RL

    = hi Ii hrh Ih R1f i

    o L+

    RL

    = hh h R

    h R1if r L

    o L

    +

    Ii

    Zi = VI

    i

    i

    = hi h h R

    h R1f r L

    o L+

    Output impedance (Zo)

    It is the ratio of output voltage Vo to the output current Io when input voltage VS = 0.

    Zo = VI

    o

    o V = 0s

    M03_XXXXXXXX_XX_C03.indd 14M03_XXXXXXXX_XX_C03.indd 14 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.5Exact Analysis of Transistor Amplifi er 3.15

    Applying Kirchhoffs voltage law to the input circuit,

    VS hi Ii RS Ii hr Vo = 0

    Ii = V h V

    R hS r o

    S i

    +

    When VS = 0,

    Ii = h V

    R hr o

    S i+

    Applying Kirchhoffs current law to the output circuit,

    Io = hf Ii + ho Vo

    = hf h V

    R hr o

    S i++ ho Vo

    = hh h

    R hof r

    S i

    +

    Vo

    Zo = VI

    o

    o

    = h

    h hR h

    1

    of r

    S i

    +

    Voltage gain (Avs)

    It is the ratio of output voltage Vo to the input voltage VS.

    Avs = VV

    o

    S

    Considering source resistance RS as shown in Fig. 3.22,RS

    VS Zi Vi

    Fig. 3.22Thevenin's Equivalent for the Input Circuit

    M03_XXXXXXXX_XX_C03.indd 15M03_XXXXXXXX_XX_C03.indd 15 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.16Electronic Circuits I

    VV

    i

    S

    = Z

    Z Ri

    i S+

    Now, Avs = VV

    o

    S

    = VV

    o

    i

    VV

    i

    S

    = Av VV

    i

    S

    = Av Z

    Z Ri

    i S+

    Hence, voltage gain Avs is always less than Av.

    Current gain (Ais)It is the ratio of output current Io to the input current IS.

    Ais = II

    o

    S

    Considering source resistance as shown in Fig. 3.23,

    VS

    RSZi

    Ii

    Fig. 3.23Input Circuit

    By source transformation (Fig. 3.24),

    ZiIS RS

    Ii

    Fig. 3.24Norton's Equivalent for the Input Circuit

    M03_XXXXXXXX_XX_C03.indd 16M03_XXXXXXXX_XX_C03.indd 16 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.5Exact Analysis of Transistor Amplifi er 3.17

    II

    i

    s

    = R

    R ZS

    S i+

    Ais = II

    L

    s

    = II

    L

    i

    II

    i

    s

    = Ai II

    i

    s

    = Ai R

    R ZS

    S i+

    Hence, current gain Ais is always less than Ai.

    Example 3.1: Calculate the values of Ai, Av, Zi and Zo for the circuit shown in Fig. 3.25 if the CE amplifi er uses transistor with the specifi cations given in the fi gure and a resistive load of 1 k.

    hoe RL

    Io

    hf eIi1VS

    Ii hie

    hreVo

    Zi Zo

    Vo

    +

    Vi

    +

    hfe = 220hie = 2.7 k

    hre = 1.5 104

    hoe = 18

    Fig. 3.25Example 3.1

    Solution:

    RL = 1 k RS = 0

    (i) Current gain Ai = hh R1

    fe

    oe L+

    = 2201 18 10 1 106 3+

    = 216.11

    M03_XXXXXXXX_XX_C03.indd 17M03_XXXXXXXX_XX_C03.indd 17 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.18Electronic Circuits I

    (ii) Voltage gain Av = h R

    h h h h h R( )fe L

    ie ie oe fe re L

    +

    = 220 1 10

    2.7 10 (2.7 10 18 10 220 1.5 10 )(1 10 )

    3

    3 3 6 4 3

    +

    = 81.48The negative sign indicates a phase shift of 180 between input and output voltages.

    (iii) Input impedance Zi = hie h h R

    h R1fe re L

    oe L+

    = 2.7 103 220 1.5 10 1 101 18 10 1 10

    4 3

    6 3

    +

    = 2.66 k

    (iv) Output impedance Zo = h

    h hR h

    1

    oefe re

    S ie

    +

    = 1

    18 10 220 1.5 100 2.7 10

    64

    3

    +

    = 173.07 k

    3.6EXACT ANALYSIS OF COMMON-EMITTER AMPLIFIERFigure 3.26 shows a common-emitter amplifi er.

    VS

    RS

    RE CE

    R1 RC

    CC1Vo

    +VCC

    CC2

    RLR2

    Fig. 3.26Common-emi er Amplifi er

    To analyze the AC signal operation of an amplifi er, an AC equivalent circuit is developed. The capacitors CC1, CC2 and CE are replaced by short circuit because the capacitive reactance is approximately zero at signal frequency. The DC source is replaced by ground. The AC equivalent circuit is shown in Fig. 3.27.

    M03_XXXXXXXX_XX_C03.indd 18M03_XXXXXXXX_XX_C03.indd 18 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.6Exact Analysis of Common-emi er Amplifi er3.19

    VS

    RS

    Vo

    RLRCR1 R2

    Fig. 3.27AC Equivalent Circuit

    The BJT is replaced by the h-parameter model as shown in Fig. 3.28.

    hoeRC RL

    Ic

    hf eIb

    Io

    1RS

    RB

    VS

    Ii Ib hie

    hreVo

    Zi Z iZin Z o Zo

    Vo

    +

    Vi

    +

    B C

    E

    Fig. 3.28h-parameter Equivalent Circuit

    RB = R1 || R2 RL = RC || RL

    Input impedance

    Zi = hie h h R

    h R1fe re L

    oe L

    +

    Zi = Zi || RB Zin = Zi + RS

    Output impedance

    Zo = h

    h hR R h

    1

    ( || )oefe re

    B S ie

    +

    Zo = Zo ||RC ||RL

    Voltage gain

    Av = h R

    h h h h h R( )fe L

    ie ie oe fe re L

    +

    M03_XXXXXXXX_XX_C03.indd 19M03_XXXXXXXX_XX_C03.indd 19 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.20Electronic Circuits I

    The negative sign indicates a phase shift of 180 between input and output voltages.Considering voltage gain with source resistance RS,

    Avs = Av Z

    Z Ri

    i S+

    Hence, voltage gain Avs is always less than Av.

    Current gain

    For transistor, the voltage gain is the most important gain. Hence, the current gain can be determined directly from the voltage gain, the defi ned load and the input impedance.

    Io = VR

    o

    L

    Ii = VZ

    i

    i

    Ai = II

    o

    i

    =

    VR

    VZ

    o

    L

    i

    i

    = VV

    o

    i

    ZR

    i

    L

    = Av ZR

    i

    L

    Considering current gain with source resistance,

    Ais = Ai R

    R ZS

    S i+

    Hence, current gain Ais is always less than Ai.

    Example 3.2: Find Zin, Zo, Avs and Ais for the circuit shown in Fig. 3.29.

    VS

    1 k

    1 k CE

    5 k

    CC1

    Vo

    +VCC

    CC2470 k

    Zin Zo

    hfe = 220hie = 2.7 k

    hre = 1.5 104

    hoe = 18

    Fig. 3.29Example 3.2

    M03_XXXXXXXX_XX_C03.indd 20M03_XXXXXXXX_XX_C03.indd 20 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.6Exact Analysis of Common-emi er Amplifi er3.21

    Solution:

    AC equivalent circuit (Fig. 3.30)

    VS

    RS

    Vo

    RCRB

    Fig. 3.30AC Equivalent Circuit

    h-parameter equivalent circuit (Fig. 3.31)

    hoeRC

    Io = Ic

    hf eIb1

    RSRB

    VS

    Ii Ib hie

    hreVo

    Zi Z iZin Z o Zo

    Vo

    +

    Vi

    +

    B C

    E

    Fig. 3.31h-parameter Equivalent Circuit

    (i) Input impedance Zi = hie h h R

    h R1fe re C

    oe C+

    = 2.7 103 220 1.5 10 5 10

    1 18 10 5 10

    4 3

    6 3

    +

    = 2.54 k

    Zi = Zi || RB = (2.54 103) || (470 103) = 2.53 k

    Zin = Zi + RS = 2.53 103 + 1 103 = 3.53 k

    (ii) Output impedance Zo = h

    h hR R h

    1

    ( || )oefe re

    B S ie

    +

    M03_XXXXXXXX_XX_C03.indd 21M03_XXXXXXXX_XX_C03.indd 21 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.22Electronic Circuits I

    = 1

    18 10 220 1.5 10[(470 10 ) || (1 10 )] 2.7 10

    64

    3 3 3

    +

    = 110.12 k Zo = Zo || RC = (110.12 10

    3) || (5 103) = 4.78 k

    (iii) Voltage gain Av = h R

    h h h h h R( )fe C

    ie ie oe fe re C+

    =

    = 395.97

    Avs = Av Z

    Z Ri

    i S+

    = 395.97 2.53 10

    2.53 10 1 10

    3

    3 3

    + = 283.79

    (iv) Current gain Ai = Av ZR

    i

    C

    = (395.97) 2.53 10

    5 10

    3

    3

    = 200.35

    Ais = Ai R

    R ZS

    S i+

    = 200.35 1 10

    1 10 2.53 10

    3

    3 3

    + = 56.75

    Example 3.3: Find Zin, Zo, Avs and Ais for the circuit shown in Fig. 3.32.

    VS

    1 k

    1 k

    5 k

    CE

    5 k

    CC1

    Vo

    +VCC

    CC2470 k

    Zin Zo

    hfe = 220hie = 2.7 k

    hre = 1.5 104

    hoe = 18

    Fig. 3.32Example 3.3

    220 5 102.7 10 (2.7 10 18 10 220 1.5 10 )(5 10 )

    3

    3 3 6 4 3

    +

    M03_XXXXXXXX_XX_C03.indd 22M03_XXXXXXXX_XX_C03.indd 22 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.6Exact Analysis of Common-emi er Amplifi er3.23

    Solution:

    AC equivalent circuit (Fig. 3.33)

    VS

    RS

    Vo

    RCRB

    RL

    Fig. 3.33AC Equivalent Circuit

    h-parameter equivalent circuit (Fig. 3.34)

    hoeRC RL

    Ic

    hf eIb

    Io

    1RS

    RB

    VS

    Ii Ib hie

    hreVo

    Zi Z iZin Z o Zo

    Vo

    +

    Vi

    +

    B C

    E

    Fig. 3.34h-parameter Equivalent Circuit

    RL = RC || RL = (5 103) || (5 103) = 2.5 k

    (i) Input impedance Zi = hie h h R

    h R1fe re L

    oe L

    +

    = 2.7 103 220 1.5 10 2.5 101 18 10 2.5 10

    4 3

    6 3

    +

    = 2.62 k Zi = Zi || RB = (2.62 10

    3) || (470 103) = 2.61 k Zin = Z i + RS = 2.61 10

    3 + 1 103 = 3.61 k

    (ii) Output impedance Zo = h

    h hR R h

    1

    ( || )oefe re

    B S ie

    +

    = 1

    18 10 220 1.5 10[(470 10 ) || (1 10 )] 2.7 10

    64

    3 3 3

    +

    = 110.119 k Zo = Zo || RC || RL = (110.119 10

    3) || (5 103) || (5 103) = 2.44 k

    M03_XXXXXXXX_XX_C03.indd 23M03_XXXXXXXX_XX_C03.indd 23 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.24Electronic Circuits I

    (iii) Voltage gain Av = h R

    h h h h h R( )fe L

    ie ie oe fe re L

    +

    =

    = 200.8

    Avs = Av Z

    Z Ri

    i S+

    = 200.8 2.61 102.61 10 1 10

    3

    3 3

    +

    = 145.17

    (iv) Current gain Ai = AvZR

    i

    L

    = (200.8) 2.61 105 10

    3

    3

    = 104.8

    Ais = Ai R

    R ZS

    S i+

    = 104.8 1 101 10 2.61 10

    3

    3 3

    +

    = 29.03

    Example 3.4: Determine Zin, Zo, Avs and Ais for the circuit shown in Fig. 3.35.

    VS

    10 k

    10 kRE

    3 k

    CE

    5 k

    CC1

    Vo

    +VCC

    CC2100 k

    Zin Zo

    hfe = 50hie = 1.1 k

    hre = 2.5 104

    hoe = 24

    Fig. 3.35Example 3.4

    220 2.5 102.7 10 (2.7 10 18 10 220 1.5 10 )(2.5 10 )

    3

    3 3 6 4 3

    +

    M03_XXXXXXXX_XX_C03.indd 24M03_XXXXXXXX_XX_C03.indd 24 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.6Exact Analysis of Common-emi er Amplifi er3.25

    Solution:

    AC equivalent circuit (Fig. 3.36)

    RS RCR2R1

    RL

    VS+

    Fig. 3.36AC Equivalent Circuit

    h-parameter equivalent circuit (Fig. 3.37)

    hoeRC RL

    Ic

    hf eIb

    Io

    1RS

    RB

    VS

    Ii Ib hie

    hreVo

    Zi Z iZin Z o Zo

    Vo

    +

    Vi

    +

    B C

    E

    Fig. 3.37h-parameter Equivalent Circuit

    RB = R1 || R2 = (100 103) || (10 103) = 9.09 k

    RL = RC || RL = (5 103) || (3 103) = 1.875 k

    (i) Input impedance Zi = hie h h R

    h R1fe re L

    oe L

    +

    = 1.1 103 50 2.5 10 1.875 101 24 10 1.875 10

    4 3

    6 3

    +

    = 1.077 k

    M03_XXXXXXXX_XX_C03.indd 25M03_XXXXXXXX_XX_C03.indd 25 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.26Electronic Circuits I

    Zi = Zi || RB = (1.077 103) || (9.09 103) = 0.963 k

    Zin = Zi + RS = 0.963 103 + 10 103 = 10.963 k

    (ii) Output impedance Zo = h

    h hR R h

    1

    ( || )oefe re

    B S ie

    +

    = 1

    24 10 50 2.5 10[(9.09 10 ) || (10 10 )] 1.1 10

    64

    3 3 3

    +

    = 45.73 k

    Zo = Zo || RC || RL = (45.73 103) || (5 103) || (3 103) = 1.8 k

    (iii) Voltage gain Av = h R

    h h h h h R( )fe L

    ie ie oe fe re L

    +

    =

    = 83.25

    Avs = AvZ

    Z Ri

    i S+

    = 83.25 0.963 100.963 10 10 10

    3

    3 3

    +

    = 7.313

    (iv) Current gain Ai = AvZR

    i

    L

    = (83.25) 0.963 103 10

    3

    3

    = 26.72

    Ais = Ai R

    R ZS

    S i+

    = 26.72 10 1010 10 0.963 10

    3

    3 3

    + = 24.75

    50 1.875 101.1 10 (1.1 10 24 10 50 2.5 10 )(1.875 10 )

    3

    3 3 6 4 3

    +

    M03_XXXXXXXX_XX_C03.indd 26M03_XXXXXXXX_XX_C03.indd 26 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.7Exact Analysis of Common-base Amplifi er3.27

    3.7EXACT ANALYSIS OF COMMON-BASE AMPLIFIERFigure 3.38 shows a common-base amplifi er.

    RERS

    R1 RC

    CC1Vo

    +VCC

    CC3

    CC2RL

    R2

    VS

    Fig. 3.38Common-base Amplifi er

    The AC equivalent circuit is obtained by replacing all capacitors by short circuits and replac-ing DC source by ground as shown in Fig. 3.39. Two resistors R1 and R2 are shorted to ground.

    RERS

    Vo

    RC RL

    VS

    Fig. 3.39AC Equivalent Circuit

    Figure 3.39 can be redrawn by rotating the BJT as shown in Fig. 3.40.

    RS

    Vo

    RCRE RL

    VS

    Fig. 3.40AC Equivalent Circuit

    M03_XXXXXXXX_XX_C03.indd 27M03_XXXXXXXX_XX_C03.indd 27 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.28Electronic Circuits I

    The h-parameter equivalent circuit is obtained by replacing the BJT by its h-parameter model as shown in Fig. 3.41.

    hob

    Ic

    hf bIe

    Io

    1ViRS

    +

    Vo

    +

    IeIi hib

    hrbVoRE RC RL

    E C

    B

    ZiZin Zi Zo Zo

    VS

    Fig. 3.41h-parameter Equivalent Circuit

    RL = RC || RLInput impedance

    Zi = hib h h R

    h R1fb rb L

    ob L

    +

    Zi = Zi || RE Zin = Zi + RS

    Output impedance

    Zo = h

    h hR R h

    1

    ( || )obfb rb

    E S ib

    +

    Zo = Zo || RC ||RL

    Voltage gain

    Av = h R

    h h h h h R( )fb L

    ib ib ob fb rb L

    +

    Considering source resistance,

    Avs = Av Z

    Z Ri

    i S+Current gain

    For transistor, the voltage gain is the most important gain. Hence, the current gain can be determined directly from the voltage gain, the defi ned load and the input impedance.

    M03_XXXXXXXX_XX_C03.indd 28M03_XXXXXXXX_XX_C03.indd 28 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.7Exact Analysis of Common-base Amplifi er3.29

    Ai = II

    o

    i

    =

    VR

    VZ

    o

    L

    i

    i

    = VV

    o

    i

    ZR

    i

    L

    = Av ZR

    i

    L

    Considering source resistance,

    Ais = Ai R

    R ZS

    S i+

    Example 3.5: Calculate Zi, Zo, Av and Ai for the circuit shown in Fig. 3.42.

    3 k1 k

    50 k 2.2 k

    CC1Vo

    +VCC

    CC2

    CC3

    50 k

    Zi Zo

    VS

    hrb = 2 104hib = 14.41

    hfb = 0.991hob = 0.18 106

    Fig. 3.42Example 3.5

    Solution:AC equivalent circuit (Fig. 3.43)

    RERS

    Vo

    RC

    VS

    Fig. 3.43AC Equivalent Circuit

    M03_XXXXXXXX_XX_C03.indd 29M03_XXXXXXXX_XX_C03.indd 29 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.30Electronic Circuits I

    Figure 3.43 can be redrawn by rotating the BJT as shown in Fig. 3.44.Vo

    RCRE

    RS

    VS

    Fig. 3.44AC Equivalent Circuit

    h-parameter equivalent circuit (Fig. 3.45)

    hob

    Ic

    hf bIe1Vi

    RS

    +

    +

    Vo

    +

    IeIi hib

    hrbVoRE RC

    E C

    B

    Zi Zi Zo Zo

    VS

    Fig. 3.45h-parameter Equivalent Circuit

    (i) Input impedance Zi = hib h h R

    h R1f b rb C

    ob C+

    = 14.41 ( 0.991)(2 10 )(2.2 10 )1 0.18 10 2.2 10

    4 3

    6 3

    + = 14.84

    Zi = Zi || RE = 14.84 || (3 103) = 14.76

    (ii) Output impedance Zo = h

    h hR R h

    1

    ( || )obf b rb

    E S ib

    +

    = 1

    0.18 10 ( 0.991)(2 10 )[(3 10 ) || (1 10 )] 14.41

    64

    3 3

    +

    = 2.276 M Zo = Zo || RC = (2.276 10

    6) || (2.2 103) = 2.197 k

    M03_XXXXXXXX_XX_C03.indd 30M03_XXXXXXXX_XX_C03.indd 30 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.7Exact Analysis of Common-base Amplifi er3.31

    (iii) Voltage gain Av = +h R

    h h h h h R( )fb C

    ib ib ob fb rb C

    = ( 0.991) 2.2 10

    14.41 [14.41 0.18 10 2 10 ( 0.991)](2.2 10 )

    3

    6 4 3

    +

    = 146.7

    (iv) Current gain Ai = Av ZR

    i

    C

    = 146.7 14.762.2 103

    = 0.9847

    Example 3.6: Calculate Zi, Zo, Avs and Ais for the circuit shown in Fig. 3.46.

    Vo

    10 k 47 k7.5 k

    6 V +12 V

    100

    CC1 CC2

    Zi Zo

    hfb = 0.99hob = 2.47 107

    hib = 12

    hrb = 3 105VS

    Fig. 3.46Example 3.6

    Solution:AC equivalent circuit (Fig. 3.47)

    Vo

    RC RLRE

    RS

    VS

    Fig. 3.47AC Equivalent Circuit

    M03_XXXXXXXX_XX_C03.indd 31M03_XXXXXXXX_XX_C03.indd 31 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.32Electronic Circuits I

    h-parameter equivalent circuit (Fig. 3.48)

    hob

    Ic

    hf bIe

    Io

    1ViRS

    +

    Vo

    +

    IeIi hib

    hrbVoRE RC RL

    E C

    B

    Zi Zi Zo Zo

    VS

    Fig. 3.48h-parameter Equivalent Circuit

    RL = RC || RL = (10 103) || (47 103) = 8.25 k

    (i) Input impedance Zi = hib

    +

    h h R

    h R1fb rb L

    ob L

    = 12 +

    ( 0.99)(3 10 )(8.25 10 )1 2.47 10 8.25 10

    5 3

    7 3

    = 12.24 Zi = Zi || RE = 12.24 || (7.5 10

    3) = 12.22

    (ii) Output impedance Zo = h

    h hR R h

    1

    ( || )obfb rb

    E S ib

    +

    = 1

    2.47 10 ( 0.99)(3 10 )[(7.5 10 ) ||100] 12

    75

    3

    +

    = 1.94 M

    Zo = Zo || RC || RL = (1.94 106) || (10 103) || (47 103) = 8.209 k

    (iii) Voltage gain Av =

    +

    h R

    h h h h h R( )fb L

    ib ib ob fb rb L

    = ( 0.99)(8.25 10 )

    12 [12 2.47 10 3 10 ( 0.99)](8.25 10 )

    3

    7 5 3

    +

    = 665.64

    M03_XXXXXXXX_XX_C03.indd 32M03_XXXXXXXX_XX_C03.indd 32 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.8Exact Analysis of Common-collector Amplifi er3.33

    Avs = Av Z

    Z Ri

    i S+

    = 665.64 +

    12.2212.22 100

    = 72.6

    (iv) Current gain Ai = Av ZR

    i

    L

    = 665.64 12.2247 103

    = 0.173

    Ais = Ai R

    R ZS

    S i+

    = 0.173 100100 12.22+

    = 0.154

    3.8EXACT ANALYSIS OF COMMON-COLLECTOR AMPLIFIERFigure 3.49 shows a common-collector amplifi er.

    RE

    R1

    CC1

    +VCC

    VoCC2

    RLR2

    RS

    VS

    Fig. 3.49Common-collector Amplifi er

    M03_XXXXXXXX_XX_C03.indd 33M03_XXXXXXXX_XX_C03.indd 33 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.34Electronic Circuits I

    The AC equivalent circuit is obtained by replacing all capacitors by short circuits and replacing DC source by ground as shown in Fig. 3.50.

    RE

    Vo

    RL

    R2R1

    RS

    VS

    Fig. 3.50AC Equivalent Circuit

    The h-parameter equivalent circuit is obtained by replacing the BJT by its h-parameter model as shown in Fig. 3.51.

    hoc

    Ie

    hf cIb

    Io

    1ViRS

    +

    Vo

    +

    IbIi hic

    hrcVoRB RE RL

    B E

    C

    VS

    Fig. 3.51h-parameter Equivalent Circuit

    RB = R1 || R2RL = RE || RL

    Input impedance

    Zi = hic

    +

    h h R

    h R1fc rc L

    oc L

    M03_XXXXXXXX_XX_C03.indd 34M03_XXXXXXXX_XX_C03.indd 34 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.8Exact Analysis of Common-collector Amplifi er3.35

    Zi = Zi || RB

    Zin = Zi + RS

    Output impedance

    Zo = h

    h hR R h

    1

    ( || )ocfc rc

    B S ic

    +

    = Zo || RE || RL

    Voltage gain

    Av = h R

    h h h h h R( )fc L

    ic ic oc fc rc L

    +

    Considering source resistance,

    Avs = AvZ

    Z Ri

    i S+

    Current gain

    For transistor, the voltage gain is the most important gain. Hence, the current gain can be determined directly from the voltage gain, the defi ned load and the input impedance.

    Ai = II

    o

    i

    =

    VR

    VZ

    o

    L

    i

    i

    = VV

    o

    i

    ZR

    i

    L

    = Av ZR

    i

    L

    Considering source resistance,

    Ais = AiR

    R ZS

    S i+

    M03_XXXXXXXX_XX_C03.indd 35M03_XXXXXXXX_XX_C03.indd 35 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.36Electronic Circuits I

    Example 3.7: Calculate Zi, Zo, Av and Ai, for the circuit shown in Fig. 3.52.

    5 k

    10 k

    1 k

    CC1

    +VCC

    VoCC2

    20 k10 k

    Zi Zo

    hic = 1.2 khrc = 1hfc = 101

    hoc = 25 106

    VS

    Fig. 3.52Example 3.7

    Solution:AC equivalent circuit (Fig. 3.53)

    RE

    Vo

    RL

    R2R1

    RS

    VS

    Fig. 3.53AC Equivalent Circuit

    h-parameter equivalent circuit (Fig. 3.54)

    hoc

    Ie

    hf cIb

    Io

    1ViRS

    +

    Vo

    +

    IbIi hic

    hrcVoRB RE RL

    B E

    C

    VS

    Fig. 3.54h-parameter Equivalent Circuit

    RB = R1 || R2 = (10 103) || (10 103) = 5 k

    RL = RE || RL = (5 103) || (20 103) = 4 k

    M03_XXXXXXXX_XX_C03.indd 36M03_XXXXXXXX_XX_C03.indd 36 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.8Exact Analysis of Common-collector Amplifi er3.37

    (i) Input impedance Zi = hic h h R

    h R1fc rc L

    oc L

    +

    = 1.2 103 ( 101)(1)(4 10 )

    1 25 10 4 10

    3

    6 3

    +

    = 368.47 kZi = Zi || RB = (368.47 10

    3) || (5 103) = 4.93 k

    (ii) Output impedance Zo = h

    h hR R h

    1

    ( || )ocfc rc

    B S ic

    +

    = 1

    25 10 ( 101)(1)[(5 10 ) || (1 10 )] 1.2 10

    63 3 3

    +

    = 20.12 Zo = Zo || RE || RL = 20.12 || (5 10

    3) || (20 103) = 20.02

    (iii) Voltage gain Av = h R

    h h h h h R( )fc L

    ic ic oc fc rc L

    +

    = ( 101)(4 10 )

    1.2 10 [1.2 10 25 10 ( 101)(1)](4 10 )

    3

    3 3 6 3

    +

    = 0.996

    Avs = Av Z

    Z Ri

    i S+

    = 0.996 4.93 104.93 10 1 10

    3

    3 3

    + = 0.828

    (iv) Current gain Ai = AvZR

    i

    L

    = 0.996 4.93 1020 10

    3

    3

    = 0.246

    Ais = Ai R

    R ZS

    S i+

    = 0.246 1 101 10 4.93 10

    3

    3 3

    + = 0.041

    M03_XXXXXXXX_XX_C03.indd 37M03_XXXXXXXX_XX_C03.indd 37 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.38Electronic Circuits I

    3.9APPROXIMATE ANALYSIS OF TRANSISTOR AMPLIFIERFor the CE and CB confi gurations, the magnitude of hr and ho is often such that the parameters Zi, Zo, Av and Ai are only slightly affected if hr and ho are not included in the model. Since the value of hr is very small, controlled source hrVo becomes very small. It is approximated by hrVo = 0 and is replaced by a short circuit. Similarly, the value of ho is very small, and the impedance

    h1

    o

    becomes very large and can be ignored in comparison to a parallel load. It is approxi-

    mated by h1

    o

    = and is replaced by an open circuit. Thus, the h-parameter model is simpli-

    fi ed by short circuiting controlled source hrVo and open circuiting impedance h1

    o

    . Generally, if

    hoeRL < 0.1, the approximate model can be used. The simplifi ed h-parameter model is shown in the Fig. 3.55.

    RL

    Io

    hi

    VS

    RS

    Ii

    hfIi Vo

    +

    Vi

    +

    Fig. 3.55Simplifi ed h-parameter Model

    Input impedance Zi = hi

    Output impedance Zo = h1

    o

    Voltage gain Av = h R

    hf L

    i

    Current gain Ai = hf

    3.10APPROXIMATE ANALYSIS OF COMMON-EMITTER AMPLIFIER (FIXED-BIAS CONFIGURATION)

    Fig. 3.56 shows a fi xed-bias common-emitter amplifi er.

    Case I: When RE is bypassed

    M03_XXXXXXXX_XX_C03.indd 38M03_XXXXXXXX_XX_C03.indd 38 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.10Approximate Analysis of Common-emi er Amplifi er3.39

    RE

    RS

    RB RC

    CC1Vo

    +VCC

    CC2

    RL

    CEVS

    Fig. 3.56Common-emi er Amplifi er with Bypassed RE

    The AC equivalent circuit is obtained by replacing all capacitors by short circuits and replacing DC source by ground as shown in Fig. 3.57.

    Vo

    RC RLRB

    RS

    VS

    Fig. 3.57AC Equivalent Circuit

    The BJT is replaced by the approximate h-parameter model as shown in Fig. 3.58.

    Ic

    hf eIb

    Io

    ViRS

    +

    Vo

    +

    IbIi

    hieRB RC RL

    B C

    E

    ZiZin Zi Zo Zo

    VS

    Fig. 3.58h-parameter Equivalent Circuit

    M03_XXXXXXXX_XX_C03.indd 39M03_XXXXXXXX_XX_C03.indd 39 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.40Electronic Circuits I

    Input impedance Zi = hieZi = Zi || RBZin = Zi + RS

    Output impedance The output impedance Zo of the circuit is the impedance looking from the collector side when input voltage VS = 0. When VS = 0, Ib = 0, hfe Ib = 0. The current source hfe Ib is replaced by an open circuit.

    Zo =

    Zo = Zo || RC || RL = RC || RL

    Voltage gain

    RL = RC || RLVo = hfe Ib RLVi = Ib hie

    Av = VV

    o

    i

    = h I R

    I hfe b L

    b ie

    = h R

    hfe L

    ie

    The negative sign indicates a phase shift of 180 between input and output voltages.Considering voltage gain with source resistance RS,

    Avs = Av Z

    Z Ri

    i S+

    Current gainFor transistor, the voltage gain is the most important gain. Hence, the current gain can be determined directly from the voltage gain, the defi ned load and the input impedance.

    Ai = II

    o

    i

    =

    VR

    VZ

    o

    L

    i

    i

    = VV

    o

    i

    ZR

    i

    L

    = Av ZR

    i

    L

    Considering current gain with source resistance,

    Ais = Ai R

    R ZS

    S i+

    M03_XXXXXXXX_XX_C03.indd 40M03_XXXXXXXX_XX_C03.indd 40 7/21/12 9:55 AM7/21/12 9:55 AM

  • Case II: When RE is not bypassed Figure 3.59 shows a CE amplifi er with unbypassed RE.

    RE

    R1 RC

    CC1

    +VCC

    VoCC2

    RLR2

    RS

    VS

    Fig. 3.59Common-emi er Amplifi er with Unbypassed RE

    The AC equivalent circuit is obtained by replacing all capacitors by short circuits and replacing DC source by ground as shown in Fig. 3.60.

    RE RC RL

    Vo

    R2R1

    RS

    VS

    Fig. 3.60AC Equivalent Circuit

    The BJT is replaced by the approximate h-parameter model as shown in Fig. 3.61.

    Input impedance Vi = Ibhie + IeRE

    = Ibhie + (1 + hfe) Ib RE = [hie + (1 + hfe) RE] Ib

    Zi = VI

    i

    b

    3.10Approximate Analysis of Common-emi er Amplifi er3.41

    M03_XXXXXXXX_XX_C03.indd 41M03_XXXXXXXX_XX_C03.indd 41 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.42Electronic Circuits I

    = h h R I

    I[ (1 ) ]ie fe E b

    b

    + +

    = hie + (1 + hfe) RE

    Due to unbypassed RE, input impedance Zi increases by a value (1 + hfe) RE. When RE is transferred to base side, it gets multiplied by 1 + hfe. Hence, input impedance looking from the base side, i.e. Zi is the sum of hie and (1 + hfe) RE.

    Zi = Zi || RB= [hie + (1 + hfe) RE] || RB

    Zin = Zi + RSOutput impedance The output impedance Zo of the circuit is the impedance looking from the collector side when input voltage VS = 0. When VS = 0, Ib = 0, hfe Ib = 0. The current source hfe Ib is replaced by an open circuit.

    Zo = Zo = Zo || RC || RL = RC || RL

    Voltage gain

    R R R||L C L =

    Vo = hfe Ib RLVi = [hie + (1 + hfe) RE] Ib

    Av = VV

    o

    i

    RC

    RE

    RL

    Ic

    hfeIb

    Io

    RSRB

    VS

    Ii Ib

    Ie

    hie

    Zi Z iZin Z o Zo

    Vo

    +

    Vi

    +

    B C

    E

    Fig. 3.61h-parameter Equivalent Circuit

    M03_XXXXXXXX_XX_C03.indd 42M03_XXXXXXXX_XX_C03.indd 42 7/21/12 9:55 AM7/21/12 9:55 AM

  • =

    + +

    h I R

    h h R I[ (1 ) ]fe b L

    ie fe E b

    = h R

    h h R(1 )fe L

    ie fe E

    + +

    The negative sign indicates a phase shift of 180 between input and output voltages. Due to unbypassed RE, voltage gain decreases.

    Considering voltage gain with source resistance RS,

    Avs = Av Z

    Z Ri

    i S+Current gain For transistor, the voltage gain is the most important gain. Hence, the current gain can be determined directly from the voltage gain, the defi ned load and the input impedance.

    Ai = II

    o

    i

    =

    VR

    VZ

    o

    L

    i

    i

    = VV

    o

    i

    ZR

    i

    L

    = Av ZR

    i

    L

    Considering current gain with source resistance,

    Ais = Ai R

    R ZS

    S i+

    Example 3.8: Calculate Zin, Zo, Avs and Ais for the circuit shown in Fig. 3.62.

    VS

    1 k

    RE

    10 k

    CE

    4.7 k

    CC1

    Vo

    +VCC

    CC2470 k

    Zin Zo

    hfe = 110hie = 1.6 k

    Fig. 3.62Example 3.8

    Solution: AC equivalent circuit (Fig. 3.63)

    3.10Approximate Analysis of Common-emi er Amplifi er3.43

    M03_XXXXXXXX_XX_C03.indd 43M03_XXXXXXXX_XX_C03.indd 43 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.44Electronic Circuits I

    VS

    RS

    Vo

    RCRB

    RL

    Fig. 3.63AC Equivalent Circuith-parameter equivalent circuit (Fig. 3.64)

    RC RL

    Ic

    hfeIb

    Io

    RSRB

    VS

    Ii Ib

    hie

    Zi Z iZin Z o Zo

    Vo

    +

    Vi

    +

    B C

    E

    Fig. 3.64h-parameter Equivalent Circuit

    RL = RC || RL = (4.7 103) || (10 103) = 3.197 k

    (i) Input impedance Zi = hie = 1.6 k Zi = Zi || RB = (1.6 10

    3) || (470 103) = 1.595 k Zin = Zi + RS = 1.595 10

    3 + 1 103 = 2.595 k(ii) Output impedance Zo =

    Zo = RC || RL = (4.7 103) || (10 103) = 3.197 k

    (iii) Voltage gain Av = h R

    hfe L

    ie

    =

    110 3.197 101.6 10

    3

    3

    = 219.8

    Avs = Av Z

    Z Ri

    i S+

    = 219.8 +

    1.595 101.595 10 1 10

    3

    3 3

    = 134.94

    M03_XXXXXXXX_XX_C03.indd 44M03_XXXXXXXX_XX_C03.indd 44 7/21/12 9:55 AM7/21/12 9:55 AM

  • (iv) Current gain Ai = Av ZR

    i

    L

    = (219.8)

    1.595 1010 10

    3

    3

    = 35.05

    Ais = Ai R

    R ZS

    S i+

    = 35.05 +

    1 101 10 1.595 10

    3

    3 3

    = 13.53

    Example 3.9: Calculate Zin, Zo, Avs and Ais for the circuit shown in Fig. 3.65.

    VS

    1 k

    4.7 k

    1.2 k

    10 k

    4.7 k

    CC1

    Vo

    +VCC

    CC2470 k

    Zin Zo

    hfe = 110hie = 1.6 k

    Fig. 3.65Example 3.9Solution:AC equivalent circuit (Fig. 3.66)

    RE RC RL

    Vo

    RB

    RS

    VS

    Fig. 3.66AC Equivalent Circuit

    3.10Approximate Analysis of Common-emi er Amplifi er3.45

    M03_XXXXXXXX_XX_C03.indd 45M03_XXXXXXXX_XX_C03.indd 45 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.46Electronic Circuits I

    h-parameter equivalent circuit (Fig. 3.67)

    RC

    RE

    RL

    Ic

    hfeIb

    Io

    RSRB

    VS

    Ii Ib

    Ie

    hie

    Zi Z i Z o Zo

    Vo

    +

    Vi

    +

    B C

    E

    Fig. 3.67h-parameter Equivalent Circuit

    RL = RC || RL = (4.7 103) || (10 103) = 3.197 k

    (i) Input impedance Zi = hie + (1 + hfe) RE= 1.6 103 + (1 + 110) (1.2 103)= 134.8 k

    Zi = Zi || R B = (134.8 103) || (470 103) = 104.76 k

    (ii) Output impedance Zo = Zo = RC = 4.7 k

    (iii) Voltage gain Av = h R

    h h R(1 ) fe L

    ie fe E

    + +

    = 110 3.197 10

    1.6 10 (1 110)(1.2 10 )

    3

    3 3

    + + = 2.61

    Avs = Av Z

    Z Ri

    i S+

    = 2.61 +

    104.76 10104.76 10 1 10

    3

    3 3

    = 2.56

    (iv) Current gain Ai = Av ZR

    i

    L

    = (2.61)

    104.76 1010 10

    3

    3

    M03_XXXXXXXX_XX_C03.indd 46M03_XXXXXXXX_XX_C03.indd 46 7/21/12 9:55 AM7/21/12 9:55 AM

  • = 27.34

    Ais = Ai R

    R ZS

    S i+

    = 27.34 +

    1 101 10 104.76 10

    3

    3 3

    = 0.26

    3.11 APPROXIMATE ANALYSIS OF COMMON-EMITTER AMPLIFIER (VOLTAGE DIVIDER BIAS CONFIGURATION)

    Figure 3.68 shows a common-emitter amplifi er with voltage divider bias circuit.

    Case I: When RE is bypassed

    RE

    RS

    R1 RC

    CC1Vo

    +VCC

    CC2

    R2

    RL

    CEVS

    Fig. 3.68Common-emi er Amplifi er with Bypassed REThe AC equivalent circuit is obtained by replacing all capacitors by short circuits and

    replacing DC source by ground as shown in Fig. 3.69.

    RC RL

    Vo

    R2R1

    RS

    VS

    Fig. 3.69AC Equivalent Circuit

    3.11Approximate Analysis of Common-emi er Amplifi er3.47

    M03_XXXXXXXX_XX_C03.indd 47M03_XXXXXXXX_XX_C03.indd 47 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.48Electronic Circuits I

    The BJT is replaced by the approximate h-parameter model as shown in Fig. 3.70.

    Ic

    hf eIb

    Io

    ViRS

    +

    Vo

    +

    IbIi

    hieRB RC RL

    B C

    E

    ZiZin Zi Zo Zo

    VS

    Fig. 3.70h-parameter Equivalent Circuit

    RB = R1 || R2Input impedance

    Zi = hieZi = Zi || RB

    Zin = Zi + RS

    Output impedance

    The output impedance Zo of the circuit is the impedance looking from collector side when input voltage VS = 0. When VS = 0, Ib = 0, hfe Ib = 0. The current source hfe Ib is replaced by an open circuit.

    Zo =

    Zo = Zo || RC || RL = RC || RL

    Voltage gain

    RL = RC || RLVo = hfe Ib RLVi = Ib hie

    Av = VV

    o

    i

    = h I R

    I hfe b L

    b ie

    = h R

    hfe L

    ie

    The negative sign indicates a phase shift of 180 between input and output voltages.Considering voltage gain with source resistance RS,

    Avs = Av Z

    Z Ri

    i S+

    M03_XXXXXXXX_XX_C03.indd 48M03_XXXXXXXX_XX_C03.indd 48 7/21/12 9:55 AM7/21/12 9:55 AM

  • Current gain

    For transistor, the voltage gain is the most important gain. Hence, the current gain can be determined directly from the voltage gain, the defi ned load and the input impedance.

    Ai = II

    o

    i

    =

    VR

    VZ

    o

    L

    i

    i

    = VV

    o

    i

    ZR

    i

    L

    = Av ZR

    i

    L

    Considering current gain with source resistance,

    Ais = Ai R

    R ZS

    S i+

    Case II: When RE is not bypassed Figure 3.71 shows a CE amplifi er with unbypassed RE.

    RE

    R1 RC

    CC1

    +VCC

    VoCC2

    RLR2

    RS

    VS

    Fig. 3.71Common-emi er Amplifi er with Unbypassed RE

    The AC equivalent circuit is obtained by replacing all capacitors by short circuits and replacing DC source by ground as shown in Fig. 3.72.

    3.11Approximate Analysis of Common-emi er Amplifi er3.49

    M03_XXXXXXXX_XX_C03.indd 49M03_XXXXXXXX_XX_C03.indd 49 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.50Electronic Circuits I

    RCRE RL

    Vo

    R2R1

    RS

    VS

    Fig. 3.72AC Equivalent Circuit

    The BJT is replaced by the approximate h-parameter model as shown in Fig. 3.73.

    RC

    RE

    RL

    Ic

    hfeIb

    Io

    RSRB

    VS

    Ii Ib

    Ie

    hie

    ZiZin Z i Z o Zo

    Vo

    +

    Vi

    +

    B C

    E

    Fig. 3.73h-parameter Equivalent Circuit

    RB = R1 || R2Input impedance

    Vi = Ibhie + IeRE = Ibhie + (1 + hfe) Ib RE = [hie + (1 + hfe) RE] Ib

    Zi = VI

    i

    b

    = + +h h R I

    I[ (1 ) ]ie fe E b

    b

    = hie + (1 + hfe) REDue to unbypassed RE, input impedance Zi increases by (1 + hfe) RE.

    Zi = Zi || RB= [hie + (1 + hfe) RE] || RB

    Zin = Zi + RS

    M03_XXXXXXXX_XX_C03.indd 50M03_XXXXXXXX_XX_C03.indd 50 7/21/12 9:55 AM7/21/12 9:55 AM

  • Output impedance The output impedance Zo of the circuit is the impedance looking from the collector side when input voltage VS = 0. When VS = 0, Ib = 0, hfe Ib = 0. The current source hfe Ib is replaced by an open circuit.

    Zo =

    Zo = Zo || RC || RL = RC || RLVoltage gain

    R R R||L C L =

    Vo = hfe Ib RLVi = [hie + (1 + hfe) RE] Ib

    Av = VV

    o

    i

    =

    + +

    h I R

    h h R I[ (1 ) ]fe b L

    ie fe E b

    =

    + +

    h Rh h R(1 )

    fe L

    ie fe E

    The negative sign indicates a phase shift of 180 between input and output voltages. Due to unbypassed RE, voltage gain decreases.

    Considering voltage gain with source resistance RS,

    Avs = Av Z

    Z Ri

    i S+Current gain For transistor, the voltage gain is the most important gain. Hence, the current gain can be determined directly from the voltage gain, the defi ned load and the input impedance.

    Ai = II

    o

    i

    =

    VRVZ

    o

    L

    i

    i

    = VV

    o

    i

    ZR

    i

    L

    = AvZR

    i

    L

    Considering current gain with source resistance,

    Ais = Ai R

    R ZS

    S i+

    Example 3.10: Calculate Zin, Zo, Avs and Ais for the circuit shown in Fig. 3.74.Solution:AC equivalent circuit (Fig. 3.75)

    3.11Approximate Analysis of Common-emi er Amplifi er3.51

    M03_XXXXXXXX_XX_C03.indd 51M03_XXXXXXXX_XX_C03.indd 51 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.52Electronic Circuits I

    RE

    500

    120 k 3.3 k

    CC1Vo

    +VCC

    CC2

    39 k

    10 k

    CE

    Zin Zo

    hie = 2 khfe = 120

    VS

    Fig. 3.74Example 3.10

    RC RL

    Vo

    R2R1

    RS

    VS

    Fig. 3.75AC Equivalent Circuit

    h-parameter equivalent circuit (Fig. 3.76)

    RC RL

    Ic

    hfeIb

    Io

    RSRB

    VS

    Ii Ib

    hie

    ZiZin Z i Z o Zo

    Vo

    +

    Vi

    +

    B

    E

    C

    Fig. 3.76h-parameter Equivalent Circuit

    RB = R1 || R2 = (120 103) || (39 103) = 29.43 k

    RL = RC || RL = (3.3 103) ||(10 103) = 2.48 k

    M03_XXXXXXXX_XX_C03.indd 52M03_XXXXXXXX_XX_C03.indd 52 7/21/12 9:55 AM7/21/12 9:55 AM

  • (i) Input impedance Zi = hie = 2 kZi = Zi || RB = (2 10

    3) || (29.43 103) = 1.87 kZin = Zi + RS = 1.87 10

    3 + 500 = 2.37 k

    (ii) Output impedance Zo = Zo = RC || RL = (3.3 10

    3) || (10 103) = 2.48 k

    (iii) Voltage gain Av = h R

    hfe L

    ie

    =

    120 2.48 102 10

    3

    3

    = 148.8

    Avs = Av Z

    Z Ri

    i S+

    = 148.8 1.87 101.87 10 500

    3

    3

    +

    = 117.4

    (iv) Current gain Ai = Av ZR

    i

    L

    = ( 148.8)

    1.87 1010 10

    3

    3

    = 27.83

    Ais = Ai R

    R ZS

    S i+

    = 27.83 +

    500500 1.87 103

    = 5.87

    Example 3.11: Calculate Zi, Zo, Av and Ai for the circuit shown in Fig. 3.77.

    Solution:AC equivalent circuit (Fig. 3.78)

    3.11Approximate Analysis of Common-emi er Amplifi er3.53

    M03_XXXXXXXX_XX_C03.indd 53M03_XXXXXXXX_XX_C03.indd 53 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.54Electronic Circuits I

    1.2 k

    540 k5.6 k

    CC1

    +VCC

    VoCC2

    540 k

    Zi Zo

    hie = 555 hfe = 120

    VS

    Fig. 3.77Example 3.11

    RE RC

    Vo

    R2R1

    RS

    VS

    Fig. 3.78AC Equivalent Circuit

    h-parameter equivalent circuit (Fig. 3.79)

    RE

    RChfeIb

    Io = Ic

    RBVS

    Ii Ib

    Ie

    hie

    Zi Z i Z o Zo

    Vo

    +

    Vi

    +

    B C

    E

    Fig. 3.79h-parameter Equivalent Circuit

    R B = R1 || R2 = (540 103) || (540 103) = 270 k

    M03_XXXXXXXX_XX_C03.indd 54M03_XXXXXXXX_XX_C03.indd 54 7/21/12 9:55 AM7/21/12 9:55 AM

  • (i) Input impedance Zi = hie + (1 + hfe) RE

    = 555 + (1 + 120) (1.2 103)

    = 145.76 k

    Zi = Zi || R B = (145.76 103) || (270 103) = 94.66 k

    (ii) Output impedance Zo =

    Zo = RC = 5.6 k

    (iii) Voltage gain Av = + +h R

    h h R(1 )fe C

    ie fe E

    = 120 5.6 10

    555 (1 120)(1.2 10 )

    3

    3

    + +

    = 4.61

    (iv) Current gain Ai = Av ZR

    i

    C

    = ( 4.61)

    94.66 105.6 10

    3

    3

    = 77.93

    Example 3.12: Calculate Zi, Zo, Av and Ai for the circuit shown in Fig. 3.80.

    0.9 k

    0.1 k

    33 k 3.3 k

    CC1Vo

    +VCC

    CC2

    10 k

    CE

    Zi Zo

    hie = 2 khfe = 100VS

    Fig. 3.80Example 3.12

    3.11Approximate Analysis of Common-emi er Amplifi er3.55

    M03_XXXXXXXX_XX_C03.indd 55M03_XXXXXXXX_XX_C03.indd 55 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.56Electronic Circuits I

    Solution:AC equivalent circuit (Fig. 3.81)

    RE1 RC

    Vo

    R2R1

    RS

    VS

    Fig. 3.81AC Equivalent Circuit

    h-parameter equivalent circuit (Fig. 3.82)

    RC

    RE1

    hfeIbRS

    RB

    VS

    Ii Ib

    Ie

    hie

    Zi Z i Z o Zo

    Vo

    +

    Vi

    +

    B

    E

    Io = Ic C

    Fig. 3.82h-parameter Equivalent Circuit

    R B = R1 || R2 = (33 103) || (10 103) = 7.6 k

    (i) Input impedance Zi = hie + (1 + hfe) RE= 2 103 + (1 + 100)(0.1 103)= 12.1 k

    Zi = Zi || RB = (12.1 103) || (7.67 103) = 4.694 k

    (ii) Output impedance Zo =

    Zo = RC = 3.3 k

    (iii) Voltage gain Av = + +h R

    h h R(1 )fe C

    ie fe E

    M03_XXXXXXXX_XX_C03.indd 56M03_XXXXXXXX_XX_C03.indd 56 7/21/12 9:55 AM7/21/12 9:55 AM

  • = 100 3.3 102 10 (1 100)(0.1 10 )

    3

    3 3

    + + = 27.272

    (iv) Current gain Ai = Av ZR

    i

    C

    = ( 27.272)

    4.694 103.3 10

    3

    3

    = 38.79

    3.12 APPROXIMATE ANALYSIS OF COMMON-EMITTER AMPLIFIER (COLLECTOR TO BASE BIAS CONFIGURATION)

    Figure 3.83 shows a common-emitter amplifi er with the collector to base bias circuit. The collector feedback circuit uses a feedback path from collector to base to increase the stability of the system. The resistor RB is connected between input and output.

    RE

    RS

    RB

    RC

    CC1

    Vo

    +VCC

    CC2

    C

    EB

    RL

    CEVS

    Fig. 3.83Common-emi er Amplifi er

    This circuit provides negative feedback which reduces the gain of the amplifi er. In the CE amplifi er, output is 180o out of phase with input. If output is fed back to input, the net gain decreases. This process is known as AC degeneration. If AC signal voltage increases, base current increases and collector current IC increases (Fig. 3.84). Hence, the net base current through the transistor decreases as If opposes Ib. Due to this the gain of the amplifi er decreases.

    AC degeneration can be avoided by splitting RB into two parts and connecting a capacitor at the centre of both resistors (Fig. 3.85). For DC operation, there is no effect of the capacitor

    3.12Approximate Analysis of Common-emi er Amplifi er3.57

    M03_XXXXXXXX_XX_C03.indd 57M03_XXXXXXXX_XX_C03.indd 57 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.58Electronic Circuits I

    (XC = ). For AC operation, as Ib increases, Ic increases. Hence, the component of base current through RB is bypassed by C. Hence, there is no change in Ib and there is no degeneration of input signal.

    RS

    RB

    RC

    CC1

    Vo

    +VCC

    CC2

    RL

    If Ic

    Ib

    VS

    Fig. 3.84AC Degeneration

    RS

    RC

    CC1

    +VCC

    CC2RB2RB1

    RL

    C

    VS

    Fig. 3.85Method to Avoid AC Degeneration

    The AC equivalent circuit is obtained by replacing all capacitors by short circuits and replacing DC source by ground as shown in Fig. 3.86.

    M03_XXXXXXXX_XX_C03.indd 58M03_XXXXXXXX_XX_C03.indd 58 7/21/12 9:55 AM7/21/12 9:55 AM

  • RB2 RC

    Vo

    RLRB1

    RS

    VS

    Fig. 3.86AC Equivalent Circuit

    The h-parameter equivalent circuit is obtained by replacing BJT by its h-parameter model as shown in Fig. 3.87.

    Ic

    hf eIb

    Io

    ViRS

    +

    Vo

    +

    IbIi

    hieRB1 RB2 RC RL

    B C

    E

    ZiZin Zi Zo Zo

    VS

    Fig. 3.87h-parameter Equivalent Circuit

    Input impedance

    Zi = hieZi = Zi || RB1Zin = Zi + RS

    Output impedance

    The output impedance Zo of the circuit is the impedance looking from the collector side when input voltage VS = 0. When VS = 0, Ib = 0, hfe Ib = 0. The current source hfe Ib is replaced by an open circuit.

    Zo = Zo = Zo || RB2 || RC || RL = RB2 || RC || RL

    3.12Approximate Analysis of Common-emi er Amplifi er3.59

    M03_XXXXXXXX_XX_C03.indd 59M03_XXXXXXXX_XX_C03.indd 59 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.60Electronic Circuits I

    Voltage gain

    RL = RC || RL

    Vo = hfe Ib RLVi = Ib hie

    Av = VV

    o

    i

    = h I R

    I hfe b L

    b ie

    = h R

    hfe L

    ie

    The negative sign indicates a phase shift of 180 between input and output voltages.Considering voltage gain with source resistance RS,

    Avs = Av Z

    Z Ri

    i S+

    Current gain

    For transistor, the voltage gain is the most important gain. Hence, the current gain can be determined directly from the voltage gain, the defi ned load and the input impedance.

    Ai = II

    o

    i

    =

    VR

    VZ

    o

    L

    i

    i

    = VV

    o

    i

    ZR

    i

    L

    = Av ZR

    i

    L

    Considering current gain with source resistance,

    Ais = Ai R

    R ZS

    S i+

    If a capacitor is not connected at the centre of the feedback circuit, Millers theorem is used for AC analysis. Resistor RB is splitted into two equivalent resistors at the input and output using Millers theorem.

    Millers theorem

    If an impedance Z is connected between the input and output of a circuit having voltage gain

    Av = VV

    2

    1

    , it can be replaced with two impedances Z1 and Z2 at the input and output terminals,

    respectively as shown in Fig. 3.88.

    M03_XXXXXXXX_XX_C03.indd 60M03_XXXXXXXX_XX_C03.indd 60 7/21/12 9:55 AM7/21/12 9:55 AM

  • AmplifierAV

    ZI1

    I1 I2

    I2

    V1

    +

    V2

    +

    AmplifierAV

    V1

    +

    V2

    +

    Z1 Z2

    Fig. 3.88Millers Theorem

    IV V

    Z

    VVV

    Z

    1

    11 2

    12

    1=

    =

    =

    V AZ

    VZ

    A

    VZ

    (1 )

    (1 )

    v

    v

    1 1 1

    1

    =

    =

    where ZZ

    A1 v1 =

    IV V

    Z

    VVV

    Z

    1

    22 1

    21

    2=

    =

    =

    VA

    ZV

    AA

    Z

    VZ

    1 1

    1

    v

    v

    v

    22 2

    2

    =

    =

    where ZA

    AZ

    1.v

    v2 =

    The resistor RB, which is connected between input and output, is splitted into resistors RB1 and RB2 at the input and output using Millers theorem.

    The AC equivalent circuit is obtained by replacing all capacitors by short circuits and replacing DC source by ground as shown in Fig. 3.89.

    RB2 RC

    Vo

    RLRB1

    RS

    VS

    Fig. 3.89AC Equivalent Circuit

    3.12Approximate Analysis of Common-emi er Amplifi er3.61

    M03_XXXXXXXX_XX_C03.indd 61M03_XXXXXXXX_XX_C03.indd 61 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.62Electronic Circuits I

    The h-parameter equivalent circuit is obtained by replacing BJT by its h-parameter model as shown in Fig. 3.90.

    Ic

    hf eIb

    Io

    ViRS

    +

    Vo

    +

    IbIi

    hieRB1 RB2 RCRC RL

    B C

    E

    ZiZin Zi Zo Zo

    VS

    Fig. 3.90h-parameter Equivalent Circuit

    Voltage gain

    RA

    AR R

    1B

    v

    vB B2

    =

    RL = RB2 || RC || RL = RB || RC || RLVo = hfe Ib RLVi = Ib hie

    Av = VV

    o

    i

    = h I R

    I hfe b L

    b ie

    = h R

    hfe L

    ie

    The negative sign indicates a phase shift of 180 between input and output voltages.Considering voltage gain with source resistance RS,

    Avs = Av Z

    Z Ri

    i S+

    Input impedance

    RB1 = R

    AB

    v1

    Zi = hieZi = Zi || RB1

    Zin = Zi + RS

    Output impedance

    The output impedance Zo of the circuit is the impedance looking from the collector side when input voltage VS = 0.

    M03_XXXXXXXX_XX_C03.indd 62M03_XXXXXXXX_XX_C03.indd 62 7/21/12 9:55 AM7/21/12 9:55 AM

  • When VS = 0, Ib = 0, hfeIb = 0. The current source hfeIb is replaced by an open circuit.

    Zo =

    Zo = Zo || RB2 || RC || RL= RB2 || RC || RL

    Current gain

    For transistor, the voltage gain is the most important gain. Hence, the current gain can be determined directly from the voltage gain, the defi ned load and the input impedance.

    Ai = II

    o

    i

    =

    VR

    VZ

    o

    L

    i

    i

    = VV

    o

    i

    ZR

    i

    L

    = Av ZR

    i

    L

    Considering current gain with source resistance,

    Ais = Ai R

    R ZS

    S i+

    Example 3.13: Calculate Zi, Zo, Av and Ai for the circuit shown in Fig. 3.91.

    VS

    3 k

    CC1

    Vo

    CC2120 k 68 k

    Zi Zo

    +VCC

    hfe = 140hie = 1.4 k

    Fig. 3.91Example 3.13

    Solution: AC equivalent circuit (Fig. 3.92)

    3.12Approximate Analysis of Common-emi er Amplifi er3.63

    M03_XXXXXXXX_XX_C03.indd 63M03_XXXXXXXX_XX_C03.indd 63 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.64Electronic Circuits I

    VS

    Vo

    RB2RB1RC

    Fig. 3.92AC Equivalent Circuit

    h-parameter equivalent circuit (Fig. 3.93)Ic

    hf eIb

    Io

    Vi

    +

    Vo

    +

    IbIi

    hieRB1 RB2 RCRC

    B C

    E

    Zi Z i Zo Zo

    VS

    Fig. 3.93h-parameter Equivalent Circuit

    R R R|| (68 10 ) || (3 10 ) 2.87 kL B C3 3

    2 = = =

    (i) Input impedance Zi = hie = 1.4 k

    Zi = Zi || RB1= (1.4 103) || (120 103) = 1.38 k

    (ii) Output impedance Zo =

    Zo = RB2 || RC = (68 103) || (3 103) = 2.87 k

    (iii) Voltage gain Av = h R

    hfe L

    ie

    =

    140 2.87 101.4 10

    3

    3

    = 287

    (iv) Current gain Ai = Av ZR

    i

    C

    = ( 287)

    1.38 103 10

    3

    3

    = 132.02

    M03_XXXXXXXX_XX_C03.indd 64M03_XXXXXXXX_XX_C03.indd 64 7/21/12 9:55 AM7/21/12 9:55 AM

  • Example 3.14: Calculate Av, Zi, Zo and Ai for the circuit shown in Fig. 3.94.

    VS

    10 k

    CC1

    Vo

    CC2200 k

    Zi Zo

    +VCC

    hfe = 50hie = 1.1 k

    Fig. 3.94Example 3.14

    AC equivalent circuit (Fig. 3.95)

    Ic

    hf eIb

    Io

    Vi

    +

    Vo

    +

    IbIi

    hieRB1 RB2 RCRC

    B C

    E

    Zi Z i Zo Zo

    VS

    Fig. 3.95AC Equivalent Circuit

    h-parameter equivalent circuit (Fig. 3.96)

    Ic

    hf eIb

    Io

    Vi

    +

    Vo

    +

    IbIi

    hieRB1 RB2 RCRC

    B C

    E

    Zi Z i Zo Zo

    VS

    Fig. 3.96h-parameter Equivalent Circuit

    RA

    AR R

    1B

    v

    vB B2

    =

    RL = RB2 || RC = (200 103) || (10 103) = 9.52 k

    3.12Approximate Analysis of Common-emi er Amplifi er3.65

    M03_XXXXXXXX_XX_C03.indd 65M03_XXXXXXXX_XX_C03.indd 65 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.66Electronic Circuits I

    (i) Voltage gain Av = h R

    hfe L

    ie

    = 50 9.52 101.1 10

    3

    3

    = 432.73

    (ii) Input impedance RB1 = R

    A1B

    v

    = 200 101 ( 432.73)

    3

    = 461.12 Zi = hie = 1.1 k

    Zi = Zi || RB1 = (1.1 103) || (461.12) = 324.92

    (iii) Output impedance Zo = Zo = RB2 || RC = (200 10

    3) || (10 103) = 9.52 k

    (iv) Current gain Ai = Av ZR

    i

    C

    = (432.73) 324.9210 103

    = 14.06

    Example 3.15: Calculate Av, Zi, Zo and Ai for the circuit shown in Fig. 3.97.

    VS

    10 k

    CC1

    Vo

    CC2100 k

    Zi Zo

    +VCC

    hfe = 100hie = 1 k

    50

    10 k

    Fig. 3.97Example 3.15

    M03_XXXXXXXX_XX_C03.indd 66M03_XXXXXXXX_XX_C03.indd 66 7/21/12 9:55 AM7/21/12 9:55 AM

  • AC equivalent circuit (Fig. 3.98)

    VS

    Vo

    RB2RB1 RE

    RC RL

    Fig. 3.98AC Equivalent Circuit

    h-parameter equivalent circuit (Fig. 3.99)

    RB2

    RE

    RC

    Ic

    hfeIb

    Io

    RLRB1VS

    Ii Ib

    hie

    Zi Z i Z o Zo

    Vo

    +

    Vi

    +

    B C

    E

    Fig. 3.99h-parameter Equivalent Circuit

    RA

    AR R

    1B

    v

    vB B2

    =

    RL = RB2 || RC || RL = (100 103) || (10 103) || (10 103) = 4.76 k

    (i) Voltage gain Av =

    + +

    h Rh h R(1 )

    fe L

    ie fe E

    = 100 4.76 10

    1 10 (1 100)(50)

    3

    3

    + +

    = 78.68

    (ii) Input impedance RB1 = R

    A1B

    v

    = 100 10

    1 ( 78.68)

    3

    = 1.26 k

    3.12Approximate Analysis of Common-emi er Amplifi er3.67

    M03_XXXXXXXX_XX_C03.indd 67M03_XXXXXXXX_XX_C03.indd 67 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.68Electronic Circuits I

    Zi = hie + (1 + hfe) RE

    = 1 103 + (1 + 100) (50)

    = 6.05 k

    Zi = Zi || RB1 = (6.05 103) || (1.26 103) = 1.04 k

    (iii) Output impedance Zo =

    Zo = RB2 || RC || RL = (100 103) || (10 103) || (10 103) = 4.76 k

    (iv) Current gain Ai = Av ZR

    i

    L

    = (78.68) 1.04 1010 10

    3

    3

    = 8.18

    3.13 APPROXIMATE ANALYSIS OF COMMON-BASE AMPLIFIERFigure 3.100 shows a common-base amplifi er.

    RERS

    VS

    R1 RC

    CC1Vo

    +VCC

    CC3

    CC2RL

    R2

    Fig. 3.100Common-base Amplifi er

    The AC equivalent circuit is obtained by replacing all capacitors by short circuits and replacing DC source by ground as shown in Fig. 3.101. Two resistors R1 and R2 are shorted to ground.

    M03_XXXXXXXX_XX_C03.indd 68M03_XXXXXXXX_XX_C03.indd 68 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.13Approximate Analysis of Common-base Amplifi er3.69

    RE VS

    Vo

    RC RL

    Fig. 3.101AC Equivalent Circuit

    Figure 3.102 can be redrawn by rotating BJT as shown in Fig. 3.101.

    RS RCRE RL

    VS

    Vo

    Fig. 3.102AC Equivalent Circuit

    The h-parameter equivalent circuit is obtained by replacing the BJT by its h-parameter model (Fig. 3.103).

    Ic

    hf bIe

    Io

    ViRS

    +

    Vo

    +

    IeIi

    hibRE RCRC RL

    E C

    B

    ZiZin Zi Zo Zo

    VS

    Fig. 3.103h-parameter Equivalent Circuit

    Input impedance

    Zi = hibZi = Zi || RE

    Zin = Zi + RSOutput impedanceThe output impedance Zo of the circuit is the impedance looking from the collector side when input voltage VS = 0. When VS = 0, Ib = 0, hfb Ie = 0. The current source hfb Ie is replaced by an open circuit.

    M03_XXXXXXXX_XX_C03.indd 69M03_XXXXXXXX_XX_C03.indd 69 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.70Electronic Circuits I

    Zo = Zo = Zo || RC || RL = RC || RL

    Voltage gainRL = RC || RL Vo = hfb Ie RLVi = Ie hib

    Av = VV

    o

    i

    = h I R

    I hfb e L

    e ib

    = h R

    hfb L

    ibConsidering source resistance,

    Avs = Av Z

    Z Ri

    i S+Current gain For transistor, the voltage gain is the most important gain. Hence, the current gain can be determined directly from the voltage gain, the defi ned load and the input impedance.

    Ai = II

    o

    i

    =

    VR

    VZ

    o

    L

    i

    i

    = VV

    o

    i

    ZR

    i

    L

    = Av ZR

    i

    L

    Considering source resistance,

    Ais = Ai R

    R ZS

    S i+

    Example 3.16: Calculate Zi, Zo, Av and Ai for the circuit shown in Fig. 3.104.

    Solution:

    1 k

    33 k 3.3 k

    CC1Vo

    +VCC

    CC2

    CC3

    10 k

    Zi Zo

    hfe = 99hie = 2 k

    VS

    Fig. 3.104Example 3.16

    M03_XXXXXXXX_XX_C03.indd 70M03_XXXXXXXX_XX_C03.indd 70 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.13Approximate Analysis of Common-base Amplifi er3.71

    AC equivalent circuit (Fig. 3.105)

    RE

    Vo

    RC

    VS

    Fig. 3.105AC Equivalent Circuit

    h-parameter equivalent circuit (Fig. 3.106)

    hf bIe

    Io = Ic

    Vi

    +

    Vo

    +

    IeIi

    hibRE RC

    E C

    B

    Zi Z i Zo Zo

    VS

    Fig. 3.106h-parameter Equivalent Circuit

    hib = h

    h1ie

    fe+ = 2 10

    1 99

    3

    += 0.02 k

    hfb = +h

    h1fe

    fe

    = 991 99+

    = 0.99

    (i) Input impedance Zi = hib = 0.02 k Zi = Zi || RE = (0.02 10

    3) || (1 103) = 19.6

    (ii) Output impedance Zo = Zo = RC = 3.3 k

    (iii) Voltage gain Av = h R

    hfb C

    ib

    = ( 0.99)(3.3 10 )0.02 10

    3

    3

    = 163.35

    M03_XXXXXXXX_XX_C03.indd 71M03_XXXXXXXX_XX_C03.indd 71 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.72Electronic Circuits I

    (iv) Current gain Ai = Av ZR

    i

    C

    = 163.35 19.63.3 103

    = 0.97

    Example 3.17: Calculate Zin, Zo, Avs and Ais for the circuit shown in Fig. 3.107.

    2.7 k

    100 k 3.9 k

    1 k

    CC1Vo

    +VCC

    CC2

    CC3

    33 k10 k

    Zi Zo

    hfe = 99hie = 2 k

    VS

    Fig. 3.107Example 3.17

    Solution:AC equivalent circuit (Fig. 3.108)

    RE

    RS

    Vo

    RC RL

    VS

    Fig. 3.108AC Equivalent Circuit

    h-parameter equivalent circuit (Fig. 3.109)

    M03_XXXXXXXX_XX_C03.indd 72M03_XXXXXXXX_XX_C03.indd 72 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.13Approximate Analysis of Common-base Amplifi er3.73

    Ic

    hf bIe

    Io

    ViRS

    +

    Vo

    +

    IeIi

    hibRE RCRC RL

    E C

    B

    ZiZin Zi Zo Zo

    VS

    Fig. 3.109h-parameter Equivalent Circuit

    hib = h

    h1ie

    fe+= 2 10

    99 1

    3

    += 0.02 k

    hfb = h

    h1fe

    fe

    +

    991 99+

    = 0.99

    R R R|| (3.9 10 ) || (10 10 ) 2.81 kL C L3 3

    = = =

    (i) Input impedance Zi = hib = 0.02 k

    Zi = Zi || RE = (0.02 103) || (2.7 103) = 19.85

    Zin = Zi + RS = 19.85 + 1 103 = 1.02 k

    (ii) Output impedance Zo =

    Zo = RC || RL = (10 103) || (3.9 103) = 2.81 k

    (iii) Voltage gain Av = h R

    hfb L

    ib

    = ( 0.99) 2.81 100.02 10

    3

    3

    = 139.1

    Avs = Av Z

    Z Ri

    i S+

    M03_XXXXXXXX_XX_C03.indd 73M03_XXXXXXXX_XX_C03.indd 73 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.74Electronic Circuits I

    = 139.1 19.8519.85 1 103+

    = 2.71

    (iv) Current gain Ai = Av ZR

    i

    L

    = 139.1 19.8510 103

    = 0.28

    Ais = Ai R

    R ZS

    S i+

    = 0.28 1 101 10 19.85

    3

    3

    += 0.27

    3.14 APPROXIMATE ANALYSIS OF COMMON-COLLECTOR AMPLIFIER

    Figure 3.110 shows a common-collector amplifi er.

    RE RL

    RS

    R1

    CC1

    +VCC

    Vo

    CC2

    R2

    VS

    Fig. 3.110Common-collector Amplifi er

    The AC equivalent circuit is obtained by replacing all capacitors by short circuits and replacing DC source by ground as shown in Fig. 3.111.

    hic = hiehfc = (1 + hfe) hfe

    M03_XXXXXXXX_XX_C03.indd 74M03_XXXXXXXX_XX_C03.indd 74 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.14Approximate Analysis of Common-collector Amplifi er3.75

    RE RL

    RSVo

    R1 R2VS

    Fig. 3.111AC equivalent Circuit

    Hence, the h-parameter model of the CE confi guration is used for the AC analysis of the CC amplifi er (Fig. 3.112).

    RE RL

    Ic

    hfeIb

    Io

    RS

    RB

    VS

    Ii Ib

    Ie

    hie

    Zi Z iZin Z o Zo

    Vo

    Vi

    +

    B C

    E

    Fig. 3.112h-parameter Equivalent Circuit

    RB = R1 || R2 RL = RE || RLInput impedance

    Vi = Ib hie + Ie RL = Ib hie + (1 + hfe) Ib RL = [hie + (1 + hfe) RL]Ib

    Zi = VI

    i

    b

    = hie + (1 + hfe) RL Zi = Zi || RB = [hie + (1 + hfe) RL] || RB Zin = Zi + RS

    M03_XXXXXXXX_XX_C03.indd 75M03_XXXXXXXX_XX_C03.indd 75 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.76Electronic Circuits I

    Output impedance The base circuit can be converted into Thevenins equivalent circuit (Fig. 3.113).

    VTh = V = R

    R RB

    S B+VS

    RTh = (RB || RS) + hie

    Io

    Ib

    Ie

    Z o

    Vo

    V+

    B E(RB||RS) + hie

    Fig. 3.113Thevenin's Equivalent Circuit

    The output impedance Zo of the circuit is the impedance looking from the emitter side when input voltage V = 0.

    Zo = VI

    oo V 0=

    Applying Kirchhoffs voltage law to the base-emitter circuit,

    V Ib [(RB || RS)+ hie] Vo = 0

    When V = 0, Vo = Ib [(RB || RS) + hie] Io = Ie = (1 + hfe) Ib

    VI

    o

    o

    = R R h

    h( || )

    (1 )B S ie

    fe

    +

    +

    Zo = R R h

    h( || )

    (1 )B S ie

    fe

    +

    +

    When base resistance [(RB || RS) + hie] is transferred to the emitter side, it gets divided by

    (1 + hfe). Hence, output impedance looking from the emitter side, i.e. Zo is R R h

    h( || )

    1B S ie

    fe

    +

    +

    .

    Zo = Zo || RL

    = R R h

    h( || )

    1B S ie

    fe

    +

    +

    || RL

    M03_XXXXXXXX_XX_C03.indd 76M03_XXXXXXXX_XX_C03.indd 76 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.14Approximate Analysis of Common-collector Amplifi er3.77

    When RS is not present, i.e. RS = 0,

    Zo = h

    h1ie

    fe+

    || RL

    Generally output impedance of the common-collector confi guration is very low. Hence, it is used as buffer for impedance matching.

    Voltage gain

    Vo = Ie RL

    = (1 + hfe) Ib RL Vi = [hie + (1 + hfe) RL ] Ib

    Av = VV

    o

    i

    = h I R

    h R h I(1 )

    [ (1 )]fe b L

    ie L fe b

    +

    + +

    = h R

    h h R(1 )

    (1 )fe L

    ie fe L

    +

    + +

    If (1 + hfe) RL >> hieAv 1

    Thus, Vo Vi and output at the emitter follows the input at the base. Hence, the common-collector amplifi er is called as emitter follower.

    Current gain

    For transistor, the voltage gain is the most important gain. Hence, the current gain can be determined directly from the voltage gain, the defi ned load and the input impedance.

    Ai = II

    o

    i

    =

    VR

    VZ

    o

    L

    i

    i

    = VV

    o

    i

    ZR

    i

    L

    = Av ZR

    i

    L

    Example 3.18: Determine Zi, Zo, Av and Ai for the emi er follower circuit shown in Fig. 3.114.

    Solution:AC equivalent circuit (Fig. 3.115)

    M03_XXXXXXXX_XX_C03.indd 77M03_XXXXXXXX_XX_C03.indd 77 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.78Electronic Circuits I

    3.3 k

    220 k

    CC1

    Vo

    Vi

    +VCC

    CC2

    ZoZi

    hfe = 98hie = 1.275 k

    Fig. 3.114Example 3.18

    RBRE

    Vo

    Vi

    Fig. 3.115AC Equivalent Circuith-parameter equivalent circuit (Fig. 3.116)

    RE

    Ic

    hfeIb

    IoRB

    Ii Ib

    Ie

    hie

    Zi Z i Zo

    Vi

    +

    Vo

    +

    B C

    E

    Fig. 3.116h-parameter Equivalent Circuit

    (i) Input impedance Zi = hie + (1 + hfe) RE= 1.275 103 + (1 + 98) (3.3 103)= 327.98 k

    Zi = Zi || RB = (327.98 103) || (220 103) = 131.67 k

    M03_XXXXXXXX_XX_C03.indd 78M03_XXXXXXXX_XX_C03.indd 78 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.14Approximate Analysis of Common-collector Amplifi er3.79

    (ii) Output impedance Zo = h

    h1ie

    fe+

    || RE

    = 1.275 101 98

    3

    +

    || (3.3 10

    3)

    = 12.83

    (iii) Voltage gain Av = h R

    h h R(1 )

    (1 )fe E

    ie fe E

    +

    + +

    = (1 98)(3.3 10 )

    1.275 10 (1 98)(3.3 10 )

    3

    3 3

    +

    + +

    = 0.996

    (iv) Current gain Ai = Av ZR

    i

    E

    = 0.996 131.67 103.3 10

    3

    3

    = 39.74

    Example 3.19: Find Zin, Zo, Av and Ai for the circuit shown in Fig. 3.117.

    20 k

    91 k

    10 k

    100 k

    CC1

    Vo

    +VCC

    ZoZin

    hfe = 50hie = 1.1 k

    VS

    Fig. 3.117Example 3.19

    Solution: AC equivalent circuit (Fig. 3.118)

    M03_XXXXXXXX_XX_C03.indd 79M03_XXXXXXXX_XX_C03.indd 79 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.80Electronic Circuits I

    R2RE

    Vo

    R1

    RS

    VS

    Fig. 3.118AC Equivalent Circuit

    h-parameter equivalent circuit (Fig. 3.119)

    RE

    Ic

    hfeIb

    Io

    RS

    RB

    VS

    Ii Ib

    Ie

    hie

    Zi Z iZin Zo

    Vi

    +

    B C

    E

    Vo

    +

    Fig. 3.119h-parameter Equivalent Circuit

    RB = R1 || R2 = (91 103) || (100 103) = 47.64 k

    (i) Input impedance Zi = hie + (1 + hfe) RE= 1.1 103 + (1 + 50) (20 103)= 1021.1 k

    Zi = Zi || RB = (1021.1 103) || (47.64 103) = 45.52 k

    Zin = Zi + RS = 45.52 103 + 10 103 = 55.52 k

    (ii) Output impedance Zo = R R h

    h( || )

    1B S ie

    fe

    +

    +

    || RE

    = {(47.64 10 ) || (10 10 )} 1.1 10

    1 50

    3 3 3 +

    +

    || (20 10

    3)

    = 181.954

    M03_XXXXXXXX_XX_C03.indd 80M03_XXXXXXXX_XX_C03.indd 80 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.14Approximate Analysis of Common-collector Amplifi er3.81

    (iii) Voltage gain Av = h R

    h h R(1 )

    (1 )fe E

    ie fe E

    +

    + +

    = (1 50)(20 10 )

    1.1 10 (1 50)(20 10 )

    3

    3 3

    +

    + +

    = 0.998

    (iv) Current gain Ai = Av ZR

    i

    E

    = 0.998 45.52 1020 10

    3

    3

    = 2.27

    Example 3.20: Find Zi, Zo and Av for the circuit shown in Fig. 3.120.

    5 k 2 k

    1 k

    50 k

    CC1

    +VCC

    Vo

    CC2

    25 k

    Zi Zo

    hfe = 100hie = 2 k

    VS

    Fig. 3.120Example 3.20

    Solution:AC equivalent circuit (Fig. 3.121)

    R2RE

    Vo

    RL

    R1

    RS

    VS

    Fig. 3.121AC Equivalent Circuit

    M03_XXXXXXXX_XX_C03.indd 81M03_XXXXXXXX_XX_C03.indd 81 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.82Electronic Circuits I

    h-parameter equivalent circuit (Fig. 3.122)

    RE RL

    Ic

    hfeIb

    Io

    RS

    RB

    VS

    Ii Ib

    Ie

    hie

    Zi Z i Zo

    Vo

    Vi

    +

    B C

    E

    Fig. 3.122h-parameter Equivalent Circuit

    RB = R1 || R2 = (50 103) || (25 103) = 16.67 k

    RL = RE || RL = (5 103) || (2 103) = 1.43 k

    (i) Input impedance Zi = hie + (1 + hfe) RL

    = 2 103 + (1 + 100) (1.43 103)

    = 146.28 k

    Zi = Zi || RB = (146.28 103) || (16.67 103) = 14.96 k

    (ii) Output impedance Zo = R R h

    h( || )

    1B S ie

    fe

    +

    +

    || RE

    = {(16.67 10 ) || (1 10 )} 2 10

    1 100

    3 3 3 +

    +

    || (5 103)

    = 28.97

    (iii) Voltage gain Av = h R

    h h R(1 )

    (1 )fe L

    ie fe L

    +

    + +

    = (1 100)(1.43 10 )

    2 10 (1 100)(1.43 10 )

    3

    3 3

    +

    + +

    = 0.9863

    M03_XXXXXXXX_XX_C03.indd 82M03_XXXXXXXX_XX_C03.indd 82 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.15Comparison of CE, CB and CC Amplifi ers3.83

    3.15COMPARISON OF CE, CB AND CC AMPLIFIERS

    Parameter CE CB CC

    (1) Voltage gain (Av) Very high Very high Less than 1

    (2) Current gain (Ai) Very high Less than 1 High

    (3) Input impedance (Zi) Medium Low High

    (4) Output impedance (Zo) High High Very low

    (5) Phase of output signal Out of phase with input In phase with input In phase with input

    (6) Application Voltage amplifi er Non-inverting amplifi er Bu er between high impedance source and low impedance load

    SUMMARY OF BJT AMPLIFIERS

    Confi guration Circuit Equation

    CE amplifi er with bypassed RE

    VS

    RS

    R1 RC

    CC1Vo

    +VCC

    CC2

    RL

    RE CE

    R2

    Zi Z i Z o Zo

    Zi = hieZi = Zi R1 R2

    Zin = Zi + RSZo =

    Zo = Zo RC RL

    Av = h R R

    h( || )fe C L

    ie

    Avs = Av Z

    Z Ri

    i S+

    Ai = Av ZR

    i

    L

    Ais = Ai R

    R ZS

    S i+

    (Continued)

    M03_XXXXXXXX_XX_C03.indd 83M03_XXXXXXXX_XX_C03.indd 83 7/21/12 9:55 AM7/21/12 9:55 AM

  • 3.84Electronic Circuits I

    Confi guration Circuit Equation

    CE amplifi er with unbypassed RE

    VS

    RS

    R1 RC

    CC1Vo

    +VCC

    CC2

    RL

    RE

    R2

    Zi Z i Z o Zo

    Zi = hie + (1 + hfe) RE

    Zi = Zi R1 R2

    Zin = Zi + RSZo =

    Zo = Zo RC RL

    Av = h R R

    h h R( || )(1 )

    fe C L

    ie fe E+ +

    Avs = Av Z

    Z Ri

    i S+

    Ai = Av ZR

    i

    L

    Ais = Ai R

    R ZS

    S i+

    CB amplifi er

    VS

    R1 RC

    CC1Vo

    +VCC

    CC3

    CC2RL

    RERS

    R2

    Zi Z i Z o Zo

    Zi = hib

    Zi = Zi REZin = Zi + RS

    Zo =

    Zo = Zo RC RL

    Av = h R R

    h( || )fb C L

    ib

    Avs = Av Z

    Z Ri

    i S+

    Ai = Av ZR

    i

    L

    Ais = Ai R

    R ZS

    S i+

    SUMMARY OF BJT AMPLIFIERS (Continued)

    (Continued)

    M03_XXXXXXXX_XX_C03.indd 84M03_XXXXXXXX_XX_C03.indd 84 7/21/12 9:55 AM7/21/12 9:55 AM

  • Confi guration Circuit Equation

    CC amplifi er

    VS

    RS

    R1

    CC1

    Vo

    +VCC

    CC2

    RLRE

    R2

    Zi Z i Z o

    Zi = hie + (1 + hfe) RE

    Zi = Zi R1 R2

    Zin = Zi + RS

    Zo = RE R R h

    h[( || ) ]

    1S B ie

    fe

    +

    +

    Zo = Zo RL

    Av = h R R

    h h R R(1 )( || )

    (1 )( || )fe E L

    ie fe E L

    +

    + +

    Avs = Av Z

    Z Ri

    i S+

    Ai = Av ZR

    i

    L

    Ais = Ai R

    R ZS

    S i+

    M03_XXXXXXXX_XX_C03.indd 85M03_XXXXXXXX_XX_C03.indd 85 7/21/12 9:55 AM7/21/12 9:55 AM