73
Universidade Estadual de Campinas Faculdade de Odontologia de Piracicaba Tales Candido Garcia da Silva AVALIAÇÃO DA METODOLOGIA DO FIO QUENTE E ANÁLISE TERMOMECÂNICA DE LAMINADOS OCLUSAIS ULTRAFINOS POR ELEMENTOS FINITOS EVALUATION OF HOT-WIRE TECHNIQUE AND THERMOMECHANICAL FINITE ELEMENT ANALYSIS OF ULTRATHIN OCCLUSAL VENEERS Piracicaba 2016

AVALIAÇÃO DA METODOLOGIA DO FIO QUENTE E ANÁLISE ...repositorio.unicamp.br/bitstream/REPOSIP/321301/1/Silva_TalesCan... · elementos finitos 2D foram construídos no MENTAT baseados

Embed Size (px)

Citation preview

Universidade Estadual de Campinas

Faculdade de Odontologia de Piracicaba

Tales Candido Garcia da Silva

AVALIAÇÃO DA METODOLOGIA DO FIO QUENTE E ANÁLISE

TERMOMECÂNICA DE LAMINADOS OCLUSAIS ULTRAFINOS

POR ELEMENTOS FINITOS

EVALUATION OF HOT-WIRE TECHNIQUE AND

THERMOMECHANICAL FINITE ELEMENT ANALYSIS OF

ULTRATHIN OCCLUSAL VENEERS

Piracicaba

2016

Tales Candido Garcia da Silva

AVALIAÇÃO DA METODOLOGIA DO FIO QUENTE E ANÁLISE

TERMOMECÂNICA DE LAMINADOS OCLUSAIS ULTRAFINOS

POR ELEMENTOS FINITOS

EVALUATION OF HOT-WIRE TECHNIQUE AND

THERMOMECHANICAL FINITE ELEMENT ANALYSIS OF

ULTRATHIN OCCLUSAL VENEERS

Tese apresentada à Faculdade de Odontologia de

Piracicaba, da Universidade Estadual de Campinas como

parte dos requisitos exigidos para obtenção do Título de

Doutor em Materiais Dentários.

Thesis presented to the Piracicaba Dental School of the

University of Campinas in partial fulfillment of the

requirements for the degree of Doctor in Dental Materials.

Orientador: Prof. Dr. Rafael Leonardo Xediek Consani

Este exemplar corresponde à versão final da Tese de

doutorado defendida pelo aluno Tales Candido Garcia

da Silva, e orientada pelo Prof. Dr. Rafael Leonardo

Xediek Consani.

Piracicaba 2016

DEDICATÓRIA

Aos meus pais José Candido da Silva e Valdete Garcia de Souza e Silva

por toda atenção e ensinamentos ao longo dos anos, pelas inúmeras vezes que renunciaram

a seus momentos para que eu pudesse realizar os meus, buscando sempre mostrar o melhor

caminho, presentes mesmo quando a distância era necessária. Agradeço ao amor

incondicional, principalmente nos momentos difíceis, fazendo com que as dificuldades se

tornassem mais amenas. Tudo o que sou, devo a vocês!

Às minhas irmãs Taísa Garcia da Silva Del Pino e Tárcia Garcia da Silva

Soto, por sempre acreditarem em mim e entenderam todas as minhas renúncias em busca

de um objetivo. Pela presença em todos os momentos de minha vida, pelos abraços e

sorrisos, por todo amor, por sermos cada vez mais unidos.

À minha sobrinha Ana Clara Garcia Del Pino, que apesar de sua pouca idade

seu carinho e alegria são fundamentais. O abraço mais sincero, que me enche de ânimo a

cada vez que preciso estar distante.

Amo vocês! Obrigado por tudo...

AGRADECIMENTOS ESPECIAIS

Ao meu orientador, Prof. Dr. Rafael Leonardo Xediek Consani, inicialmente

por acreditar em meu potencial e oportunidade de fazer parte do seu grupo de trabalho. Sou

grato por todo conhecimento adquirido, atenção, confiança e auxílio nos momentos em que

precisei.

Ao Prof. Dr. Antheunis Versluis, por todo conhecimento compartilhado,

convívio fraterno e oportunidades ofertadas. Sua humildade e busca de conhecimento

contínuo é fonte de estímulo na caminhada diária. Obrigado por acreditar em minha

capacidade, comprometimento e por contribuir para o meu crescimento pessoal e

profissional.

Meu reconhecimento e gratidão pela orientação

Obrigado!

AGRADECIMENTOS

A Deus por todo amparo e proteção em todos os momentos de minha vida.

Ensinando-me a ser paciente e persistente com as dificuldades do caminho.

A Faculdade de Odontologia de Piracicaba – UNICAMP, na pessoa do seu Diretor

Prof. Dr. Guilherme Elias Pessanha Henriques pela oportunidade da realização do Curso de

Doutorado nesta instituição.

A Coordenadoria da Pós-Graduação em nome da Profa. Dra. Cínthia Pereira

Machado Tabchoury e ao Programa de Pós-Graduação em Materiais Dentários em nome da

coordenadora Profa. Dra. Regina Maria Puppin Ronatini.

A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES pela

concessão da bolsa de doutorado e oportunidade de realizar parte do meu doutorado em

uma universidade estrangeira, com a concessão da bolsa de Doutorado Sanduíche na

University of Tennesse Health Science Center.

Ao Prof. Dr. Carlos José Soares por todo apoio e solicitude desde o primeiro

contato, por disponibilizar o CPBio e toda estrutura da UFU para que a realização deste

trabalho fosse possível. Por todo conhecimento compartilhado, convívio afetuoso e

preocupação. Exemplo de conduta pessoal e profissional.

A todos os alunos do CPBio que não mediram esforços quando precisei. Em

especial a Aline Aredes Bicalho, por toda paciência e auxílio com os testes laboratoriais

durante a realização deste trabalho.

A Profa. Dra. Daranee Tantbirojn Versluis, pela receptividade e preocupação.

Pelo conhecimento partilhado e oportunidade de trabalharmos juntos durante minha

estadia na Universidade do Tennessee

A José Estevam Vieira Ozório. Diante da solidão do inesperado, mais que amigo,

se tornou um irmão. Obrigado pelas palavras de incentivo, pelos momentos de descontração

e também de seriedade, pela disponibilidade em auxiliar e compartilhar não apenas

conhecimento científico, mas também de vida. Junto, também agradeço a Melissa Andréia

Marchesan, por toda a preocupação e fazer que a saudade de casa e da família fosse

amenizada com toda atenção e cuidado dispendidos.

Ao Prof. Dr. Paulo Francisco César, pela prontidão e auxílio com as amostras

deste experimento.

Aos docentes do Curso de Pós-Graduação em Materiais Dentários, pelos

ensinamentos e experiências cotidianas fundamentais para minha formação.

Aos técnicos do departamento de Materiais Dentários, engenheiro Marcos

Blanco Cangiani e Selma Segalla pela disponibilidade e auxílio quando solicitado.

Aos amigos de doutorado: Renata Fernandes, Eveline Soares, Camila Sobral,

Raquel Viana, Rafael Pacheco, Caio Vinícius, Daniel Sundfeld, Valéria Bisinoto, Pedro

Freitas, Tóride Cellegati, Ana Paula Ayrese Dayane Oliveira.

A todos os amigos da área de Materiais Dentários e também amigos de outras

áreas: enfrentarmos momentos de dificuldades e conquistas. A nossa amizade e troca de

experiências foi essencial para o crescimento pessoal e profissional de cada um.

Aos meus cunhados Thiago Fernandes Del Pino e Cristiano Soto Armindo por

todo apoio durante esta caminhada.

Aos companheiros de Pós-Graduação e residência Marco Aurélio de Carvalho e

Antônio Pedro Ricomini, que com a convivência diária se tornaram irmãos nestes últimos

tempos. Obrigado pela amizade fraterna.

A todos meus amigos, estivessem eles perto ou longe, presentes ou apenas em

pensamento, se fizeram sempre presentes me auxiliando a ser mais forte quando

necessário, principalmente nos momentos de distância e solidão. Vocês alegram meus dias e

me ajudaram a tornar possível a conclusão de mais esta etapa.

A Sirona Brasil que me possibilitou o uso de suas estruturas permitindo a

realização da fresagem das amostras deste trabalho.

A todos que direta ou indiretamente contribuíram para a realização deste

trabalho.

Obrigado!

EPÍGRAFE

“A persistência é o menor caminho do êxito.”

Charles Chaplin

RESUMO

O desgaste da estrutura dental resulta em alteração da distância interoclusal,

comprometimento da função e desfiguração estética. O protocolo restaurador depende do

grau de estrutura perdida. Entretanto, as técnicas tradicionais para restaurar a superfície

oclusal envolvem preparo de tecido dental sadio. Laminado oclusal ultrafino é uma nova

proposição de restauração indireta minimamente invasiva para reabilitação de superfícies

oclusais sem a necessidade de preparos extensos ou retentivos. O objetivo neste trabalho

foi: 1) avaliar o método do Fio Quente na mensuração da condutividade térmica de materiais

CAD/CAM Lava Ultimate e IPS e.max CAD; 2) calcular o módulo de elasticidade dos materiais

restauradores e contração pós-gel do RelyX Ultimate e 3) avaliar a termomecânica de

laminados oclusais ultrafinos de diferentes espessuras por elementos finitos. Para avaliar a

condutividade térmica pela metodologia do fio quente, amostras (n=5) constituídas por dois

blocos retangulares (18 × 14,5 × 4 mm) foram prensadas uma contra a outra. Em um deles,

um sulco ortogonal foi confeccionado para acomodar a cruz de medição composta por uma

resistência de Kanthal e um termopar. Corrente elétrica de 0,7 A para Lava Ultimate e 1,5 A

para emax CAD e 5V de tensão foi estabelecida para as amostras. Os dados foram coletados

pelo tempo de 500 s e frequência de 4 Hz. A análise de extensometria bidirecional mensurou

a contração pós-gel do RelyX Ultimate (n=10). O módulo de elasticidade dos materiais

restauradores (n=10) foi estabelecido por teste de flexão de três pontos. Os modelos de

elementos finitos 2D foram construídos no MENTAT baseados em corte de microtomografia

de um primeiro molar inferior humano por importação de pontos gerados no ImageJ. A

simulação da contração da camada de cimento, variação da temperatura (55/37/5°C) na

superfície do modelo e aplicação de carga axial oclusal de 228 N com uma esfera de 6 mm de

diâmetro foram realizadas pelo MARC. As tensões foram avaliadas pelo critério de von Mises

modificado. A condutividade térmica do Lava Ultimate foi determinado em 0,87 W/mK e IPS

e.max CAD em 2,52 W/mK. A contração volumétrica pós-gel do cimento 1,13%. O módulo de

elasticidade foi 93,85±6,6 GPa; 12,81±0,3 GPa e 9,08±0,21 GPa para e.max CAD, Lava

Ultimate e RelyX Ultimate, respectivamente. Conclui-se que o método do fio quente cruzado

foi eficaz na mensuração da condutividade térmica dos materiais CAD/CAM. A ciclagem em

baixa temperatura concentrou maior tensão. Os laminados oclusais de IPS e.max CAD

propagaram maior quantidade de calor nos modelos que Lava Ultimate. A camada de

cimento foi a estrutura com maior concentração de tensão. IPS e.max CAD apresentou os

maiores valores de tensões mecânicas concentrado nos laminados, enquanto Lava Ultimate

distribuiu melhor as tensões nas camadas subjacentes; entretanto, o padrão de distribuição

das tensões não diferiu do dente não preparado. Os laminados mais espessos concentraram

maior tensão térmica e menor tensão mecânica que os laminados mais finos.

Palavras-chave: Condutividade térmica. Facetas dentárias. Análise de elementos finitos.

Cerâmicas. Resinas compostas.

ABSTRACT

The pathologic tooth wear results in an increase of interocclusal distance,

impaired function, and esthetic disfigurement. The restorative protocol depends on degree

of tooth structure lost, however the traditional techniques to restore the occlusal surface

involve preparing sound dental tissue. The occlusal veneer is an option of indirect

restorations minimally invasive only to replace the loss structure without extensive tooth

reduction or retentive preparations. Thus, the aim of this study was: 1) evaluate the Hot-

wire technique to measure the thermal conductivity of CAD/CAM materials Lava Ultimate

and IPS e.max CAD, 2) measure the restorative materials elastic modulus and RelyX Ultimate

post-gel shrinkage and 3) evaluate the thermomecanics of ultrathin occlusal veneers made

with different thickness by Finite Element Analysis. To evaluated the thermal conductivity by

hot-wire technique, the samples (n=5) consisted of two rectangular blocks (18 × 14.5 × 4mm)

stacked and clamped together. Orthogonal grooves were made to accommodate the

crosspiece formed by kanthal resistance hot-wire and thermocouple. An electrical current of

0.7A was applied for Lava Ultimate and 1.5A for emax CAD at 5V. Temperature signals were

recorded for 500s at frequency of 4Hz. Post-gel shrinkage (n=10) was measured by strain

gauge technique and Elastic Modulus of restorative materials (n=10) was determined by

deflectometer at 3-point bending test. Two-dimensional FEA models were built in MENTAT

based on a cross-sectional micro-CT human inferior molar by coordinate points of ImageJ.

Thermal load (5º-55ºC) at outer surface, a 228N occlusal axial load was applied by a 6mm

diameter simulated sphere and post-gel shrinkage of cement was simulated by MARC.

Modified von Mises thermal and mechanical stresses were calculated. The thermal

conductivity of Lava Ultimate was determined at 0.87 W/mK and IPS e.max CAD at 2.52

W/mK. Cement shrinkage strain value (in volume %) was 1.13. Elastic Modulus was e.max

93.85±6.6 GPa, Lava 12.81±0.3 GPa and Relyx 9.08±0.21 GPa. In conclusion, the hot-wire

cross technique could be used for determination of the thermal conductivity of CAD/CAM

materials. Cold temperature created higher stress distribution. IPS e.max CAD conducted

more heat within models than Lava Ultimate. Cement layer concentrated the highest

thermal stress. Modified von Mises stress was higher in IPS e.max CAD veneer and

underlying of Lava Ultimate restoration but stress distribution pattern not different of a non-

prepared tooth. Thicker veneers accumulated more thermal and lower mechanical stress

compared with thin veneer.

Keywords: Thermal conductivity. Dental veneers. Finite element analysis. Ceramics.

Composite resins

SUMÁRIO

1 INTRODUÇÃO ..................................................................................................................................... 16

2 ARTIGOS ............................................................................................................................................. 19

2.1 Artigo 1: Hot-wire technique for measurement of thermal conductivity of dental ceramic and

composite ......................................................................................................................................... 19

2.2 Artigo 2: Thermal and biomechanical analysis of CAD/CAM ultrathin occlusal veneers by Finite

Element Analysis ............................................................................................................................... 36

3 DISCUSSÃO ......................................................................................................................................... 62

4 CONCLUSÃO ....................................................................................................................................... 65

REFERÊNCIAS ......................................................................................................................................... 66

APÊNDICES ............................................................................................................................................ 70

Apêndice 1: Geração do modelo numérico a partir do modelo experimental .......................................... 70

Apêndice 2: Média e desvio padrão dos valores de contração pós-gel do RelyX Ultimate (volume %) ....... 71

Apêndice 3: Média e desvio padrão dos valores do Módulo de Elasticidade (GPa) dos materiais

restauradores utilizados no estudo ........................................................................................................ 71

ANEXOS ................................................................................................................................................. 72

Anexo 1: Comprovante de submissão do artigo (Artigo 1) ..................................................................... 72

Anexo 2: Certificado do comitê de ética em pesquisa ............................................................................ 73

16

1 INTRODUÇÃO

O desgaste natural da estrutura dental com o passar dos anos é

considerado um processo fisiológico, multifatorial, não patológico e não influenciado

por bactérias (Nunn et al., 1996). Esse desgaste em níveis avançados passa a ser

patológico causando alteração da dimensão vertical, desarmonia musculoesquelética,

sensibilidade dentária, danos pulpares e desfiguração estética levando a insatisfação

do paciente (Turner et. al., 1984; Bencharit et al., 2014; Egbert et al., 2015).

A quantidade da estrutura desgastada considerada normal ainda é fator

questionável, com valores variando entre 20-38 micrometros por ano ou até 65

micrometros em seis meses (Margeas et al., 2010). A biocorrosão se caracteriza pela

dissolução química da estrutura gerando um aspecto côncavo; enquanto a abrasão é

oriunda do desgaste mecânico característico pela formação das facetas de desgaste,

com aspecto plano e liso. Historicamente, os tratamentos restauradores convencionais

para esses tipos de lesões se baseiam no conceito de Odontologia curativa com

necessidade de cobertura total do elemento dental e preparos retentivos, desgastando

assim grande quantidade de tecido dental sadio. Com o desenvolvimento de novos

materiais e técnicas restauradoras, a eficácia dos procedimentos adesivos e inserção

tecnológica como o CAD/CAM, possibilitaram abordagens menos intervencionistas e

com máxima preservação da estrutura dental juntamente com a Odontologia

minimamente invasiva (Magne et al., 1999; Tsitrou et al.,2008; Dejak et al., 2012).

Os laminados são uma opção de tratamento bem estabelecido e

clinicamente aceitável para dentes anteriores com abordagem minimamente invasiva

frente às facetas, que necessitam maior desgaste do esmalte dental. Granell-Ruiz et

al., 2010, mostraram 94% de sucesso dos laminados anteriores em um estudo clínico

longitudinal avaliando mais de 300 restaurações em função por até 11 anos. Esse tipo

de restauração alcança notoriedade não só pela correção de pequenos maus

posicionamentos dentários, coloração, manchamento e mau formações congênitas

como também pela aceitação da Odontologia estética (Fradeani et al., 2005;

D’Arcangelo et al., 2012). Baseando-se nesses conceitos e diferentemente dos

tradicionais protocolos restauradores para dentes posteriores que exigem cobertura

17

total e preparos de até 2,0 mm (Dietschi et al., 1997; Federlin et al., 2007), um novo

tipo de restauração para dentes posteriores tem sido estudado: os laminados oclusais

ultrafinos. São laminados com espessuras inferiores às recomendadas pelos

fabricantes, minimamente invasivos, restaurando a face oclusal degastada,

reestabelecendo a dimensão vertical perdida e preservando a estrutura de esmalte.

Contudo, os poucos estudos que existem na literatura sobre esta técnica limitam-se na

avaliação da resistência à fratura das restaurações (Magne et al., 2010; Schlichting et

al., 2011; Johnson et al., 2014; Egbert et al., 2015).

Devido à complexidade do sistema biomecânico e das diferentes

geometrias e propriedades dos materiais na cavidade bucal, o método dos elementos

finitos tem sido uma importante ferramenta para análise nos experimentos

odontológicos. Os testes in vitro são limitados no que diz respeito ao comportamento

interno das estruturas analisadas (Soares et al., 2012). Neste caso, análise numérica

com soluções simplificadas de problemas físicos complexos por meio da discretização

das estruturas em pequenos elementos (Versluis & Tantbirojn, 2009), torna-se

também necessária. A caracterização dos modelos numéricos com a correta inserção

das propriedades e condições de contorno é essencial para a obtenção dos resultados

e validação dos experimentos (Ana et al., 2008).

A variação da temperatura na cavidade bucal, causada pela ingestão de

alimentos com diferentes estados térmicos (Palmer et al., 1992), se estabelece como

desafio para a longevidade das restaurações; gerando tensões térmicas nas interfaces

que induzem falhas nas restaurações, fratura dental (Toparli et al., 2003; Mezzomo et

al., 2011) e danos pulpares (Oskui et al., 2013). Estudos de Magne et al., 1999;

Papanicolaou et al., 2015; Köycü et al., 2015, correlacionaram as tensões térmicas

apenas pela diferença do coeficiente de expansão térmica, mas sabe-se que a

condutividade térmica também exerce relevante efeito no resultado dessas tensões

(Kingery et al., 1955; Hasselman et al., 1978). Em razão da escassez literária de

informações referente às propriedades térmicas dos materiais restauradores atuais,

mais especificamente da condutividade térmica, é necessário realizar a mensuração

laboratorial do coeficiente de condutividade térmica dos materiais restauradores, para

que possam então ser utilizados na análise de elementos finitos.

18

Apesar da dificuldade de se calcular os coeficientes térmicos em materiais

odontológicos em virtude do reduzido tamanho das amostras (Lisanti & Zander et al.,

1949), algumas metodologias como o dispositivo de Cenco-Fitch (Brady et al., 1974),

protótipos de Lisanti & Zander (Lisanti & Zander et al., 1949) e suas variações (Philips,

1956; Craig e Peyton, 1961), foram utilizadas para medição da condutividade térmica.

O método do fio quente, um método bem mais simplificado e muito aplicado na

engenharia (De Carvalho et al., 1996; Franco et al. 2007; Dos Santos et al. 2008), foi

adaptado para possibilitar a mensuração dos coeficientes dos materiais para CAD/CAM

e dar continuidade às análises numéricas, objetivo deste estudo.

Nos estudos anteriores avaliando o comportamento mecânico dos

laminados oclusais ultrafinos, assim como nas análises por elementos finitos (Magne et

al., 2012; Magne 2016), apesar das restaurações serem consideradas minimamente

invasivas, a superfície oclusal das amostras apresentavam exposição dentinária,

simulando o desgaste oclusal severo (Magne et al., 2010; Schlichting et al., 2011;

Johnson et al., 2014; Egbert et al., 2015). A camada de cimento também não foi

considerada em nenhumas dessas análises; e é sabido que durante a cimentação das

restaurações a contração de polimerização gera tensões deletérias às estruturas e

interfaces (Sakaguchi et al., 1997), somatizando tensões das cargas oclusais e fadiga

térmica, quando em função. Contudo, não foi encontrado nenhum estudo utilizando o

método dos elementos finitos que avaliasse o comportamento combinado da

contração pós-gel do cimento dos laminados oclusais ultrafinos frente às variações

térmicas sofridas na cavidade bucal e carregamento oclusal.

19

2 ARTIGOS

2.1 Artigo 11

Title: Hot-wire technique for measurement of thermal conductivity of dental ceramic

and composite

Author names and affiliations:

Tales Candido Garcia-Silvaa,b*, José Estevam Vieira Ozorioa, Carlos José Soaresc, Rafael Leonardo Xediek Consanid, Antheunis Versluisa

aDepartment of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.

E-mail address: [email protected], [email protected]

bDepartment of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil.

Av. Limeira 901, 13414-903, Piracicaba, SP, Brazil

E-mail address: [email protected]

cDepartment of Operative Dentistry and Dental Materials, Dental School, Federal University of Uberlândia, Uberlândia, MG, Brazil.

Av. Pará 1720, Bloco 4L Anexo A, Campos Umuarama, 38400-902, Uberlândia, MG, Brazil. E-mail address: [email protected]

dDepartment of Prosthodontics and Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil.

Av. Limeira 901, 13414-903, Piracicaba, SP, Brazil.

1 Artigo submetido à Dental Materials

20

Abstract

Objective: Dental structures are subjected to thermal stresses. To assess such stresses

it is essential to determine thermal properties. A hot-wire method is a transient

dynamic technique for measuring temperature rise by the Joule effect. The aim of this

study was to use the cross-array hot-wire method for determination of the thermal

conductivity of CAD/CAM materials. Methods: Two materials were tested:

nanoceramic composite (Lava Ultimate, 3M ESPE) and disilicate ceramic (IPS e.max

CAD, Ivoclar). The samples (n=5) consisted of two rectangular blocks (18 × 14.5 × 4mm)

that were stacked and clamped together. Orthogonal grooves were made in the upper

face of the lower section to accommodate the crosspiece formed by kanthal resistance

hot-wire and thermocouple. Thermally conductive paste was used to ensure good

thermal contact between the wires and test materials. An electrical current of 0.7A

was applied for Lava Ultimate and 1.5A for emax CAD at 5V using a DC power supply.

Temperature signals were recorded for 500s at 4Hz. Measurements for each sample

were repeated 6 times in alternating directions by reversing the polarity of the DC

power supply. Temperature versus time curves were plotted on logarithmic scale to

identify the linear data range used for determination of the thermal conductivity.

Results: The thermal conductivity of Lava Ultimate was determined at 0.87 W/mK and

IPS e.max CAD at 2.52 W/mK. Significance: It was concluded that the hot-wire cross

technique could be used for determination of the thermal conductivity of two types

dental CAD/CAM materials.

Keywords: Thermal conductivity; temperature; composite resin; ceramic; CAD-CAM

21

1. Introduction

In restorative dentistry, the longevity of restorations is challenged by,

among others, physical stresses. Stresses are created by functional occlusal loading

during mastication as well as rapid temperature changes when subjected to hot and

cold foods or beverages. Oral temperature changes can range between 0°C and 67°C

[1], and cause expansion or contraction in the tooth and restorative materials. Thermal

stresses across interfaces are thought to induce failure of restorations and may also

cause fracture of dental structures [2,3].

The two main thermo-physical properties that describe the expansion and

distribution of thermal effects are the coefficient of thermal expansion and thermal

conductivity. The coefficient of thermal expansion is commonly tested for

development and marketing purposes of dental materials, and it is mainly considered

in reference with the values for tooth structures. Smaller mismatch between them

presumably reduces thermal stresses [4]. Thermal conductivity is less often considered

or reported for dental materials. Conductivity reflects how fast a temperature within a

material spreads, and therefore the temperature gradient in a material. Temperature

gradients also cause thermal stresses because they cause gradients in expansion and

contraction even where the coefficient of thermal expansion is not mismatched.

The significance of stress in dental structures is well accepted, but

determining stress distributions requires the use of engineering methods such as finite

element analysis. Finite element analysis (FEA) is widely used in dentistry to study the

stress conditions. However, relatively few studies investigated thermal stresses and

temperature distributions [2,5,6,7]. This may be due, in part, to the challenge of

22

obtaining the thermal properties for the materials studied. Thermal properties are

mostly adopted from manufacturer information, when available, or from textbooks

where properties are usually not brand specific [3,8,9].

The objective of this study was to investigate if the ‘hot-wire’ technique

could be adapted to measure thermal conductivity of dental materials. The hot-wire

method measures temperature rise in a sample that is heated by a constant linear heat

induced by the Joule effect in a resistance wire that is embedded in the test material

[10]. This technique has been used in engineering for a wide range of materials like

ceramics, fluids, and polymers [11,12,13]. Since its first practical application by Haupin

in 1960 [14], some adaptations were made to simultaneously determine different

thermal properties from the same experimental thermal transient [10,12]. The heat

propagation derived from electric current through the wire generates a transient

temperature that is dependent on time [15]. In this study the thermal conductivity was

determined for two CAD/CAM materials (nanoceramic composite and disilicate

ceramic) using the cross-array hot-wire method described in ISO 8894-1:1987 part 21.

2. Materials and Methods

Two dental CAD/CAM materials were tested: (1) Lava Ultimate (3M ESPE,

St Paul, MN, USA), which is a nanoceramic composite, and (2) IPS e.max CAD (Ivoclar

Vivadent, Schaan, Lichtenstein), which is a disilicate ceramic. Material details are listed

in Table 1. Each sample (n=5) consisted of two blocks (18 mm long × 14.5 mm wide × 4

mm high) obtained from slicing of CAD/CAM blocks in slabs of 4 mm thickness using an

Isomet low speed saw (Buehler, Lake Bluff, IL, USA). The blocks were stacked with the

23

hot-wire and thermocouple placed between them. Crossing grooves were made in the

lower block to accommodate the wires (Figure 1a) using a high-speed carbide bur #245

(Brasseler USA, Savannah, GA) under abundant water irrigation to avoid heating. The

size of the grooves corresponded with the approximate diameter of the hot-wire and

thermocouple. The hot-wire was a 26 Gauge, 0.4 mm diameter kanthal resistance wire

A1 (Kanthal Co, City of Industry, CA, USA) with a resistance of 10.531 Ω/m. A 0.5 mm J-

type thermocouple (Omega, Stamford, CT, USA) was placed perpendicular to the hot-

wire, and soldered to the hot-wire where they met in the center. To avoid interference

of air, which acts as a thermal insulator, and to improve thermal contact, a thermally

conductive and electrically insulating paste Omegatherm 201 (Omega) was used in the

groves (Figure 1b). The two blocks, containing the crossing wires, were pressed

together using clamps (Figure 1c), ensuring good thermal contact between the

samples.

Electrical current through the hot-wire was provided by a DC power supply

(model 3010D, Maihao Eletronics, Dongguan, Guangdong, China). Applied voltage was

5.0 V and the currents were 0.7 A for the Lava Ultimate and 1.5 A for the IPS e.max,

which were kept constant (±1%) during the experiment. The material specific values

for the electric currents were determined in a series of proof runs to ensure that the

induced temperature changes would not exceed 100 °C [13,16,17]. The thermocouple

was connected to a NI 9211 thermocouple input module in a NI cDAQ-9178 USB

chassis (National Instruments, Austin, TX). Temperatures were collected at 4 Hz for 500

seconds using a custom acquisition macro (LabVIEW, National Instruments). Figure 2

shows a schematic drawing of experimental setup for the measurement of thermal

conductivity. The measurements were repeated six times for each sample in

24

alternating directions by reversing the polarity of the DC power supply to account for

any asymmetry in thermocouple wires and/or hot-wire.

Theoretically, the method assumes an infinitely thin and long hot-wire

producing a thermal pulse for a finite time with constant heating power, and

generating cylindrical coaxial isotherms in an infinite, homogeneous isotropic medium.

If the wire produces a constant heat flux q per unit wire length (W/m), the

temperature rise ΔT (°K) at any distance r (m) from the wire as a function of time is

described by [15]:

ΔT = (q/(4 π k)) ln [(4 a t)/(r2 c)] (1)

where k is the thermal conductivity (W/mK), a the thermal diffusivity (m2/s), t is time

(s), and c = exp(γ), with γ the Euler’s constant. Eq. (1) is valid only when the condition

r2 / 4at << 1 is fulfilled. So, the equation can also be written as:

ΔT = (q/(4 π k)) ln [(4 a t)/r2] – γ (2)

The temperature rise is thus a linear function of the natural logarithm of

time (Figure 3). Although actual experiments cannot fulfill the theoretical assumptions,

time-temperature curves exhibit similar characteristics within an intermediate zone

(Figure 3). Within this zone the temperature change is given by:

ΔT = T(t2) – T(t1) = (q/(4 π k)) ln [t2/t1] (3)

The thermal conductivity k can be calculated from the temperature change

ΔT over the time period (T2 – T1), which is the slope of the linear portion without being

affected by the diffusivity:

k = q/(4 π) ln [t2/t1]/(T2 – T1) (4)

25

T1 and T2 are the increase in temperature of the hot-wire at times t1 and t2. The heat

flux q in this equation can be determined from:

q = V2/R = V (V/R) = V I (5)

where V is the voltage drop per unit length of hot-wire (V/m), R is the electrical

resistance per unit length of the hot-wire at the test temperature (Ω/m), and I is the

heating current (A).

3. Results

A representative experimental temperature versus ln(time) curve for IPS

e.max is shown in Figure 4. The linear section between 1 and 10 s was used to

determine the thermal conductivity values. Table 2 shows the mean and standard

deviation of the six measurements for each sample and the average thermal

conductivity (k) of Lava Ultimate (0.87 ± 0.14 W/mK) and IPS e.max CAD (2.52 ± 0.24

W/mK).

4. Discussion

In some thermal analyses, only the thermal expansion coefficient is used to

evaluate thermal stresses [4,6,18]. However thermal stresses are not only the result of

a mismatch between coefficients of thermal expansion but also involves the heat

transfer that creates temperature gradients and thus expansion/contraction

mismatches in a material. Since thermal stresses can have a significant effect on a

structure's strength and stability, potentially causing failures, it is important to include

26

thermal conductivity in thermal stress analyses [19,20]. Due to lack of such values,

thermal analyses have often used values that were not specific for the investigated

materials [6,9,21]. However, material composition, nature and amount of fillers,

porosity, and crystallinity are known to affect the thermal conductivity of materials

[16,17,22]. Therefore, it will enhance thermal analyses if material specific properties

can be obtained. This study outlines a relatively simple measurement technique for

determination of thermal conductivity.

Thermal conductivity is a material-specific property used for characterizing

steady heat transport. Different methods to measure the thermal properties of

materials, including the coefficient of thermal conductivity, have been used in

engineering studies [17,23,24]. Most engineering methods are developed for samples

with dimensions larger than are feasible in dentistry. In this study was adapted the

cross-array hot-wire technique to determine the thermal conductivity of dental

CAD/CAM materials. There were other hot-wire configuration options, particularly the

parallel technique, where the hot-wire and thermocouple are placed parallel instead of

perpendicular [13]. With the parallel technique it is possible to simultaneously

determine thermal diffusivity, thermal conductivity, and specific heat from the same

experimental thermal transient. However, it requires higher electric currents that

could damage or melt polymeric materials. Therefore the cross-array configuration

was selected for this study and only needed an electric current generator,

thermocouple, resistance wire, and temperature acquisition device. This method is

known to be good for studying poor conductors such as the two CAD/CAM materials

tested [24].

27

Our results showed a good reproducibility considering the coefficient of

variation 16,1%- Lava Ultimate and 9,5% - IPS e.max CAD (Table 2). No thermal

conductivity values are available in the literature or from the manufacturers for Lava

Ultimate or IPS e.max CAD. Therefore, the values of this current study could not be

compared. However, in a cross-array hot-wire pilot test for a flowable dental

composite (SureFil SDR, Dentsply, Milford, DE) were found values of 0.98 ± 0.02 W/mK,

which is approximate the range of 1.09 to 1.37 W/mK reported for resin composites

[7,8,25]. The dimensions of samples tested were determined by the size of CAD/CAM

blocks. This suggests that the hot-wire technique can measure thermal properties from

samples that are smaller than recommended by ISO.

Sample dimensions and testing conditions affect the technique and need to

be considered in the experimental design. This can be seen, for example, when

comparing the initial and final sections of experimental with the theoretical curves

where the differences between the curves can be explained by the experimental

conditions (Figure 3). To avoid those sections, tmin and tmax were defined to omit the

nonlinear sections of experimental curves during the calculation of the thermal

conductivity value [12,15]. The initial nonlinearity can be explained by heat capacity of

the wire and thermal contact resistance between hot-wire, sample, and thermocouple.

The temperature drop across the interface between the materials can be considerable.

To reduce this effect conductive paste was used to ensure good transient heat flux

through the sample, while the blocks were pressed together by clamps to increase

contact. The paste also acted as an electrical insulator to prevent passage of electric

current from the hot-wire to the blocks, which can cause interference with the thermal

properties of materials. The non-linearity of final curve was generated by boundary

28

effects of the finite sample dimensions and hot-wire. To minimize this effect the tests

were done at relatively low temperatures, close to room temperature. In addition,

heat loss can be minimized for the samples [24].

5. Conclusion

Within the limitations of this study, it can be concluded that the cross-array

hot-wire technique is a practical method for determining thermal conductivity in

dental CAD/CAM materials and can be extrapolated the indication for measure the

thermal conductivity of other dental materials.

Acknowledgements

We would like to thank CAPES by the PhD sandwich scholarship (Process

number: 008816/2014-00 – UTHSC – Memphis, USA). Dr James F Simon for his

assistance with ceramic samples, the engineer Luís Renato Bego Machado for his help

with electric circuit and we would also like to acknowledge Dr Antonio José da Silva

Neto for sharing his knowledgement in this study with the hot-wire technique.

Conflict of interest

All authors declare no financial and personal conflict of interest.

29

References

1. Palmer DS, Barco MT, Billy EJ. Temperature extremes produced orally by hot and

cold liquids. J Prosthet Dent 1992; 67: 325-327.

2. Toparlı M. Stress analysis in a post-restored tooth utilizing the finite element

method. J Oral Rehabil 2003; 30: 470-476.

3. Mezzomo LA, Corso L, Marczak RJ, Rivaldo EG. Threedimensional FEA of effects of

two dowel-and-core approaches and effects of canal flaring on stress distribution in

endodontically treated teeth. J Prosthodont 2011; 20: 120-129.

4. Arman Y, Zor M, Güngör MA, Akan E, Aksoy S. Elastic-plastic finite elements analysis

of transient and residual stresses in ceramo-metal restorations. J Biomech 2009; 40:

2104–2110.

5. Spierings TAM, de Vree JHP, Peters MCRB, Plasschaert AJM. The influence of

restorative dental materials on heat transmission in human teeth. J Dent Res 1984;

63: 1096-1100.

6. Değer Y, Adigüzel Ö, Özer SY, Kaya S, Polat ZS, Bozyel B. The evaluation of

temperature and stress distribution on 2 different post systems using 3-dimensional

Finite Element Analysis. Med Sci Monit 2015; 21: 3716-3721.

7. Köycü BC, İmirzalıoğlu P. Heat transfer and thermal stress analysis of a mandibular

molar tooth restored by different indirect restorations using a three-dimensional

finite element method. J Prosthodont 2015; 1–13.

8. Toparli M, Gokay N, Aksoy T. An investigation of temperature and stress distribution

on a restored maxillary second premolar tooth using three-dimensional finite

element method. J Oral Rehabil 2000; 27: 1077.

30

9. Güngör MA, Küçük M, Dündar M, Karaoglu Ç, Artunç C. Effect of temperature and

stress distribution on all-ceramic restorations by using a three-dimensional finite

element analysis. J Oral Rehabil 2004; 31: 172–178.

10. André S, Rémy B, Pereira F, Cella N, Silva Neto AJ. Hot wire method for the thermal

characterization of materials: inverse problem application. RETERM 2003; 4: 55–64.

11. Benazzouk A, Douzane O, Mezreb K, Laidoudi B, Quéneudec M. Thermal

conductivity of cement composites containing rubber waste particles: Experimental

study and modeling. Constr Build Mater 2008, 22:573–579.

12. Dos Santos WN. Advances on the hot wire technique. J Eur Ceramic Soc 2008; 28:

15–20.

13. Kostic M, Simham KC. Computerized, Transient Hot-Wire Thermal Conductivity

(HWTC) Apparatus for Nanofluids. WSEAS Mechan Eng 2009; 71-78.

14. Haupin WE. Hot wire method for rapid determination of thermal conductivity. Am

Ceram Soc Bull 1960; 39(3): 139–141.

15. De Carvalho G, Frollini E and Santos WND. Thermal conductivity of polymers by hot-

wire method. J Appl Polym Sci. 1996; 62: 2281–2285.

16. Brady AY, Lee H, and Orlowski JA. Thermal Conductivity Studies of Composite Dental

Restorative Materials. J Biomed Mater Res 1974; 8: 471-485.

17. Salman SM, Ghoneim NA, Gharib S. Thermal conductivity of lithium iron silicate

glasses. Thermochim Acta 1984; 72:269-276.

18. Agnihotri H, Bhatnagar N, Rao GV, Jain V, Parkash H, Kar AK. Evaluation of the onset

of failure under mechanical and thermal stresses on luting agent for metal–ceramic

and metal crowns by finite element analysis. Contemp Clin Dent 2010; 1(4):227-233.

31

19. Kingery WD. Factors Affecting Thermal Stress Resistance of Ceramic Materials. J Am

Ceram Soc 1955: 38: 3–15.

20. Hasselman DPH, Younblood GE. Enhanced Thermal Stress Resistance of Structural

Ceramics with Thermal Conductivity Gradient. J Am Ceram Soc 1978; 61: 49–52.

21. Cakan U, Saygili G. Comparison of thermal stress on various restorative post and

core materials generated by oral temperature changes using three dimensional

finite element analysis. Clin Dent Res 2015; 39(1): 27-35.

22. Adigüzel Ö, Özer SY, Bahşi E, Yavuz I. Finite element analysis of endodontically

treated tooth restored with different posts under thermal and mechanical loading.

Int Dent Res 2011; 1: 3.

23. Labudová G, Vozárová V. Hot Wire and Hot Plate Apparatuses for the Measurement

of the Thermophysical Properties. Вестник ТГТУ 2002; 8: 85-96.

24. Franco A. An apparatus for the routine measurement of thermal conductivity of

materials for building application based on a transient hot-wire method. Appl

Therm Eng 2007; 27:2495–2504.

25. Anusavice KJ, Phillips RW, Shen C, Rawls HR. Phillips' science of dental materials. St.

Louis, Mo: Elsevier/Saunders, 2003.

32

Table 1. Material information

Material Manufacturer Batch number Shade/Size Compositiona

Lava Ultimate 3M ESPE N560554 A3 HT – 14L

Bis-GMA, UDMA, Bis-EMA, TEGDMA, SiO2 (20 nm), ZrO2 (4–11 nm), aggregated ZrO2/SiO2 (0.6–10 μm)

IPS e.max CAD Ivoclar Vivadent

T18888 A3 HT – C14 97% SiO2, Al2O3, P2O5, K2O, Na2O, CaO, F, 3% TiO2, pigments, water, alcohol, chloride

abis-GMA: Bisphenol A glycol dimethacrylate; UDMA: Urethane dimethacrylate; TEGDMA: Triethylene glycol dimethacrylate; bis-EMA: Ethoxylated bisphenol A glycol dimethacrylate

Table 2. Thermal conductivity (mean and standard deviation, SD) determined using the hot-wire technique. Measurements were repeated six times for each sample.

Thermal conductivity (W/mK)

Lava Ultimate IPS e.max CAD

Sample 1 0.69 ± 0.06 Sample 1 2.60 ± 0.22

Sample 2 1.09 ± 0.24 Sample 2 2.62 ± 0.22

Sample 3 0.84 ± 0.13 Sample 3 2.83 ± 0.24

Sample 4 0.84 ± 0.10 Sample 4 2.28 ± 0.11

Sample 5 0.91 ± 0.09 Sample 5 2.27 ± 0.20

Mean (SD) 0.87 ± 0.14 Mean (SD) 2.52 ± 0.24

33

Figure Legends

Figure 1. (a) Specimen consisting of two blocks with grooves to embed the cross-wires;

(b) The cross-wires, hot-wire and thermocouple, embedded in lower block using

conducting paste; (c) Blocks stacked and clamped during the experiment.

Figure 2. Schematic diagram of experimental setup electrical circuit with data

acquisition system.

Figure 3. Temperature rise versus natural logarithm of time: theoretical and

experimental curves.

Figure 4. Temperature change in the hot-wire embedded in IPS e.max CAD during the

experiment plotted on a logarithmic time scale. The straight line indicates the linear

portion of the curve that was used to calculate the thermal conductivity.

34

Figure 1

Figure 2

35

Figure 3

Figure 4

36

2.2 Artigo 2

Title: Thermal and biomechanical analysis of CAD/CAM ultrathin occlusal veneers by

Finite Element Analysis

37

Abstract

Traditional restorative protocols to restore worn surface involve preparing sound

dental tissue. So, occlusal veneer is a new option of indirect restorations minimally

invasive to replace the occlusal loss structure without extensive tooth reduction or

retentive preparations. The aim of this investigation was calculate elastic modulus

(EM) of restorative materials, post-gel shrinkage of resin cement and evaluate the

influence of ultrathin occlusal veneers of 0.3 or 0.6 mm-thick on temperature

distribution, and thermomechanical stresses by Finite Element Analysis (FEA). Two-

dimensional FEA models were created based on a cross-sectional micro-CT of a human

inferior molar importing points coordinates of ImageJ. Relyx Ultimate shrinkage stress

was input based on results of post-gel shrinkage measured by strain gauge technique

and Elastic Modulus of restorative materials was determined by deflectometer at 3-

point bending test. Using MARC/MENTAT was applied a thermal load (55º-37º-5ºC) at

outer surface and a 228N occlusal axial load was applied by a 6mm diameter simulated

sphere. Modified von Mises thermal and mechanical stresses were calculated. Cement

shrinkage strain value (in volume %) was 1.13±0.07. EM was e.max 93.85±6.6 GPa,

Lava 12.81±0.3 GPa and Relyx (9.08±0.21 GPa). The analysis showed that cold

temperature created higher stress than hot temperature, mainly at beginning of each

cycle, when the temperature changes. Thermal stress was more concentrated at

cement layer, and within e.max veneers. The mechanical analysis showed that thicker

veneers accumulate less stress than thin. At the restored tooth with e.max, the stress

concentration is within veneer and in enamel when Lava restoration was analyzed. The

dentin was not affected neither material type nor thickness. In conclusion, ultrathin

occlusal veneers were most affected by cold temperature and cement concentrated

higher thermal stress. Mechanical loading accumulated stress within e.max

restoration and underlying structures of Lava restoration. Thicker veneers accumulated

more thermal and lower mechanical stress compared with thin veneer

Keywords: temperature; finite element analysis; oclusal veneer; lithium disilicate

ceramic; composite

38

1 Introduction

The wear and reduction of coronal tooth structure is a biological condition

from aging process (Magne et al., 2002) not involving bacteria (Nunn et al., 1996). The

pathologic dental tissue loss is related to dietary, oral habits or combined etiologic

factors like abrasion, attrition, acid erosion or even amorphous and weak structure

from dental anomalies. These conditions results in an accelerated and premature loss

of enamel with destructive consequences increasing maxillomandibular vertical

distance, occlusal and musculoskeletal disharmony, impaired function and esthetic

disfigurement (Baroon et al., 2003; Lussi et al., 2009). So, the tooth wear facets are an

evidence of tooth tissue loss and can be detected at beginning of problem (Cunha-Cruz

et al., 2010).

The traditional protocols to restore the occlusal worn surface involve

preparation with usual thickness of 1.5 to 2.0 mm for porcelain restoration of the

sound dental tissue (Dietschi et al., 1997; Federlin et al., 2007). But higher wear

preparations can affect the biomechanical behavior associated with higher thermal

shocks of restored teeth (Magne et al., 2002; Torbjörner et al., 2004, Papanicolaou et

al., 2015). Nowadays, minimal intervention at healthy tooth tissue (preferably “non-

preparation”) is a desired clinical procedure. It is possible due new advances at

restorative materials, improvement at results with bonding strategies and CAD/CAM

technology that allow producing ultrathin veneers up to 0.3 mm minimum thickness

(Egbert et al., 2010; Johnson 2014).

Laminate veneers indicated to anterior teeth already are well accepted

concept with good long-term results (Stappert et al., 2005; Granell-Ruiz et al., 2010;

Schmidt et al., 2011). The posterior occlusal veneer is a new option of indirect

restorations minimally invasive, used as an additive treatment to replace the lost

structure and reestablish the vertical dimension of occlusion (Magne et al., 2010). In a

restorative treatment without retentive preparations to reach long-term clinical

success, the bonding strategy becomes essential (Tsitrou et al., 2010; Schlichting et al.,

2011). The successful of ceramics as a choice material for indirect restoration or in the

attempt to replacement of enamel (Federlin et al., 2005; Magne P., 2006; Manhart et

al., 2004) is supported by strength and aesthetic conditions (Manhart et al., 2004;

Roulet et al., 1997), with positive results of bonding to the natural tooth (Magne et al.,

39

2002; Bindl et al., 2004). The improvements of currently composite resins are

noticeable, mainly due the appropriated stress distribution through the tooth-

adhesive-restoration interface. Additionally, superior bond interaction and the

similarity of the elastic moduli between composite resin and dentin allow more

absorption of functional stresses and adequately mimics the substitution of tooth

structure (Craig RG, 1979; Schlichting et al., 2011).

Finite element analysis has been used in investigations of complex

structures and it is a relevant method to measure internal stresses, because is difficult

to obtain these results during in vivo or in vitro tests (Oskui, 2013; Deger, 2015).

Therefore, to investigate and better understand the behavior of these ultrathin

veneers cemented at non-preparation tooth, 2D numerical models were developed to

evaluate the influence of material type and restoration thickness on temperature

distribution and mechanical behavior after thermal loading.

2 Objective

The purpose of this study was measured 1) the elastic modulus of

restorative materials, 2) the post-gel shrinkage of dual-curing resin cement, and 3)

evaluate the influence of ultra-thin occlusal veneers of 0.3 and 0.6 mm-thick made of

nanoceramic composite or ceramic on temperature distribution and

thermomechanical stresses by Finite Element Analysis.

3 Materials and Methods

3.1 Post-Gel Shrinkage

The linear post-gel shrinkage of RelyX Ultimate dual-cure resin cement

(n=10) was determined by strain gauge method (Sakaguchi et al., 1997). A small

amount of resin cement was positioned on the top of a biaxial strain-gauge (CEA-06-

032WT-120, Measurements Group, Raleigh, NC, USA) after material mixing. This strain

gauge was used to monitoring the strain in two perpendicular axes (x and Y). A strain

40

conditioner (2101A Series, Micro Measurements Group) converted electrical resistance

changes in the strain gauge to voltage changes through a quarter-bridge circuit with an

internal reference resistance. A light-sensitive photocell detected accurate start-stop

time of photoactivation. The cement samples were light-cured using the VALO LED

curing light (Ultradent Products, South Jordan, UT, USA) for 20 s at inrradiance of 1,560

mW/cm² (31 J/cm²) quantified by MARC® Resin Calibrator (BlueLight analytics Inc.,

Halifax, Canada). The light tip was placed 1 mm distant from the sample surface. Strain

gauge and photocell output signals were recorded for 10 min in a computer trough an

analog-to-digital data converter. Ten samples were tested and post-gel shrinkage

results of each sample were determined by a mean of strains of both perpendicular

directions. Post-gel shrinkage of RelyX Ultimate was used as a linear shrinkage input

for the Finite Element Analysis. Linear post-gel shrinkage was converted to volumetric

shrinkage by the equation:

( ) ( ) ( )

where V is the volumetric shrinkage and Sh is the linear shrinkage. After,

the results were converted to percentage.

3.2 Elastic Modulus

The elastic modulus of materials was determined using a three-point

bending method. Ten rectangular bar-shaped samples (25mm x 2mm x 2mm – ISO

4049) were prepared for RelyX Ultimate adhesive dual-cure resin cement, using a

customized silicone impression material mold (Impregum soft; 3M ESPE, Saint Paul,

MN, USA) to facilitate sample removal without damage. Freshly-mixed cement was

inserted into the mold with a transparent polyester strip on top lined by a glass slide.

The light activation was performed using VALO LED curing light (Ultradent Products,

South Jordan, UT, USA) with two irradiations of 20 s each one (top and bottom), at a

distance of 1 mm from the sample surface. After 15 min from the photoactivation, the

samples were removed from the mold and stored in distilled water at 37°C in dark.

41

After 24 h, before the testing, the samples were measured using a digital calipter

(Mitutoyo).

Rectangular bar-shaped samples, for CAD-CAM materials (Lava Ultimate

nanoceramic composite and IPS e.max CAD lithium disilicate ceramic), were obtained

from slicing of blocks with a low speed saw (Isomet). The samples dimensions (16.5mm

x 1.44mm x 1.44mm) were stated by correlation of ISO Standart-4049 and maximum

long dimensions possible of blocks. After, the ceramic samples were sintered in a

ceramic furnace following the manufacturer’s instructions.

The three-point bending test was performed using a universal testing

machine (Instron 5565). Centrally load was applied on the bar, with 20 mm distance

between supports for RelyX samples, and 14.5mm for CAD-CAM materials at a

crosshead speed of 0.5 mm/min-1. A deflectometer (Epsilon W-E401-E, Instron) was

positioned at bottom of samples recording the displacement at the central portion.

Elastic modulus was calculated using data obtained from load-deformation

profiles during the bending test, according to the following equation:

where E is the flexural modulus (GPa), F is the load (N) corresponding to the

displacement d (mm), L is the distance between the supports (mm), B is the specimen

width (mm) and H is its height (mm). The elastic modulus of materials also were input

for the Finite Element Analysis.

3.3 Finite Element Analysis

3.3.1 FEA modeling and mesh generation

A geometric two-dimensional (2D) finite element model was created from

a cross-sectional micro-CT scan of a sound tooth to calculate the biomechanical and

thermal stresses. The CAD assembly consisted of a restored tooth with a 0.3 and 0.6

mm-thick occlusal veneer restoration cemented on enamel substrate created in

42

MSC.Mentat (MSC Software, Santa Ana, CA). To reproduce the natural worn and a non-

preparation tooth, the occlusal surface was equally reduced 0.3 and 0.6 mm both

groove as cusps. The design and dimensions of model reproduced the measures of a

first lower molar used at laboratory tests. Coordinate points of digital files were

obtained using Image J software (The National Institutes of Health, Bethesda, MD,

USA) and imported to finite element analysis software package MSC.Mentat. In

addition to the restorations (cement layer and tooth structures), the PDL and

Polystyrene resin were modeled 2 mm below the cementoenamel junction to simulate

the insertion of tooth in the alveolus. The mesh generation was created manually with

quadratic elements. Plain stress elements were used to cement set and plain strain

elements to other stes. The pulp chamber and root canals were generated as an

empty space (no elastic modulus). The models were considered to be linear, elastic,

homogeneous and isotropic, but also have different tensile and compressive strengths.

Therefore, modified von Mises equivalent stress criterion was used to express the

stress distribution and values of finite element analysis, using tensile and compressive

strength ratio (Apêndice 1).

3.3.2 Shrinkage Stress Analysis

The shrinkage and elastic modulus were obtained from the experimental

analysis. Polymerization shrinkage was simulated by thermal analogy. Temperature

was reduced by 1oC, while the linear post-gel shrinkage value was entered as the

coefficient of thermal expansion. The specific boundary conditions, load protocol and

configuration simulated previous laboratory definitions.

3.3.1 Thermal analysis

A plane stress-strain condition was assumed for transient thermal stress

analysis. To be possible reproduce the laboratory experiment, post-gel shrinkage stress

condition was adopted at the first increment, simulating the adhesion process,

followed by temperature steps. Thermal load was applied at the outline nodes of

43

model, deactivating PDL and resin base at this analysis, to reproduce the effect of

laboratory thermal fatigue. So, thermal shock cycling procedure was applied with

temperature changes of 37o - 55 o - 37 o - 5 o - 37 oC. Those temperatures were kept

constant for periods of 30 s each. Simplified boundary condition was assumed fixing a

point of root in zero-displacement in the 3 spatial dimensions in all degrees of freedom

(x, y and z axes). Attribution of thermal properties of materials according to existing

data in the literature and results obtained in laboratory tests are given at Table 1.

3.3.2 Mechanical Analysis

A plane stress-strain condition also was assumed to shrinkage and

mechanical stress analysis. The post-gel shrinkage of resin cement was carried out

followed by a uniform ramp loading of 228 N axial load applied occlusally by a 6 mm

diameter simulated sphere. This load was obtained from a previous fracture strength

test of laboratory samples based on equation below, to determine the correspondent

load of a 3D model to 2D model:

where F2 is the load to be applied at 2D model (N), F1 is maximum load of

fracture strength of samples (N), r is the radius of sample (mm), B is the specimen

width (mm), and H is its height (mm). The nodes at the bottom and sides surface of the

resin base were assigned fixed zero-displacement in the 3 spatial dimensions.

Attribution of mechanical properties of materials according to existing data in the

literature and results obtained in laboratory tests are given in Table 1.

4 Results

4.1 Post-gel Shrinkage

The mean of bidirectional strains of RelyX Ultimate resin cement

determined the linear post-gel shrinkage (0.0037 ± 0.00025) used at finite element

analysis. The volumetric post-gel shrinkage was 1.13 ± 0.07 (%) (Apêndice 2).

44

4.2 Elastic Modulus

The IPS e.max CAD (disilicate ceramic) had numerically the highest elastic

modulus (93.85±6.6 GPa); Lava Ultimate (composite nanoceramic) showed

intermediate value (12.81±0.3 GPa), and RelyX Ultimate (adhesive resin cement) the

lowest EM (9.08±0.21 GPa) of materials (Apêndice 3).

4.3 Finite Element Analysis

4.3.1 Thermal analysis

The finite element thermal analysis demonstrates the thermal flux curves

through the tooth at 5 different points against time at Figure 1. Curves of outside point

shows the temperature of cycles applied at models. Type of restorative material

influenced the thermal flux. It is necessary a longer time to reach the expected

temperature peak in a nanoceramic composite than when a ceramic is used, in reason

of the lower thermal conductivity coefficient of the material. An inverse influence of

thickness was observed. How much thicker the veneers are, less heat is transferred

through the material. The thermal flux through the biological structures demonstrated

the same behavior, but when Lava Ultimate veneer was used, the heat that reaches

the pulp chamber was 0.8 degrees lower than a non-prepared tooth, comparing with

mean of 0.25 degrees of IPS e.max.

The values of modified von Mises stress concentration during thermal

cycling are shown at Figure 2. Analysis of thermal stress for IPS e.max ceramic veneer

showed the maximum stress concentration at the cold cycle (5º C). Lava Ultimate

veneers were more affected by the hot cycle (55º C), and the cold cycle generated the

lowest peak stresses. The restorations with 0.3mm thick accumulated less stress than

restorations of 0.6 mm thick. The cement layer obtained the highest stress values of all

structures analyzed, but the behavior occurred similarly at models evaluated. It is

important highlighted that the cement layer shows the effect of fatigue thermal

loadings added the post-gel shrinkage. The cold cycle was responsible for the

45

maximum stresses at this layer. At the enamel, the thermal stress is shown during the

changes of temperature cycles. Cold bath demonstrated the highest stress

concentration. Initial temperatures of shock cycling resulted in stress values at non-

prepared model in a range from 251% to 1541% higher than final of cycle. Similar

behavior was followed by the dentin at non-prepared model. For restored models, the

cold fatigue produced stresses results three times more than average of thermal

cycling. Stress fields are illustrated at a colour-coded models at Figure 3.

4.3.2 Mechanical Analysis

The values of maximum stress of ultrathin occlusal veneer according to the

modified von Mises failure criterion were presented at Figure 4. The biomechanical

analysis showed lower stress concentration at thicker veneers (0.6 mm thick) than at

0.3mm thick veneers, whatever the material used for restoration. At the restored

teeth with IPS e.max, the highest values of stress occurred in ceramic veneers. When

the teeth were restored with Lava Ultimate, the lower elastic modulus of nanoceramic

composite transferred the stresses concentration to enamel. At non-prepared tooth,

the maximum mvM stress focused on enamel. Within all the situations evaluated, the

dentin was not affected neither material type nor thickness. The Figure 5 illustrates the

mvM stress fields at restored tooth.

5 Discussion

Stresses are developed during functional mastication loading, thermal

shock caused by different temperatures of foods and beverages intake and by

restorative procedures. The stresses generated into oral cavity usually are results of

the combination of these factors (Papanicolaou et al., 2015). Due the complexity of

tooth tissues and restored models, the finite element analysis is displayed as an

advantageous method to approach the problem. This methodology subdivides the

complex model in small elements and demonstrates visual and numerical results

46

within whole model, which otherwise it is not possible to evaluate and standardize at

in vitro or in vivo tests (Değer et al., 2015).

To validate the numerical models it is essential the correct input of

material properties and restrains. For this reason, the first part of this study was

laboratory-determined elastic modulus of restorative materials (IPS e.max CAD, Lava

Ultimate and RelyX Ultimate) and the shrinkage of resin cement (RelyX Ultimate). The

elastic modulus and post-gel shrinkage are in accordance with literature and data

provided by the manufacturer. An important coefficient of materials required in

thermal analysis studied by FEA is the thermal conductivity. The thermal conductivity

coefficients inputted in this study were obtained in a previous laboratory investigation

of use of hot wire technique method for dentistry materials, once these values was not

found at literature or manufacturer data.

Many studies using the FEA aimed predict only fracture strength and stress

distribution of occlusal veneers (Dejak et al., 2012; Magne et al., 2012; Mange et al.,

2016). However, the purpose of this study was evaluating the effect of combined

analysis of stress in oral cavity. Therefore at the first increment of analysis, was

adopted the post-gel shrinkage of resin cement before loadings, both thermal and

mechanical, likewise occurs in clinical procedures.

The FEA results of thermal flux through the restored tooth had difference

when different restorative materials were used. The lower thermal conductivity of

Lava Ultimate compared with IPS e.max CAD or even enamel was accountable for a

smaller amount of heat distributed within the restoration and to other structures, thus

reaching the pulp chamber 0.8 degrees lower than a non-prepared tooth. The greater

amount of material at 0.6 mm veneers than at 0.3 mm-thick influenced directly the

effectiveness of restorations acting as insulating medium. So, the thickness of

restorative materials needs to be considered, not only the thermal properties of

materials, when a thermal analysis is been evaluating once thermal coefficients are

independent of thickness (Craig et al., 1961).

The feature of dental tissues is to act as an insulator medium against

thermal shock, avoiding that large temperature changes reaches the pulp tissue.

47

Because if the temperature rise in the pulp exceed more than 5.5 ºC induces

irreversible pulp damage (Oskui et al., 2013). Dental tissues composition differ the

thermal coefficient, exemplifying the difference at thermal conductivity of enamel and

dentin that the values are correlated with the amount of organic matrix existing (Craig

et al., 1961). Thus, the pattern of temperature distribution at intact enamel and worn

enamel was similar. It can be a reflection that the amount of enamel lost at restored

models (Oskui et al., 2013) is much smaller when it is necessary to do a conventional

preparation for posterior restorations. The amount of tissue lost it is not enough to

affect the temperature flux in this structure. Dentin results showed lower temperature

variation, not only caused by the lower thermal conductivity coefficient than enamel,

but it was also influenced by the highest value of specific heat of the dentin. The non-

prepared model had highest heat flux (4.5º C) reaching the pulp chamber, although the

temperature increase was below to cause pulp damage. One limitation of this study

was not simulating the effect of dentinal fluid and pulp blood perfusion. The constant

circulation of these fluids at dentinal tubules and pulp, carry heat away, decreasing

warming (Lisanti & Zander, 1950; Oskui et al., 2013).

When a restoration replaces the tooth structure, the differences at physical

and thermal properties like elastic modulus, specific heat, thermal conductivity and

thermal expansion coefficients may result in stress; although some studies correlate

that thermal stress are developed only by the mismatch at thermal expansion

coefficient (Papanicolaou et al., 2015; Magne et al., 1999; Köycü et al., 2015). In

general, the great difference of temperature at beginning of each cycle resulted at

higher thermal stress concentration at models structures in this study. The heat

transfer through materials by conduction during the 30 s decreased the stress at end

of cycle.

Previous study also showed that thicker restorations of 0.6mm, due the

great amount of material, showed more stress concentration than 0.3mm-thick

restorations (Güngör et al., 2004). IPS e.max accumulated at the occlusal central

groove more stress than Lava Ultimate in both thicknesses. It can be explained by the

low thermal expansion coefficient and high elastic modulus of ceramic. Thus,

composite materials with higher thermal expansion coefficient change the volume at

48

outer surface of material and transfer the additional stress to underlying structures

while the high elastic modulus of ceramic restoration allow slight changes of shape,

concentrating stress within material (Yang et al., 2001; Agnihotri et al., 2010).

The highest peak of thermal stress was concentrated at cement layer not

only due to the thermal changes but also to the additional stress by post-gel shrinkage

input at FEA before start the thermal analysis. Magne et al. in 1999 described that

shrinkage effect predominated over high thermal expansion even under best

conditions of a composite used as cement. Also, the specific heat coefficient of RelyX

Ultimate, 18-40% higher than those coefficients of restorative materials resulted in a

slow temperature change, taking a longer time to thermal equilibrium front a non-

uniform temperature stage, generating more stress (Cakan et al., 2015; Köycü et al.,

2015). This result showed that the highest stress concentration in the cement layer

and interfaces may lead firstly to bond failure when occlusal veneers are used, as

described by previous studies (Köycü et al., 2015; Magne et al., 1999; Agnihotri et al.,

2010 and Papanicolaou et al., 2015).

In intact natural tooth, the differences in properties of enamel and dentin

inherent of tissues, creates thermal stress at interfaces during cycling thermal changes;

this occurrence is exacerbated at restored teeth (Güngör et al., 2004), but minimum

stress was found for the non-prepared tooth, in accordance with Toparli et al., 2003.

Thermal stress accumulated at enamel was present at buccolingual surface or enamel-

cement and enamel-dentin interfaces, depending of cycle temperature. Models

restored with Lava Ultimate showed stress distribution more evenly under enamel-

cement interface, comparing with the high concentration of stress under cement layer

of IPS e.max restoration models. At dentin tissue, thermal stress showed very similar

behavior, with a slight stress concentration of nanoceramic composite veneer,

probably arising from the stress distribution more evenly trough the structures of

models restored with this restoration type.

Restorative materials and dental tissues expand when warmed and

contract at cold temperatures. The FEA thermal findings revealed that thermal stress

levels were closely related to the temperature gradient, although was highlighted

49

higher stress concentration mainly at outer enamel when submitting to 5 oC, in

accordance with previous studies (Oskui et al., 2013, Güngör et al., 2004, Köycü et al.,

2015, Magne et al., 1999) that showed more damaging effect on models in cold

temperatures. This result can explain enamel cracks generated during thermal shock

by substances intake with different temperatures, and the relevance to realize thermal

test also with cold temperatures.

The preparation or lost tooth tissues changes the mechanical behavior

comparing an intact tooth. Occlusal veneer has been studied (Egbert et al., 2014;

Johnson et al., 2015; Magne et al., 2010) as option for severely worn tooth with dentin

exposition, contrasting with this study that evaluated the mechanical stress

distribution of ultrathin occlusal veneer bonded at enamel substrate with additional

stress by post-gel shrinkage of resin cement. Thus, under biomechanical axial load,

thicker veneer (0.6 mm) showed lower stress concentration comparing to thin veneer

(0.3 mm), whatever the material used for restoration. This numerical analysis

corroborate with previous studies (Schlichting et al., 2011) that showed higher fracture

strength for ultrathin occlusal restorations when the thickness was increased, although

no statically significance at occlusal veneer restoration thickness on fracture strength

was found by Egbert et al., 2014. The modified von Mises indicated that Lava Ultimate

yield reduced stress than e.max CAD. This result can be explained by the elastic

modulus of the material; when stiffer material is used, the stress is accumulated within

the restoration. In the present study this fact occurred under the contact of load and

at central groove due the sharp design. The mechanical stress originated from

nanoceramic composite veneer was transferred underlying. For this reason, it was

noted the stress distribution at enamel under this type of restoration as already has

been described (Magne et al., 2012 and 2016). A relevant result was the stress

concentration at cervical portion of enamel in restored or non-restored teeth, since

studies of failure mode of ultrathin occlusal veneer by Egbert et al., 2014 and Johnson

et al., 2015 evidenced the failure at enamel as the second most frequent type of

failure. The behavior of dentin was similar and not altered by the use of occlusal

veneer restorations or intact tooth, in this sutdy.

50

Ultrathin occlusal veneers already demonstrated fracture strengths

exceeding the human masticatory forces (Egbert et al., 2014; Johnson et al., 2015;

Dejak et al., 2012), and the present FEA study suggests that ultrathin veneers up to

0.3mm-thick submitted to thermal or mechanical challenges as occur at oral cavity, is

prone to failure first at cement layer or cement interfaces followed by failures of the

restoration, preserving the tooth structure. Thus, marginal microleakage and

debonding tends to be more frequent at materials with low elastic modulus, as

nanoceramic composite - Lava Ultimate, due to stress distribution be located at

underlying structures (Dejak et al., 2012; Magne et al., 2010). Therefore, ultrathin

occlusal veneer appears a promising option for worn tooth to full-coverage crowns

without retentive preparation of tooth and reestablishing vertical dimensions.

6. Conclusion

Based on the findings of this finite element study it can be concluded that:

1. Lava Ultimate ultrathin veneer was more effective to block the heat; 2. Cement layer

concentrated the highest thermal stress, as also IPS e.max CAD veneer as Lava

Ultimate; 3. Cold temperature accumulated higher stress than hot temperature during

cycling thermal changes; 4. Modified von Mises stress was higher within thin IPS e.max

CAD veneer and underlying of Lava Ultimate restoration; and thicker veneers

accumulated more thermal and lower mechanical stress compared with thin veneer.

51

References

Agnihotri H, Bhatnagar N, Rao GV, Jain V, Parkash H, Kar AK. Evaluation of the onset

of failure under mechanical and thermal stresses on luting agent for metal-ceramic

and metal crowns by finite element analysis. Contemp Clin Dent. 2010 Oct;1(4):227-

33.

Barron RP, Carmichael RP, Marcon MA,Sandor GKB. Dental erosion in

gastroesophageal reflux disease. J Can Dent Assoc2003;69:84-9.

Bindl A, Mörmann WH. Survival rate of mono-ceramic and ceramic-core CAD/CAM-

generated anterior crowns over 2-5 years. Eur J Oral Sci. 2004 Apr;112(2):197-204.

Cakan U, Saygili G. Comparison of thermal stress on various restorative post and

core materials generated by oral temperature changes using three dimensional

finite element analysis. Clin Dent Res 2015; 39(1): 27-35.

Craig RG, Peyton FA. Thermal Conductivity of Tooth Structure, Dental Cements, and

Amalgam. J Dent Res. 1961 40: 411

Craig RG. Selected properties of dental composites. J Dent Res. 1979

May;58(5):1544-50.

Cunha-Cruz J, Pashova H, Packard JD, Zhou L, Hilton TJ. Tooth wear: prevalence and

associated factors in general practice patients. Community Dent Oral Epidemiol

2010; 38: 228–234.

Değer Y, Adigüzel Ö, Özer SY, Kaya S, Polat ZS, Bozyel B. The evaluation of

temperature and stress distribution on 2 different post systems using 3-dimensional

Finite Element Analysis. Med Sci Monit 2015; 21: 3716-3721.

Dejak B, Młotkowski A, Langot C. Three-dimensional finite element analysis of

molars with thin-walled prosthetic crowns made of various materials. Dent Mater.

2012 Apr;28(4):433-41.

Dietschi D. Anatomical applications of a new direct Ceromer. Signature. 1997

Spring;4(1):8-11.

Egbert JS, Johnson AC, Tantbirojn D, Versluis A. Fracture strength of ultrathin

occlusal veneer restorations made from CAD/CAM composite or hybrid ceramic

materials. Oral Sci Int 2015; 12(2):53–58.

52

Federlin M, Krifka S, Herpich M, Hiller KA, Schmalz G. Partial ceramic crowns:

influence of ceramic thickness, preparation design and luting material on fracture

resistance and marginal integrity in vitro. Oper Dent. 2007 May-Jun;32(3):251-60.

Granell-Ruiz M, Fons-Font A, Labaig-Rueda C, Martínez-González A, Román-

Rodríguez JL, Solá-Ruiz MF. A clinical longitudinal study 323 porcelain laminate

veneers. Period of study from 3 to 11 years. Med Oral Patol Oral Cir Bucal. 2010

May 1;15 (3):e531-7.

Güngör MA, Küçük M, Dündar M, Karaoglu Ç, Artunç C. Effect of temperature and

stress distribution on all-ceramic restorations by using a three-dimensional finite

element analysis. J Oral Rehabil 2004; 31: 172–178.

Johnson AC, Versluis A, Tantbirojn D, Ahuja S. Fracture strength of CAD/CAM

composite and composite-ceramic occlusal veneers. J Prosthodont Res 2014;

Apr;58(2):107-14.

Köycü BC, İmirzalıoğlu P. Heat transfer and thermal stress analysis of a mandibular

molar tooth restored by different indirect restorations using a three-dimensional

finite element method. J Prosthodont 2015; 1–13.

Lisanti VF, Zander HA. Thermal conductivity of dentin. J. D. Res. 29(4):493

Lussi A, Hellwig E, Ganss C, Jaeggi T. Buonocore Memorial Lecture. Dental

Erosion.Oper Dent 2009;34:251-62.

Magne P, Belser U. Understanding the intact tooth and the biomimetic principle.In:

Magne and Belser. Bonded Porcelain Restorations in the Anterior Dentition: A

Biomimetic Approach. Chicago: QuintessencePublishing Co, 2002:23-55.

Magne P, Cheung R. Numeric simulation of occlusal interferences in molars restored

with ultrathin occlusal veneers. J Prosthet Dent. 2016 Aug 7.

Magne P, Schlichting LH, Maia HP, Baratieri LN. In vitro fatigue resistance of

CAD/CAM composite resin and ceramic posterior occlusal veneers. J Prosthet Dent.

2010 Sep;104(3):149-57.

Magne P, Stanley K, Schlichting LH. Modeling of ultrathin occlusal veneers. Dent

Mater. 2012 Jul;28(7):777-82.

53

Magne P, Versluis A, Douglas WH. Effect of luting composite shrinkage and thermal

loads on the stress distribution in porcelain laminate veneers. J Prosthet Dent. 1999

Mar;81(3):335-44.

Manhart J, Chen H, Hamm G, Hickel R. Buonocore Memorial Lecture. Review of the

clinical survival of direct and indirect restorations in posterior teeth of the

permanent dentition. Oper Dent. 2004 Sep-Oct;29(5):481-508. Review.

Nunn JH. Prevalence of dental erosion and the implications for oral health. Eur J

Oral Sci 1996; 104: 156-161.

Oskui IZ, Ashtiani MN, Hashemi A, Jafarzadeh H. Thermal analysis of the intact

mandibular premolar: a finite element analysis. Int Endod J. 2013 Sep;46(9):841-6.

Papanicolaou GC, Kouveliotis G, Nikolopoulou F, Papaefthymiou KP, Bairami V,

Portan DV. Thermal shock cycling effect on the compressive behaviour of human

teeth. J Biomech. 2015 Feb 26;48(4):681-6.

Roulet JF. Longevity of glass ceramic inlays and amalgam--results up to 6 years. Clin

Oral Investig. 1997 Feb;1(1):40-6.

Sakaguchi RL, Versluis A, Douglas WH. Analysis of strain gage method for

measurement of post-gel shrinkage in resin composites. Dent Mater. 1997

Jul;13(4):233-9.

Schlichting LH, Maia HP, Baratieri LN, Magne P. Novel-design ultra-thin CAD/CAM

composite resin and ceramic occlusal veneers for the treatment of severe dental

erosion. J Prosthet Dent. 2011 Apr;105(4):217-26.

Schmidt KK, Chiayabutr Y, Phillips KM, Kois JC. Influence of preparation design and

existing condition of tooth structure on load to failure of ceramic laminate veneers.

J Prosthet Dent. 2011 Jun;105(6):374-82.

Stappert CF, Ozden U, Gerds T, Strub JR. Longevity and failure load of ceramic

veneers with different preparation designs after exposure to masticatory

simulation. J Prosthet Dent. 2005 Aug;94(2):132-9.

Toparli M, Aykul H, Sasaki S. Temperature and thermal stress analysis of a crowned

maxillary second premolar tooth using three-dimensional finite element method. J

Oral Rehabil. 2003 Jan;30(1):99-105.

54

Torbjörner A, Fransson B. Biomechanical aspects of prosthetic treatment of

structurally compromised teeth. Int J Prosthodont. 2004 Mar-Apr;17(2):135-41.

Review.

Tsitrou EA, Helvatjoglu-Antoniades M, van Noort R. A preliminary evaluation of the

structural integrity and fracture mode of minimally prepared resin bonded

CAD/CAM crowns. J Dent. 2010 Jan;38(1):16-22.

Yang HS, Lang LA, Guckes AD, Felton DA. The effect of thermal change on various

dowel-and-core restorative materials. J Prosthet Dent. 2001 Jul;86(1):74-80.

55

Table 1 – Material properties used in the FEA

Poisson's rate

Elastic modulus

Thermal expansion

Density Thermal

conductivity Specific

heat Shrinkage

10³ MPa 10−6/°C g/cm³ W/mK J/g °C %

Enamel 0.30 a 84 a 11.40 b 2.80 b 9.37 b 0.71 b

Dentin 0.23 a 18 a 8.30 b 1.96 b 5.84 b 1.60 b

Lava Ultimate 0.30 c 12.52 d 32.60 e 2.10 e 0.87 d 0.82 e

E.max 0.30 f 93.85 d 10.20 e 2.50 e 2.52 d 0.98 e

RelyX Ultimate 0.30 g 9.08 d 40.00 e 1.90 e 2.61 d 1.15 e 1.13 d

Polyether 0.45 h 0.05 h

Polystyrene resin 0.30 i 1.37 i aVersluis, 2011; bLinsuwanont, 2008; cChen, 2014; dPrevious laboratory tests ; eData provided by the manufacture; fAboushelib, 2005; gAsmussen, 2005; hSoares, 2008; iSoares,2010

56

Figure Legends

Figure 1 - Thermal flux within models of restored tooth with ultrathin occlusal veneer.

Figure 2 - Thermal and shrinkage post-gel stress at models restored tooth with

ultrathin occlusal veneers (MPa)

Figure 3 - Colour-coded thermal and shrinkage post-gel stress distribution at models

restored with ultrathin occlusal veneer (MPa)

Figure 4 - Mechanical and shrinkage post-gel stress distribution at models restored

with ultrathin occlusal veneer (MPa)

Figure 5 - Colour-coded mechanical and shrinkage post-gel stress distribution at

models restored with ultrathin occlusal veneer (MPa)

57

Figure 1

time time

time

time time

58

Figure 2

59

Figure 3

60

Figure 4

0

50

100

150

200

250

300

emax 0.3 emax 0.6 lava 0.3 lava 0.6 non-prepered

Mo

dif

ied

vo

n M

ises

(M

Pa)

veneer

enamel

dentin

61

Figure 5

stress/strain_emax_0.3mm stress/strain_lava_0.3mm stress/strain_emax_0.6mm stress/strain_lava_0.6mm

stress/strain_emax_0.3mm stress/strain_lava_0.3mm stress/strain_emax_0.6mm stress/strain_lava_0.6mm stress/strain_non-restored

stress/strain_emax_0.3mm stress/strain_lava_0.3mm stress/strain_emax_0.6mm stress/strain_lava_0.6mm stress/strain_non-restoraded

veneer

enam

el

62

3 DISCUSSÃO

O avanço no desenvolvimento dos materiais dentários e a integração da

Odontologia minimamente invasiva (Dejak et al., 2012) com procedimentos laboratoriais

computadorizados, como é o caso do sistema de fabricação assistido CAD/CAM (Tsitrou et

al., 2008), possibilita a realização de novos protocolos restauradores frente aos

procedimentos tradicionais menos conservadores (Egbert et al., 2010). Os laminados

oclusais ultrafinos são uma nova opção de tratamento restaurador para dentes com perda

de estrutura dental na superfície oclusal; os quais não necessitam de preparos retentivos, se

baseando no princípio de adesão à estrutura dentária e na eminente longevidade dos

laminados anteriores (Fradeani et al., 2005). Informações sobre o comportamento deste

novo tipo de restauração posterior quando em função clinicamente, se torna um tópico

relevante e atual, para que este possa ser apontado como uma proposta de tratamento

segura e duradoura. Assim, o presente estudo inicialmente mensurou a condutividade

térmica de blocos CAD/CAM de resina nanocerâmica ou cerâmica de dissilicato de lítio com

o método do fio quente e avaliou a distribuição de temperatura, as tensões térmicas e

mecânicas de laminados oclusais ultrafinos de diferentes espessuras, cimentados com

cimento resinoso adesivo em um substrato puramente de esmalte, empregando a

metodologia dos elementos finitos.

A metodologia dos elementos finitos necessita de uma acertada caracterização

dos modelos quanto às condições de contorno e propriedades dos materiais para validação

dos modelos com os resultados in vitro. Em uma revisão literária, verificou-se a escassez de

estudos envolvendo análise térmica por elementos finitos. Grande parte dos mesmos

considera apenas a diferença de coeficiente térmico como gerador de tensões (Magne et al.,

1999; Papanicolaou et al., 2015; Köycü et al., 2015); e que as propriedades térmicas dos

materiais são fornecidas pelos fabricantes, quando disponíveis, ou obtidas em livros, onde os

valores não são específicos para os materiais testados (Anusavice et al., 2003; Toparli et al.,

2003).

A falta de informações dos materiais utilizados neste estudo, inclusive por parte

dos fabricantes, fez com que adaptássemos o método do fio quente cruzado, proposto

inicialmente por Haupin em 1960, para mensurar o coeficiente de condutividade térmica do

63

IPS e.max CAD (2,52 W/mK) e Lava Ultimate (0,87 W/mK). Apesar de não haver valores na

literatura para comparação com nosso estudo, nossos resultados apresentaram boa

reprodutibilidade considerando o baixo coeficiente de variação do teste; além dos valores

obtidos no teste piloto (0,98 W/mK) estarem muito próximos com o reportado para resinas

compostas (1,09 W/mK). Nota-se a relevância em considerar este coeficiente nas análises

(Kingery et al., 1955; Hasselman et al., 1978), pois, o baixo valor de condutividade térmica

dos laminados oclusais produzidos com Lava Ultimate foi o fomentador da menor

temperatura difundida no modelo restaurado com este material. Estudos prévios mostram

grande influência que a temperatura tem sobre compósitos, não só nos mecanismos de

união com a dentina, como também na interface carga/matriz (Lee et al., 2000; Lee et al.,

2001).

Ainda com o propósito da caracterização dos materiais, o módulo de elasticidade

foi obtido com teste de flexão por 3 pontos, para IPS e.max CAD (93,85 GPa), Lava Ultimate

(12,52 GPa) e RelyX Ultimate (9,08 GPa). O módulo de elasticidade tem grande influência nas

análises numéricas quando se avalia comportamento mecânico dos materiais e a produção

de tensões, como pôde ser ratificado na análise mecânica deste estudo. O critério de von

Mises modificado indicou maior tensão nas restaurações cerâmicas, que apresentam maior

módulo de elasticidade comparado às de compósito nanocerâmico. Experimentos prévios

corroboram com estes nossos achados (Magne et al., 2010; Egbert et al., 2014). O módulo

de elasticidade também teve correlação direta com as tensões térmicas, quanto maior o

módulo de elasticidade, maior o acúmulo de tensões.

Diferente dos trabalhos anteriores investigando laminados oclusais ultrafinos

que não consideraram a camada de adesão, alegando não haver influência nos resultados

em razão do similar módulo de elasticidade com a dentina e espessura reduzida da camada

(Magne et al., 2012; Magne et al., 2016), além da inserção do módulo elástico do RelyX

Ultimate obtido no teste de flexão, e o mesmo ter apresentado 50% do valor do módulo

elástico da dentina, também foi inserido o valor da contração pós-gel do mesmo. O valor da

contração pós-gel (1,13% em volume) do cimento resinoso foi obtido com a análise de

extensometria bidirecional. Com isso, pudemos verificar que a camada de cimento foi a mais

afetada, com a maior concentração de tensão, não só no interior, mas também nas

interfaces cimento/restauração e cimento/esmalte. Isso também pode ser resultado da

64

análise combinada. Não foi encontrado na literatura nenhum estudo avaliando ao mesmo

tempo o efeito térmico ou mecânico em conjunto com o efeito da contração de compósitos.

Essa combinação buscou a reprodução mais próxima possível dos procedimentos clínicos;

onde primeiro há a cimentação da peça e a geração de tensão por contração do material, e

posteriormente o desafio térmico-mecânico quando em função.

No estudo, em geral, os laminados oclusais ultrafinos confeccionados com

cerâmica IPS e.max CAD são responsáveis pela maior concentração de tensões nos modelos

analisados que as de compósito nanocerâmico Lava Ultimate. A análise de elementos finitos

demonstrou que as restaurações não alteram significativamente o aumento de temperatura

na câmara pulpar. O cimento tem papel de grande relevância nas análises numéricas,

principalmente quando se adiciona a contração pós-gel destes materiais, indicando a

camada com falha primordial nos modelos analisados, mesmo nas restaurações de 0,3 mm

de espessura. Os resultados deste estudo, em conjunto com os resultados já descritos na

literatura, sugerem assim, que os laminados oclusais ultrafinos são uma alternativa de

tratamento restaurador minimamente invasivo para reabilitar dentes posteriores com perda

de estrutura oclusal.

65

4 CONCLUSÃO

Baseado nos resultados obtidos e nas limitações das análises pode-se concluir que:

O método do fio quente cruzado é método prático e eficaz na mensuração da

condutividade térmica de materiais odontológicos;

Laminados oclusais confeccionados de Lava Ultimate apresentam melhores

resultados frente a menor quantidade de calor distribuída no elemento dental

comparado ao IPS e.max CAD;

A ciclagem em baixa temperatura causou maior tensão térmica que a ciclagem

quente;

A camada de cimento é a estrutura com maior concentração de tensão, sugerindo ser

a estrutura que primeiro falharia nos modelos;

IPS e.max CAD concentrou os maiores tensões mecânicas concentrado nos

laminados, enquanto Lava Ultimate distribuiu melhor as tensões nas camadas

subjacentes.

Os laminados mais espessos concentraram maior tensão térmica e menor tensão

mecânica que os laminados mais finos.

66

REFERÊNCIAS

Ana PA, Velloso WF Jr, Zezell DM. Three-dimensional finite element thermal analysis of

dental tissues irradiated with Er,Cr:YSGG laser. Rev Sci Instrum. 2008 Sep;79(9):093910.

Anusavice KJ, Phillips RW, Shen C, Rawls HR. Phillips' science of dental materials. St. Louis,

Mo: Elsevier/Saunders, 2003.

Bencharit S, Border MB, Mack CR, Byrd WC, Wright JT. Full-mouth rehabilitation for a

patient with dentinogenesis imperfecta: a clinical report. J Oral Implantol. 2014

Oct;40(5):593-600.

Brady AY, Lee H, and Orlowski JA. Thermal Conductivity Studies of Composite Dental

Restorative Materials. J Biomed Mater Res 1974; 8: 471-485.

D'Arcangelo C, De Angelis F, Vadini M, D'Amario M. Clinical evaluation on porcelain

laminate veneers bonded with light-cured composite: results up to 7 years. Clin Oral

Investig. 2012 Aug;16(4):1071-9.

De Carvalho G, Frollini E and Santos WND. Thermal conductivity of polymers by hot-wire

method. J Appl Polym Sci. 1996; 62: 2281–2285.

Dejak B, Młotkowski A, Langot C. Three-dimensional finite element analysis of molars with

thin-walled prosthetic crowns made of various materials. Dent Mater. 2012

Apr;28(4):433-41.

Dietschi D. Anatomical applications of a new direct Ceromer. Signature. 1997

Spring;4(1):8-11.

Dos Santos WN. Advances on the hot wire technique. J Eur Ceramic Soc 2008; 28: 15–20.

Egbert JS, Johnson AC, Tantbirojn D, Versluis A. Fracture strength of ultrathin occlusal

veneer restorations made from CAD/CAM composite or hybrid ceramic materials. Oral Sci

Int 2015; 12(2):53–58.

Federlin M, Krifka S, Herpich M, Hiller KA, Schmalz G. Partial ceramic crowns: influence of

ceramic thickness, preparation design and luting material on fracture resistance and

marginal integrity in vitro. Oper Dent. 2007 May-Jun;32(3):251-60.

De acordo com as normas da UNICAMP/FOP, baseadas na padronização do International Committee of Medical Journal Editors - Vancouver Group. Abreviatura dos periódicos em conformidade com o PubMed

67

Fradeani M, Redemagni M, Corrado M. Porcelain laminate veneers: 6- to 12-year clinical

evaluation--a retrospective study. Int J Periodontics Restorative Dent. 2005 Feb;25(1):9-

17.

Franco A. An apparatus for the routine measurement of thermal conductivity of materials

for building application based on a transient hot-wire method. Appl Therm Eng 2007;

27:2495–2504.

Granell-Ruiz M, Fons-Font A, Labaig-Rueda C, Martínez-González A, Román-Rodríguez JL,

Solá-Ruiz MF. A clinical longitudinal study 323 porcelain laminate veneers. Period of study

from 3 to 11 years. Med Oral Patol Oral Cir Bucal. 2010 May 1;15 (3):e531-7.

Hasselman DPH, Younblood GE. Enhanced Thermal Stress Resistance of Structural

Ceramics with Thermal Conductivity Gradient. J Am Ceram Soc 1978; 61: 49–52.

Haupin WE. Hot wire method for rapid determination of thermal conductivity. Am Ceram

Soc Bull 1960; 39(3): 139–141.

Johnson AC, Versluis A, Tantbirojn D, Ahuja S. Fracture strength of CAD/CAM composite

and composite-ceramic occlusal veneers. J Prosthodont Res 2014; Apr;58(2):107-14

Kingery WD. Factors Affecting Thermal Stress Resistance of Ceramic Materials. J Am

Ceram Soc 1955: 38: 3–15.

Köycü BC, İmirzalıoğlu P. Heat transfer and thermal stress analysis of a mandibular molar

tooth restored by different indirect restorations using a three-dimensional finite element

method. J Prosthodont 2015; 1–13.

Le SY1, Chiang HC, Huang HM, Shih YH, Chen HC, Dong DR, Lin CT. Thermo-debonding

mechanisms in dentin bonding systems using finite element analysis. Biomaterials. 2001

Jan;22(2):113-23.

Lee SY, Chiang HC, Lin CT, Huang HM, Dong DR. Finite element analysis of thermo-

debonding mechanism in dental composites. Biomaterials. 2000 Jul;21(13):1315-26.

Lisanti VF, Zander HA. Thermal conductivity of dentin. J. D. Res 1949. 29(4):493

Magne P, Schlichting LH, Maia HP, Baratieri LN. In vitro fatigue resistance of CAD/CAM

composite resin and ceramic posterior occlusal veneers. J Prosthet Dent. 2010

Sep;104(3):149-57.

Magne P, Stanley K, Schlichting LH. Modeling of ultrathin occlusal veneers. Dent Mater.

2012 Jul;28(7):777-82.

68

Magne P, Versluis A, Douglas WH. Effect of luting composite shrinkage and thermal loads

on the stress distribution in porcelain laminate veneers. J Prosthet Dent. 1999

Mar;81(3):335-44.

Margeas B. Treating worn dentition caused by gastroesophageal reflux disease. Aust Dent

Pract 2010; Jan/Feb: 117-126.

Mezzomo LA, Corso L, Marczak RJ, Rivaldo EG. Threedimensional FEA of effects of two

dowel-and-core approaches and effects of canal flaring on stress distribution in

endodontically treated teeth. J Prosthodont 2011; 20: 120-129.

Nunn JH. Prevalence of dental erosion and the implications for oral health. Eur J Oral Sci

1996; 104: 156-161.

Oskui IZ, Ashtiani MN, Hashemi A, Jafarzadeh H. Thermal analysis of the intact mandibular

premolar: a finite element analysis. Int Endod J. 2013 Sep;46(9):841-6.

PA: IGI Global; 2009.

Palmer DS, Barco MT, Billy EJ. Temperature extremes produced orally by hot and cold

liquids. J Prosthet Dent 1992; 67: 325-327.

Sakaguchi RL, Versluis A, Douglas WH. Analysis of strain gage method for measurement of

post-gel shrinkage in resin composites. Dent Mater. 1997 Jul;13(4):233-9.

Schlichting LH, Maia HP, Baratieri LN, Magne P. Novel-design ultra-thin CAD/CAM

composite resin and ceramic occlusal veneers for the treatment of severe dental erosion.

J Prosthet Dent. 2011 Apr;105(4):217-26.

Soares CJ, Antheunis V, Valdivia ADCM, Bicalho AA, Veríssimo C, Barreto BdCF, et al. Finite

Element Analysis in Dentistry - Improving the Quality of Oral Health Care. In: Moratal DD,

editor. Finite Element Analysis - From Biomedical Applications to Industrial

Developments. InTech; 2012. p. 25-56.

Toparli M, Aykul H, Sasaki S. Temperature and thermal stress analysis of a crowned

maxillary second premolar tooth using three-dimensional finite element method. J Oral

Rehabil. 2003 Jan;30(1):99-105.

Tsitrou EA, van Noort R. Minimal preparation designs for single posterior indirect

prostheses with the use of the Cerec system. Int J Comput Dent. 2008;11(3-4):227-40.

Turner KA, Missirlian DM. Restoration of the extremely worn dentition. J Prosthet Dent.

1984 Oct;52(4):467-74.

69

Versluis A, Tantbirojn D. Relationship between shrinkage and stress. A, D, editor. Hershey,

70

APÊNDICES

Apêndice 1: Geração do modelo numérico a partir do modelo experimental

71

Apêndice 2: Média e desvio padrão dos valores de contração pós-gel do RelyX Ultimate

(volume %)

Volumetric shrinkage

sample 1 1.10 sample 2 1.07 sample 3 1.23 sample 4 1.17 sample 5 1.18

sample 6 1.05 sample 7 1.04 sample 8 1.26 sample 9 1.12

sample 10 1.10

Mean 1.13 ± 0.07

Apêndice 3: Média e desvio padrão dos valores do Módulo de Elasticidade (GPa) dos

materiais restauradores utilizados no estudo

E.max Lava Ultimate RelyX Ultimate

sample 1 87.14 12.86 9.00 sample 2 96.26 10.91 8.88 sample 3 106.68 12.63 8.98 sample 4 94.67 12.70 8.94 sample 5 98.53 12.84 9.05

sample 6 86.27 13.05 9.16 sample 7 94.38 12.74 9.25 sample 8 87.93 12.04 9.18 sample 9 87.82 12.45 9.56

sample 10 98.84 12.99 8.82

Mean (SD) 93.85 ± 6.60 12.52 ± 0.64 9.08 ± 0.21

72

ANEXOS

Anexo 1

Comprovante de submissão do artigo (Artigo 1)

73

Anexo 2

Certificado do comitê de ética em pesquisa