77
Ecole IN2P3 d’Electronique 28 Juin 2006, Roscoff Marc Renaudin 1 TIMA-CNRS-INPG-UJF 46 Av. Félix Viallet 38031 Grenoble Cedex CIS group "Concurrent Integrated Systems" Asynchronous Circuits Design Marc Renaudin TIMA [email protected] http://tima.imag.fr http://tima.imag.fr/cis / Ecole IN2P3 d’Electronique 28 Juin 2006, Roscoff Marc Renaudin 2 TIMA-CNRS-INPG-UJF 46 Av. Félix Viallet 38031 Grenoble Cedex CIS group "Concurrent Integrated Systems" Asynchronous Circuits Design Asynchronous circuit design principles Basic structures and asynchronous circuit classes Design methodologies and tools Asynchronous circuits properties and potentials Design experiments Conclusion and prospects

Asynchronous Circuits Design - Portland State University

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Asynchronous Circuits Design - Portland State University

1

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 1

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous Circuits Design

Marc Renaudin

TIMA

[email protected]://tima.imag.fr

http://tima.imag.fr/cis /

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 2

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous Circuits Design

• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes• Design methodologies and tools• Asynchronous circuits properties and potentials• Design experiments• Conclusion and prospects

Page 2: Asynchronous Circuits Design - Portland State University

2

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 3

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

CIS group of TIMA laboratory

TIMA (http://tima.imag.fr)

About 130 peopleSix research groups

– MNS : Micro and Nano Systems– RMS : Reliable Mixed Signal Systems– SLS : System Level Synthesis– VDS : Verification and modeling of

Digital Systems– QLF : QuaLiFication of circuits– CIS : Concurrent Integrated Systems

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 4

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

CIS group of TIMA laboratory“CIS” Group (http://tima.imag.fr/cis)About 25 peopleResearch topics

– Asynchronous circuits design and prototyping– CAD Tools for Asynchronous circuits and systems– Formal verification of asynchronous designs (Coll. with VDS D. Borrione)– Hardware-software design for low power low noise– Secure circuit design– SoCs and NoCs design– Signal driven sampling and processing

Page 3: Asynchronous Circuits Design - Portland State University

3

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 5

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Main results (http://tima.imag.fr/cis)• Asynchronous Processors

ASPRO (16 bit RISC)MICA (8 bit CISC)

• Contactless Smart Card

• Secure chip design (DES, AES)

• A-ADC & non-uniformly sampled signal processing

• High dynamic range CMOS image sensors

• TAST framework (modeling, synthesis, validation)

CIS group of TIMA laboratory

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 6

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous Circuits Design

• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes• Design methodologies and tools• Asynchronous circuits properties and potentials• Design experiments• Conclusion and prospects

Page 4: Asynchronous Circuits Design - Portland State University

4

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 7

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

• Unified asynchronous interface• Control and data are encoded (together or not)• Two basic rules :

– the emitter issues a request when a data is valid– the receiver issues an acknowledge when the data is processed

→ Several hardware implementation of the handshake protocol→ Delay insensitivity

Emitter Receiver

Request

Data

Acknowledge

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 8

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

Features of a basic asynchronous cell

• Maximum speed : minimum forward latency• Maximum throughput : minimum cycle time• Respect the handshake protocol

→ design issues solved locally => cells are easy to reuse

AsynchronousCell

- Bit level- Arithmetic function- Complex function

Page 5: Asynchronous Circuits Design - Portland State University

5

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 9

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

Design of a FIR filter

REG REG

MUL MUL

ADD

C

A0 A1

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 10

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

The C-Element or Muller gate

Symbol

CXY Z

X

Y

Z

XY Z

Truthtable

X Y Z0 0 00 1 Z-1

1 0 Z-1

1 1 1Z = XY + Z(X+Y) - State holding- Reset

Page 6: Asynchronous Circuits Design - Portland State University

6

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 11

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

• Protocol– Two phases– Four phases

• Signaling– Data encoding / Request

• Three states• Four states

– Acknowledge

ADD

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 12

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

Two Phase Protocol

D a t a

A c k

C o m . " n " C o m . " n + 1 "

P h a s e 1 P h a s e 2 P h a s e 1 P h a s e 2

Page 7: Asynchronous Circuits Design - Portland State University

7

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 13

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

Four Phase Protocol

D a t a

A c k

C o m . " n " C o m . " n + 1 "

I n v a l i d D a t aV a l i d D a t a

P h a s e 1 P h a s e 4P h a s e 3P h a s e 2

V a l i d D a t a

=> Several derivatives exist

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 14

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

Data Valid/Invalid Signaling

• Three state coding• Four state coding

AsynchronousCellInvalid Data Valid Data

Acknowledge

Page 8: Asynchronous Circuits Design - Portland State University

8

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 15

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

Data encoding : Three states (dual rail)

ADD

Ack

D0D1

00 01 00 10 00 10 AckData

00

0110

Invalid state

Data bit = 1Data bit = 0

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 16

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

Data encoding : Four states (dual rail)

ADD

Ack

D0D1

00

0110

Data = 0Parity : Odd

11 Data = 1Parity : Even

Data = 0Parity : Even

Data = 1Parity : Odd

00 01 11 10 11 10 AckData

Page 9: Asynchronous Circuits Design - Portland State University

9

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 17

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

Completion Signal Generation• Internal clock• Use of a delay model• Current sensing• Use the data encoding

AsynchronousCellInvalid Data Valid Data

Acknowledge

Invalid Data

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 18

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

Completion Signal Generation• Internal clock

(First Data Flow Computer DDM1, 1978)

AsynchronousCellInvalid Data Valid Data

Acknowledge

Invalid Data

ClkInt.Clk

Page 10: Asynchronous Circuits Design - Portland State University

10

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 19

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

Completion Signal Generation

• Use of a delay model

AsynchronousCellInvalid Data Valid Data

Acknowledge

Invalid Data

Up.tr-delay Down.tr-delay

Request AckDelay cell

Asymmetric delay cell

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 20

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

Completion Signal Generation

• Current sensing

AsynchronousCellInvalid Data Valid Data

Acknowledge

Invalid Data

Vdd

Gnd

Output

LATCH CMOS trees

Currentsensor

Currentsensor

Req

Ack

Data

Page 11: Asynchronous Circuits Design - Portland State University

11

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 21

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

Completion Signal Generation• Using data encoding (dual rail)

AsynchronousCellInvalid Data Valid Data

Acknowledge

Invalid Data

ORS0

S1Ack

Three state encoding

Output XORS0

S1Ack

Four state encoding

Output

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 22

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

Completion Signal Generation• Using data encoding

CHARGE

FONCTION

LOGIQUE

Req

Entrées

Sorties

Ack_in

VDD

VSS

ReqInterrupteur

Données

Valides /

Invalides

détection

de fin

Ack_out

SUM

req

Vdd

req

S Sb

C Cb Cb C

A Ab A Ab

B Bb

CARRY

req

Vdd

req

Cout Coutb

B Bb

C Cb

AAb Ab

A

Page 12: Asynchronous Circuits Design - Portland State University

12

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 23

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit design principles

• Conclusion– Asynchronous circuit communicate using an handshaking

protocol– Data/Request have to be encoded– A completion signal is required

→ The implementation may be delay insensitive → Hazard free logic is required→ Hardware overhead ?

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 24

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous Circuits Design

• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes• Design methodologies and tools• Asynchronous circuits properties• Design experiments and products• Conclusion and prospects

Page 13: Asynchronous Circuits Design - Portland State University

13

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 25

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit classes

• Hazard free logic• QDI / Speed Independent Circuits

– Data path : a dual-rail OR Gate– Sequencing : the Q-Element

• Bounded delay circuits– Huffman circuits / Burst mode circuits– Sequencing : the Q-Element

• Micropipeline circuits

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 26

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit classes

• Synchronous circuits

– Time is discrete→ combinatorial logic is simple

(hazards ignored)→ trivial communication mechanism→ worst case approach

Reg Log. Log.Data

Clock

Reg Reg

Global clock=>

Global timingassumption

Page 14: Asynchronous Circuits Design - Portland State University

14

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 27

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit classes• Asynchronous circuits

– Delay insensitive circuits– Quasi delay insensitive circuits– Speed independent circuits– Huffman / Burst-mode circuits– Micropipeline

HazardFreeLogic

HazardFree

Logic

Robustness & Complexity

are decreasing :

more timing assumptions

No global clock = no global timing assumptionSequencing is based on Handshaking=> Hazard free logic is required

Reg.

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 28

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Hazards

• Static hazards• Dynamic hazards• Combinatorial hazards• Functional hazards• Sequential hazards

And

Or

Page 15: Asynchronous Circuits Design - Portland State University

15

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 29

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Hazards : introduction- Hazard = spurious signal change- Hazards appear during processing

- it is then related to signal dynamics and component delays (wires and gates)

- Avoiding hazard implies :- to characterize the interaction between the circuit and its environment

(define assumptions)- to characterize wire and gate delays

(define assumptions)

- Static hazard 0- Static hazard 1- Dynamic hazard 0- Dynamic hazard 1

No hazard With hazard

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 30

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Hazards : Single Input Change (SIC)

0 00 11 11 0

0 100011110

abc S = ac + /ab

ac

b

S

x

y

a

xy

S

Static hazard 1

Kmap to circuit with hazard

Page 16: Asynchronous Circuits Design - Portland State University

16

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 31

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Hazards : Single Input Change (SIC)

0 00 11 11 0

0 100011110

abc

S = ac + /ab + bc

ac

b S

Solution

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 32

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Hazards : Single Input Change (SIC)

Result

It has been proven that no hazard are generated during 0 to 0, 0 to 1 and 1 to 0 transitions in an AndOr circuit.

Dynamic hazard cannot be generated with AndOr circuits under the SIC condition

It is then only required to suppress 1 to 1 static hazards !

=> The solution is to cover 1 to 1 transitions in the Karnaugh Map

Page 17: Asynchronous Circuits Design - Portland State University

17

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 33

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Hazards : Multiple Input Change (MIC)

Functional, Static and Dynamic hazards can be generated in this case !

Functional hazard : inherent to the specification. There is no possible hazard free implementation (with no timing assumption). The specification must be free of functional hazard.

1 10 10 11 1

00 0100011110

abcd

1 11 01 00 0

11 10 0010 to 0111 transition.

If b changes after dthere is a static 0hazard at the output !

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 34

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Hazards : Multiple Input Change (MIC)

Logic hazard : static 1

1 10 10 11 1

00 0100011110

abcd

1 11 01 00 0

11 100100 to 0111 transition.

S = /c/d + /a/d + bd

/c/d

/d S/a

bd Solution : add /ab

No static 0 hazard in AndOr circuit under the MIC condition !

Page 18: Asynchronous Circuits Design - Portland State University

18

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 35

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Hazards : Multiple Input Change (MIC)

Dynamic hazard : dynamic 0

1 10 10 11 1

00 0100011110

abcd

1 11 01 00 0

11 10

0111 to 1110 transition. No functional hazard.

S = /c/d + /a/d + bd + /ab

/c/d

/dS

/a

bd

0

/ab

Minterm /a/d is activated and deactivated !

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 36

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Hazards : Multiple Input Change (MIC)

Dynamic hazard : dynamic 0

1 10 10 11 1

00 0100011110

abcd

1 11 01 00 0

11 10

Solution : strengthen /a/d S = /c/d + /a/d/b + bd + /ab

/c/d

/d S

/a

bd

0

/ab

/b0

Page 19: Asynchronous Circuits Design - Portland State University

19

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 37

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Hazards : conclusion

Avoiding hazard is a Karnaugh Map covering problem !

1 to 1 : the transition must be covered1 to 0 and 0 to 1 : avoid activation and deactivation of a minterm0 to 0 : no hazard in an AndOr circuit.

The covering problem may not have a solution if there are severa l MIC transitions. Therefore a delay insensitive implementation may no exist !

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 38

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit classes• Asynchronous circuits

– Delay insensitive circuits– Quasi delay insensitive circuits– Speed independent circuits– Huffman / Burst-mode circuits– Micropipeline

HazardFreeLogic

HazardFree

Logic

Robustness & Complexity

are decreasing :

more timing assumptions

No global clock = no global timing assumptionSequencing is based on Handshaking=> Hazard free logic is required

Reg.

Page 20: Asynchronous Circuits Design - Portland State University

20

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 39

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit classes

• Hazard free logic• QDI / Speed Independent Circuits

– Data path : a dual-rail OR Gate– Sequencing : the Q-Element

• Bounded delay circuits– Huffman circuits / Burst mode circuits– Sequencing : the Q-Element

• Micropipeline circuits

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 40

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit classes

QDI Asynchronous circuits

• Functionally correct without any assumption on the wire and gate delays (unbounded delay model) except...

• "Isochronic fork" timing assumption

→ High level of robustness (with respect to delay variations)

L1

L2L0

x1

x2

y1

y2

x

Page 21: Asynchronous Circuits Design - Portland State University

21

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 41

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit classes

Speed Independent Asynchronous circuits

• Functionally correct whatever the delays in the gates(unbounded delay model)

• The wires are assumed to be zero delay• => all wires are required to respect the isochronic fork property

→ Less accurate than the QDI model

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 42

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

QDI/SI asynchronous circuits

• Quasi Delay Insensitive & Speed Independent :=> hazard free control logic & hazard free data-paths

– time is no longer discrete→ hazard free combinatorial logic→ handshake based communications→ mean time approach

Notimingassumption

Reg HFL HFLData

Acknowledge

Reg Reg

Page 22: Asynchronous Circuits Design - Portland State University

22

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 43

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

QDI/SI asynchronous circuits

• Implementing delay insensitivity : examples– Choice of a communication protocol (request - acknowledge)

• 1 bit Channel

– Data encoding

– 4 phase protocol

ai0ai1ao

Data

Acknowledge

Data ai0 ai10 1 01 0 1

Invalid 0 0

Invalid Data Valid Data Invalid Data

Acknowledge

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 44

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

QDI/SI asynchronous circuits

• An example : dual-rail OR Gate

OU

A B

C

Implement both the function andthe protocol

OU

M

M

M

M

co1

co0ai0bi0ai1bi1ai1bi0

ai0bi1

ciao, bo

Page 23: Asynchronous Circuits Design - Portland State University

23

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 45

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

QDI/SI Asynchronous circuits

• An example : the Q-ElementLr+

Rr+

Ra+

Rr-

Ra-

La+

Lr-

La-

C

NOR

ANDLr

La

Rr

Ra

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 46

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit classes

• Hazard free logic• QDI / Speed Independent Circuits

– Data path : a simple OR Gate– Sequencing : the Q-Element

• Bounded delay circuits– Huffman circuits / Burst mode circuits– Sequencing : the Q-Element

• Micropipeline circuits

Page 24: Asynchronous Circuits Design - Portland State University

24

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 47

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Huffman/Burst-mode asynchronous circuits

• The correctness depends on the gate/wire delays• Based on the "bounded delay" model• "Fundamental mode" assumption for the environment

delay

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 48

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Huffman/Burst-mode asynchronous circuits

• An example : The Q-Element

RaLr

LrRa

LrRa

Rr

La

Lr+

Rr+

Ra+

Rr-

Ra-

La+

Lr-

La-

Page 25: Asynchronous Circuits Design - Portland State University

25

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 49

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Timing assumptions

C

NOR

ANDLr

La

Rr

Ra

RaLr

LrRa

LrRa

Rr

La

QDI

Huffman

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 50

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit classes

• Hazard free logic• QDI / Speed Independent Circuits

– Data path : a simple OR Gate– Sequencing : the Q-Element

• Bounded delay circuits– Huffman circuits / Burst mode circuits– Sequencing : the Q-Element

• Micropipeline circuits

Page 26: Asynchronous Circuits Design - Portland State University

26

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 51

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Micropipeline asynchronous circuits

• Micropipeline

– time is discrete→ combinatorial logic is simple→ communication channels

(handshake based)→ worst case approach locally

Localtimingassumptions

RegCtrl

Log. Log.Data

Acknowledge

RegCtrl

RegCtrl

Request

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 52

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Micropipeline asynchronous circuits

• An example : function Fhazard free control logic + standard data path

C Delay

Reg

C

Delay

Areq

Breq

A

B

Aack

Back

Cack

Creq

C

F(A,B)

A B

C

F(A,B)

Page 27: Asynchronous Circuits Design - Portland State University

27

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 53

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit classes

• Conclusion– QDI / Speed Independent circuits are the most robust

with respect to delays (isochronic fork for some/all wires)

– Huffman & Burst-Mode circuits use the bounded delay model and require fundamental mode

→ QDI : Data-paths & Controllers→ Speed Independent / Burst-Mode : Controllers

(burst-mode controllers are difficult to compose)

→ Micropipeline : Standard data-path + QDI/SI Controllers

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 54

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous Circuits Design

• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes• Design methodologies and tools• Asynchronous circuits properties• Design experiments and products• Conclusion and prospects

Page 28: Asynchronous Circuits Design - Portland State University

28

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 55

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Design Methodologies and Tools

• Graph based (Petri-Nets)– Signal Transition Graphs– Burst-mode specification

• Language based (CSP based)– Tangram– CHP

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 56

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Design Methodologies and Tools

• Graph based : Signal Transition Graphs

X+

Z+X-

Z-Y+

Y-

X

Y

Z

Timing diagram STG

Page 29: Asynchronous Circuits Design - Portland State University

29

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 57

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Areq+

Aacq+

Areq-

Aacq-

Breq+

Bacq+

Breq-

Bacq-

Areq

Aacq Channel

Breq

Bacq

Synthesis example : graph based

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 58

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Breq+

10*10*

1*110* 10*11

1*111

Aacq+

Aacq+Bacq+

Bacq+

011*1

Areq+0110*Bacq+

Areq-

01*01*

0*001* 01*00

0*000

Aacq-

Aacq-Bacq-

Bacq-

100*0

Areq-1001*

Bacq-

Areq+

Breq-

AreqAacqBreqBacq

Synthesis example : graph based

Areq+

Aacq+

Areq-

Aacq-

Breq+

Bacq+

Breq-

Bacq-

State graph

Page 30: Asynchronous Circuits Design - Portland State University

30

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 59

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Breq next state functionBreq+

10*10*

1*110* 10*11

1*111

Aacq+

Aacq+Bacq+

Bacq+

011*1

Areq+0110*Bacq+

Areq-

01*01*

0*001* 01*00

0*000

Aacq-

Aacq-Bacq-

Bacq-

100*0

Areq-1001*

Bacq-

Areq+

Breq-

AreqAacqBreqBacq

ER(Breq-)

ER(Breq+)

QR(Breq-)

QR(Breq+)

Synthesis example : graph based

Areq+

Aacq+

Areq-

Aacq-

Breq+

Bacq+

Breq-

Bacq-

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 60

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Aacq next state functionBreq+

10*10*

1*110* 10*11

1*111

Aacq+

Aacq+Bacq+

Bacq+

011*1

Areq-0110*Bacq+

Areq-

01*01*

0*001* 01*00

0*000

Aacq-

Aacq-Bacq-

Bacq-

100*0

Areq+1001*

Bacq-

Areq+

Breq-

AreqAacqBreqBacq

ER(Aacq-)

ER(Aacq+)

QR(Aacq-)

QR(Aacq+)

Synthesis example : graph based

Areq+

Aacq+

Areq-

Aacq-

Breq+

Bacq+

Breq-

Bacq-

Page 31: Asynchronous Circuits Design - Portland State University

31

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 61

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

111-10

111*-11

0-0001

0*-0000

10110100Breq

Areq Aacq

Bre

qB

acq

Areq./Bacq

/Areq.Bacq

Synthesis example : graph based

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 62

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

0*11-10

0*11-11

0-1*001

0-1*000

10110100Aacq

Areq Aacq

Bre

qB

acq

Breq

not(Breq)

Synthesis example : graph based

Page 32: Asynchronous Circuits Design - Portland State University

32

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 63

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

C

Breq

Areq Bacq

Aacq

Synthesis example : graph based

Areq . Bacq => 1* => Breq ?

Areq . Bacq => 0* => Breq ?

Breq Aacq

Breq => 1* => Aacq ?

Breq => 0* => Aacq ?

Areq

Aacq Channel

Breq

Bacq

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 64

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Design Methodologies and Tools

• Graph based : Signal Transition GraphsTools :

– Petrify (Barcelona)– Atacs (Utah) (VHDL entry)

– SIS (Berkeley)– ASSASSIN (Imec)– ...

Page 33: Asynchronous Circuits Design - Portland State University

33

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 65

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Design Methodologies and Tools

• Graph based : Burst-Mode specification

1

2

Input burst/output burst

Currentstate

Nextstate

Limitations :a) maximal set property b) Unique entry point

1

2 3

X+ Y+/Z+

X+ /T+ Z+

Ambiguous when X+ 2 different input/output valueswhen entering state 6

6

4 5

X+ /Z+

Y+ /T+

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 66

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Design Methodologies and Tools

• Graph based : Burst-Mode specification

Hazard-FreeCombinatorial

Network

Internal states

Inputburst

Outputburst

1

2

Input burst/output burst

Currentstate

Nextstate

Fundamental mode required

Page 34: Asynchronous Circuits Design - Portland State University

34

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 67

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Design Methodologies and Tools

• Graph based : Burst-Mode(Q-Element) 1

2

3

4

Lr+/Rr+

Ra+/Rr-

Ra-/La+

Lr-/La-

RaLr

LrRa

LrRa

Rr

La

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 68

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Design Methodologies and Tools

• Graph based : Burst-Mode Specification

Tools :– Minimalist (Colombia University)– 3D (USC San Diego)

Page 35: Asynchronous Circuits Design - Portland State University

35

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 69

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Design Methodologies and Tools

• Language based– CSP based (Communicating Sequential Processes)→ CHP language (Caltech)

• Synthesis is difficult => circuit designed can be very fast

→ Tangram language (Philips)• Tool suite (Synth., Sim., Test => circuit designed are slow)

→ Balsa language (Univ. of Manchester)→ TAST (Tima)– HDLs : modeling/synthesis are not mature yet

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 70

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Design Methodologies and ToolsLanguages(channels)

CDFGPetri Nets

Traces

AnalysisVerificationsTransformations

Boolean equations

Logic synthesis(Minimization,

RetimingTechnology mapping)

STGs, XBM, HSE,Handshake Components

Splitting Data-Pathand Control Synthesis

Boolean equations - Hazard Free LogicOptimization, Retiming,

Technology mapping

Synchronouscircuits

Page 36: Asynchronous Circuits Design - Portland State University

36

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 71

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

0 100 200 3 0 0 400 500 6000

0.002

0.004

0.006

0.008

0 . 0 1

0.012

0.014Courant de consommation moyen de MICA

Temps en ns

(fréquence d échantillonnage 25 Ghz; Nombre de points 15000)

Am

plitu

de en

A

Synthesis• QDI• Micropipeline

Simulation• VHDL• C

Verification• Collaboration with VDS

TAST Intermediate Format

TAST Specification Language

Rapid Prototyping• FPGAs (Xilinx, …)

TAST*: TIMA ASYNCHRONOUS SYNTHESIS TOOLS

Ä Low Power

Ä Low Voltage

Ä Low NoiseTAST Compiler

ASPRO*

Test

Ä GALS, GSLA SoCsÄ Secure Smart-CardsÄ Smart Devices

*http://tima.imag.fr/cis

Current Profiles(Synchronous - MICA)MICA*

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 72

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous Circuits Design

• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes• Design methodologies and tools• Asynchronous circuits properties and potentials• Design experiments• Conclusion and prospects

Page 37: Asynchronous Circuits Design - Portland State University

37

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 73

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous Circuit Properties

• Data flow behavior/delay insensitivity : => distributed control

– minimum execution time and power consumption– activity and power consumption are spread in time– modularity and composition : reusability, IP exchange

HazardFree

Logic

HazardFree

Logic

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 74

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous Circuits Design• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes• Design methodologies and tools• Asynchronous circuits properties and potentials

– Systems design requirements– Modularity and locality– On-chip communication systems– Asynchronous on-chip busses design– Current consumption profile

• Noise• Security• Automatic performance regulation

– Dynamic voltage scaling• Design experiments• Conclusion et prospects

Page 38: Asynchronous Circuits Design - Portland State University

38

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 75

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Systems design requirements

• Assemble / Reuse new and existing modules• Modules with very different architectures• Modules activity may be very different• Modules with different speed/power trade-offs• Flexible on-chip communication mechanisms• Low power• Mix digital and Analog modules

→ Modularity and locality => reusability→ Get rid of global constraints (like a unique global clock)→ Avoid inheritance of constraints from block to block (like clock,

noise, communication and synchronization mechanisms…)→ Do not consume when not in use

AC

B

D

Sensor

Processing

Supervision, network...

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 76

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Systems design requirements

• Modularity, Locality …

→ Need to Adopt– the right Hardware model and– the right Specification model

Asynchronous Logicand

Communicating Concurrent Processes

P0

P1

P2

P3

Page 39: Asynchronous Circuits Design - Portland State University

39

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 77

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit properties• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes• Design methodologies and tools• Asynchronous circuits properties and potentials

– Systems design requirements– Modularity and locality– On-chip communication systems– Asynchronous on-chip busses design– Current consumption profile

• Noise• Security• Automatic performance regulation

– Dynamic voltage scaling• Design experiments• Conclusion et prospects

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 78

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Modularity and Locality

• Communication through channels (no clock)

Ø Protocols are in charge of interfacing modules=> the design of different modules is not inter-dependent

Ø Design problems are solved locally inside each module(architecture, speed, power, back-end issues…)

Ø Building a complex architecture using modules implementing handshake communication protocols is easy

Ø Stand-by mode is freeØ Channels are used to trigger modules processingØ Go from zero to maximum activity immediately, on request

Page 40: Asynchronous Circuits Design - Portland State University

40

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 79

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Modularity and LocalityØ Speed and functionality issues are solved separately

– Within a module– For inter-module communications

- Pipelining is preserving functional correctness in an asynchronous circuit=> Performance optimization do not change the functionality

P0 = [.......A ? x.......]

P1 = [.......A ! y.......]

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 80

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Modularity and Locality

D, Ctrl

N stages

P stages

=> Locality :global state knowledgeis not required !

• Circuit architecture

Page 41: Asynchronous Circuits Design - Portland State University

41

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 81

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Modularity and Locality• Thanks to asynchronous circuits

– Provide a complete framework for jointly implementing communication channels and functions (hardware communicating processes)

– Systems design is then easier :• Distributed control (protocol implementation)• Delay insensitive communications between modules• Modules are independent from each other in terms of :

– Functionality (global state not known)– Speed (maximum speed)– Activity (power)– Noise (uncorrelated current consumption)

• Scalability

ModularityReusabilityScalability

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 82

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit properties• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes• Design methodologies and tools• Asynchronous circuits properties and potentials

– Systems design requirements– Modularity and locality– On-chip communication systems– Asynchronous on-chip busses design– Current consumption profile

• Noise• Security• Automatic performance regulation

– Dynamic voltage scaling• Design experiments• Conclusion et prospects

Page 42: Asynchronous Circuits Design - Portland State University

42

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 83

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

On-chip Communication Systems

• Multiple Clock Domains– Multiple Independent Clocks

=> Metastability may occur at clock domain boundaries

• Existing solutions– Control the Mean Time Between Failure (MTBF)

• Non adaptive synchronization• Adaptive synchronization

– Wait for metastability to resolve• Stretchable/stoppable clocks• Fully asynchronous (GALA)

Probability of error is not zero

Probability of error is zero

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 84

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Metastability

• Phenomenon and related problems– Any system attempting to solve one of the following problems is of

limited reliability (called a synchronizer) :• given an input signal and a time reference, decide whether the input signal

makes a transition before or after the reference,• given an input signal and a voltage reference decide whether the input signal

voltage is higher or lower than the reference.

Time

S2

S1Threshold

Amplitude

Time

Page 43: Asynchronous Circuits Design - Portland State University

43

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 85

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Metastability

First case :• Asynchronous signal sampling : Synch

– D and C are asynchronous– Set up and hold times may be violated– So what’s the behavior ?

• Ordering events : ME– a and b are asynchronous signals– which signal is coming first ?– Sa and Sb are mutually exclusive

D

C

QFF

a

b

Sa

Sb

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 86

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Metastability

Second case :• Signal comparison : Synch

– “a” is an analog signal– is “a” below the threshold ?– how long does it take to decide ?

• Ordering signals : ME– “a” and “b” are analog signals– which signal is below the other ?– “Sa” and “Sb” are mutually exclusive

a

b

Sa

Sb

Threshold

Amplitude

Timea < Th ?

a > b => Sa =1, Sb=0a < b => Sa =0, Sb=1

Page 44: Asynchronous Circuits Design - Portland State University

44

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 87

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Metastability

Where do these problems occur ?• Analog circuits

– Comparators– Analog to digital converters– Serial links– CDR (clock data recovery)

• Digital circuits– Processing asynchronous signals : interrupt signal– Communications between clock domains

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 88

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Metastability

Metastability phenomenon• When I1 is opening and I2 is closing,

we might have A=B=Vm(set up and hold times violation)

• Inner loop levels are consistent andthe system may stay in this statefor an infinite time in theory !

• In practice, there are perturbationswhich force the system to go backto one of the stable states.

D QI1

I2

A

B

A=B=0

A=B=Vdd

A=B=Vm

StableQ

A,BMetastable

Page 45: Asynchronous Circuits Design - Portland State University

45

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 89

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Metastability

Metastability phenomenon• When set up and hold times are satisfied

tDQ = tpDQ bounded !• When set up and hold times are violated

tDQ increases !• In practice tDQ is finite but not bounded !!

D

Clk

QFF

Time

Q,D,Clk

tDClk – tm (ps)

tDQ (ps)

300

200100 tpDQ

0,01 0,1 1 10 100

tm

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 90

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Metastability

• Phenomenon model and characteristics– Probability that the metastable state will last

longer that t’ decreases exponentially with t’

– Mean Time Between Failure (MTBF)Fc : clock frequencyFd : data transmission frequency

Sync

Clk1 Clk2

T

TW TW is a timewindow where thesystem may enter themetastable state(tDQ increases)

r

t

e τ'−

cdW

t

FFTe rτ

'−

Page 46: Asynchronous Circuits Design - Portland State University

46

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 91

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Metastability

• Phenomenon model and characteristicsSome figures

.13 micron, at 200 MHz => MTBF is 10400 seconds.at 1 GHz => MTBF is 104 seconds (hours)

One can design a synchronizer with an MTBF longer than the life of the universe (1019 seconds). Is it useful ?

MTBF values depend on the applications, some hundred years is common !

Synchronizers design issues– Trends: transistor length decreases, frequencies are increasing,

synchronizers design is a key know how !– Minimize latency and failure rate

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 92

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Metastability

• Phenomenon model and characteristics

A simple synchronizer D

Clk

FF QFF

Clk

D

QAbout one full periodto stabilize !

Page 47: Asynchronous Circuits Design - Portland State University

47

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 93

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Metastability

• Phenomenon model and characteristics

A mutual exclusion circuit

vfy

x u f¬

¬

u

v

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 94

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Controlling the MTBF

• How to improve the MTBF ?– Widening the data path

• k times more wires• date rate divided by k

– Limiting the critical control signal frequency• asynchronous FIFO• packet signaling => reduced frequency

– Pipeline synchronization• adding synchronizer stages [Seizovic 94]

• Drawbacks : Latency increasedArea and Power increased too

as a functionof MTBF

Page 48: Asynchronous Circuits Design - Portland State University

48

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 95

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Controlling the MTBF

• Adaptive synchronization [Ginosar 00]– compensate for the time-varying inter-modular clock and data phases– adaptation is achieved by :

• a hardware “Adaptive Synchronizer” (A/S)• associated with a training session (Power-up, periodic, triggered,

continuous adaptation schemes)

ModuleA

ModuleB

Clk

A/S

ProgrammableDelay Line

Counter

Conflictdetector

Ctrl

Clk

ClkA ClkB

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 96

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Controlling the MTBF

• Adaptive synchronization [Ginosar 00]– Estimated overhead :

• 1% area overhead for a 1 M tr. module with 10 input busses• 0.1 % time overhead for a typical training session• less than 0.001 % power overhead

– Advantages• compensate skew and drift, adaptive• low latency (one half cycle)

– Drawbacks• need of training sessions• adaptive synchronizer design

Page 49: Asynchronous Circuits Design - Portland State University

49

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 97

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

On-chip Communication Systems

• Multiple Clock Domains– Multiple Independent Clocks

=> Metastability may occur at clock domains boundaries

• Existing solutions– Control the Mean Time Between Failure (MTBF)

• Non adaptive synchronization• Adaptive synchronization

– Wait for metastability to resolve• Stretchable clocks• Fully asynchronous (GALA)

Probability of error is not zero

Probability of error is zero

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 98

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Preventing Metastability

• Stretchable clocks [Chapiro 84...]or Pausable/Stoppable clocks [Moore 00] [Muttersbach 00]– based on the use of asynchronous wrappers responsible for :

• local clock generation• inter-module data communication management

Asynchronous module tosynchronous module interface.

Two interfaces are required forsynchronous module to synchronousmodule communications.

ME

delay

Req

LocalClock

Sync. Dataand Request

Register &Asynch. Ctrl

Ack

Data

Page 50: Asynchronous Circuits Design - Portland State University

50

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 99

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Preventing Metastability

• Stretchable clocks or Pausable/Stoppable clocks

– Ring oscillator’s frequency varies with temperature and supply voltage→ a chip cannot work at a fixed frequency→ if required, the real time clock must be a specific module

(or use of self calibrating clock [Moore 00])– Local clock buffering– Latency, complexity and power are all dependent on the number of

channels (all processed by the same wrapper)– With large number of channels, conflict resolution may be long and even

enter in a never-ending cyclical behavior.

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 100

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Wait for Metastability to resolve

• GALA : fully asynchronous circuits– Modelling/Synthesis of arbitration problems [Renaudin 00]

• from communicating processes to gates• requires two extra basic cells : ME and Sync

– Safe and Fast• channels are independently processed• speed only depends of the complexity of the arbitration scheme

– Low power• data driven

– Area• no data buffering required• complexity depends on the asynchronous logic style used

Page 51: Asynchronous Circuits Design - Portland State University

51

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 101

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit properties• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes• Design methodologies and tools• Asynchronous circuits properties and potentials

– Systems design requirements– Modularity and locality– On-chip communication systems– Asynchronous on-chip busses design– Current consumption profile

• Noise• Security• Automatic performance regulation

– Dynamic voltage scaling• Design experiments• Conclusion et prospects

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 102

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous On-Chip Busses design

• Fully asynchronous circuits use DI codes which have nice properties for on-chip busses design

– One-of-N (4-phase protocols / 2-phase protocols)• Low power• Cross-talk is reduced• Area is about the same• Speed is increased

– Electrical buffering and pipelining at the same time– Safe, fast and low-power arbiters can be designed

Page 52: Asynchronous Circuits Design - Portland State University

52

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 103

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous On-Chip Busses design

• 1-of-4 DI code energy efficiency

Wires/bit Transitions/bitsingle rail 1 1/2 on averagedual-rail 4-phase 2 2dual-rail 2-phase 2 11-of-4 4-phase 2 11-of-4 2-phase 2 1/2

Same Wire/bit than dual-rail code but more energy efficient

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 104

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous On-Chip Busses design

• DI codes for cross-talk reduction

We know where cross-talk is likely to happenArea overhead is small even if the number of wires is doubledAcknowledge signals may be used as spacers

Minimum spacingwithin digits

Minimum spacingwithin digits

Larger spacingbetween digits

to prevent crosstalk

Page 53: Asynchronous Circuits Design - Portland State University

53

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 105

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous On-Chip Busses design

• DI code for long wires routing– Repeaters perform electrical buffering and pipelining at the same time

– Safe, fast and low-power arbiters can be designed

Much faster than

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 106

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit properties• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes• Design methodologies and tools• Asynchronous circuits properties and potentials

– Systems design requirements– Modularity and locality– On-chip communication systems– Asynchronous on-chip busses design– Current consumption profile

• Noise and current shaping• Security• Automatic performance regulation

– Dynamic voltage scaling• Design experiments• Conclusion et prospects

Page 54: Asynchronous Circuits Design - Portland State University

54

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 107

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Noise

Mean power consumption is lowerSmaller current peaks , EM emission is lower

Measurements performed with "MICA" an asynchronous QDI 8-bit microcontrollerCurrent profile (2000)

0 100 200 300 400 500 6000

0.002

0.004

0.006

0.008

0.01

0.012

0.014Courant de consommation moyen de MICA

Temps en ns

(fréquence d échantillonnage 25 Ghz; Nombre de points 15000)

Am

plitu

de e

n A

- 10 mA average current- 0.6 mA amplitude variations

Synchronous circuit

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 108

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

NoiseMeasurements performed with "MICA" an asynchronous QDI 8-bit microcontrollerCurrent spectrum (2000)

0 2 4 6 8 10 12 14

x 1 09

0

2

4

6

8x 10

-5 Spectre de frequence de MICA

frequence en Hz

(fréquence d échantillonnage 25 Ghz; Nombre de points 15000)

Am

plitu

de d

u sp

ectre

0 0.5 1 1.5 2 2 . 5 3 3.5 4 4.5 5

x 1 08

1

2

3

4

5

6

7

8x 10

-5 Spectre de frequence de MICA

frequence en Hz

Am

plitu

de d

u sp

ectre

0 to 12.5 GHz

Max = 0.06

0 to 0.5 GHz

Page 55: Asynchronous Circuits Design - Portland State University

55

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 109

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

IP

IP -1

CipheringData -path

PC1

PC2

Sub-KeyData -path

Controller

DATA CRYPT/DECRYPT KEY

OUTPUT

Sub-Key

CTRL

64 64

64

1

IP

IP -1

CipheringData -path

PC1

PC2

Sub-KeyData -path

Controller

DATA CRYPT/DECRYPT KEY

OUTPUT

Sub-Key

CTRL

64 64

64

1

Asynchronous DES Chip architecture

Synchronous Asynchronous

CMOS 0,18 µm (HCMOS8) from STMicroelectronics

6-LM, Power Supply 1.8 V

• Data Encryption Standard (DES) crypto-processors

Circuits’ Layout

Noise

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 110

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Results : DES Chip

Pads activities

Synchronous

Clock edges

Frequency of computingeach DES iterations

Clock Frequency

Asynchronous

Page 56: Asynchronous Circuits Design - Portland State University

56

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 111

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit properties• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes• Design methodologies and tools• Asynchronous circuits properties and potentials

– Systems design requirements– Modularity and locality– On-chip communication systems– Asynchronous on-chip busses design– Current consumption profile

• Noise and current shaping• Security• Automatic performance regulation

– Dynamic voltage scaling• Design experiments• Conclusion et prospects

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 112

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Contrôler le niveau de bruitdans la bande utilisée par

le front-end RF

Current shaping

• Power aware scheduling (thèse de Dhanistha Panyasak)

RTL circuit description

Asynchronous Circuit

two running modes

free-running synchronous

Le circuit est cycle compatible

et faible bruit, faible rayonnement

Page 57: Asynchronous Circuits Design - Portland State University

57

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 113

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Power Aware Scheduling

• • ••• •• ••

• By relaxing synchronization between blocks :

…use of low EMI advantage of Asynchronous Circuits !

• By scheduling events :

… spread spectrum of handshaking !

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 114

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Power Aware Scheduling

RTL codeto

Asynchronous Circuits

Applyingscheduling

(FDS)

Page 58: Asynchronous Circuits Design - Portland State University

58

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 115

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit properties• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes• Design methodologies and tools• Asynchronous circuits properties and potentials

– Systems design requirements– Modularity and locality– On-chip communication systems– Asynchronous on-chip busses design– Current consumption profile

• Noise• Security• Automatic performance regulation

– Dynamic voltage scaling• Design experiments• Conclusion et prospects

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 116

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Security

• Processor MICA

- Number of points : 100000- 10000 computations

Page 59: Asynchronous Circuits Design - Portland State University

59

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 117

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Tamper-resistant hardware

• Hardware cryptanalysis (measurements, post-processings)

• Counter measures design using ASL– PA– DFA

• Prototyping ASL– Asic : DES, AES– FPGAs

• Methodologies and CAD toolsfor improving PA and DFA chipresistance using ASL

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 118

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit properties• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes• Design methodologies and tools• Asynchronous circuits properties and potentials

– Systems design requirements– Modularity and locality– On-chip communication systems– Asynchronous on-chip busses design– Current consumption profile

• Noise• Security• Automatic performance regulation

– Dynamic voltage scaling• Design experiments• Conclusion et prospects

Page 60: Asynchronous Circuits Design - Portland State University

60

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 119

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Self adapting performance

→ Minimum energy computation

Processing and data have irregular natures (exploiting the dynamic)A breakdown with respect to the synchronous approach => algorithms must be different(just in time processing)

Processingparts

Control law

DC-DCVinVdd

VbbCf.

Microprocessor speedcontrol using Vdd

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 120

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

0,05,0

10,015,0

20,0

25,0

30,0

35,0

1 1,5 2 2,5 3 3,5

Supply

Mip

s

0,0

20,0

40,0

60,0

80,0

100,0

PO

wer

(mW

)Mips Power(mW)

8-bit CISC Asynchronous Microcontroller : Vdd range

– 1-of-4 DI codes for arith. and reg.– 1-of-n DI codes for the control– Complexity

• 145 000 transistors, 0.25 µm STM• 1 M transistors with memories• 13 mm² with pads (prototype)• PGA120 package for the

prototype

– Test• BIST (approx. 300 instr)• functional al 1er silicium

between 3v et 0.65 v

– 24 Mips / 28 mW @ 2.5V– 4,3 Mips / 0.8 mW @ 1V

Supply(V) Mips Core Current (mA) Power(mW) Mips/Watt1 4,3 0,8 0,8 5503,6

1,5 11,9 3,1 4,7 2560,22 18,6 6,7 13,3 1398,0

2,5 23,8 11,2 28,0 850,33 27,8 16,3 48,9 568,1

3,5 31,3 22,0 77,0 405,8

Page 61: Asynchronous Circuits Design - Portland State University

61

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 121

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

DES chip (HCMOS8) : Vdd range

0.05

1

2

3

4

5

6

7

0 0,5 1 1,5 20,67 1,8

Cur

rent

(mA

)

Voltage (V )T

ime

(ns)

0

5000

10000

15000

20000

25000

30000

35000

40000

0.670,5 1 1,5 2

Voltage (V )

1,8

1468

33470

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 122

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous AES crypto-processor

V o l t a g e

Ene

rgy

Voltage

Cip

herin

g tim

e

V o l t a g e

Ene

rgy

Voltage

Cip

herin

g tim

e

89 Mbits/s14,21.440 256-bit

116 Mbits/s121.100 192-bit

141 Mbits/s10910 1.69 (mm²)

0.49 (mm²)

128-bit

ThroughputEnergy(nJ)

CipheringTime (ns)

Areawith pads

Area(core)

Key length

CMOS 0,13 µm (HCMOS9) from STMicroelectronics6-LM, Power Supply 1.2 volt

1,25 nJ

2,2 nJ4,8 µs

Page 62: Asynchronous Circuits Design - Portland State University

62

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 123

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous AES crypto-processor

• Current profiles

T i m e T i m e

Am

plitu

de

Am

plitu

de

T i m e T i m e

Am

plitu

de

Am

plitu

de

Powered at 1.2 volt Powered at 0.4 volt

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 124

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Limited power budget

Voltage

Current

Activity = processing power

• Power supply controlled systems

• Processing power is limited bythe power budget available

→ Maximum performance deliveredwith the available power received

Applications :remotely powered systems ( RFIDs )

Page 63: Asynchronous Circuits Design - Portland State University

63

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 125

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Contactless Smart-Card Chip

• "SoC" for Contactless Smart-Card– Power reception system

(on-chip coil)

– ISO 14443-B std compliant

– 8-bit CISC AsynchronousMicrocontroller designed withstandard cells (Mica)

– Rom– Rams

Collaboration with France Telecom/R&DCmos 0.25 µm STMicroelectronics

[IEEE-JSSC July 2001]

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 126

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuit properties• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes• Design methodologies and tools• Asynchronous circuits properties and potentials

– Systems design requirements– Modularity and locality– On-chip communication systems– Asynchronous on-chip busses design– Current consumption profile– Dynamic voltage scaling

• Design experiments• Conclusion et prospects

Page 64: Asynchronous Circuits Design - Portland State University

64

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 127

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Voltage Scaling : sync. vs async. !

Run

SleepIdle

Synchronous

Vdd, Fclk

Run

Sleep

Clock-less

Vdd(extended range)

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 128

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Voltage Scaling Overheads !

Run

SleepIdle

Tens of µs ms

Tens of µs

Tens to hundreds µs

Synchronous

Run

Sleep

Immediate !

DC-DC faster than PLL

Clock-less

Circuit keeps runningat maximum speed !

Page 65: Asynchronous Circuits Design - Portland State University

65

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 129

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Voltage Scaling Overheads !

Run

SleepIdle

Tens of µs ms

Tens of µs

Tens to hundreds µs

Run

Sleep

Immediate !

DC-DC faster than PLL

Synchronous Clock-less

Circuit keeps runningat maximum speed !

Timing overhead

s

= energy wasting

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 130

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous vs Synchronous :synchronous processor performance

¦ StrongARM-1100¦ 59MHz - 0.79V et 251MHz - 1.65V¦ Un changement de fréquence prend 140µs¦ Un changement de tension prend 40µs¦ Mise en veille : 90µs - Réveil : 160 ms

¦ lpARM (ARM8 Berkeley)¦ 6Mips, 5MHz - 1.2V et 85Mips, 80MHz - 3.8V¦ Un changement de fréquence de 5MHz à 80MHz prend environ 70µs¦ Veille (idle) : 0.8mW

¦ Transmeta Crusoe¦ 300MHz - 1.2V à 600 MHZ - 1.6V¦ Un changement de fréquence de fmin à fmax prend 300 µs¦ pas de 33 MHz, 25 mV

Page 66: Asynchronous Circuits Design - Portland State University

66

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 131

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous vs Synchronous : standby mode

(µs)

t 1

≈≈

t 2

≈≈

≈≈0.16mW

90µs

PMAXPMAX

160ms 90µs

SMAX

S. A

RM

(µs)

t 1

≈≈

t 2

≈≈0.8 mW

70µs

PMAXPMAX

70µs 70µs

SMAX

lpA

RM

(µs)

t 1

50 mW

t 2

50 mW

25µs

PMAXPMAX

10µs 25µs

SMAX

Cru

soe

≈ ≈

(µs)

t 1

≈≈

t 2

≈≈

ASP

RO

0 mW

PMAXPMAX

0 mW

Vitesse

SMAX

Temps (µs)

Vitesse

SMAX

t 1

t 2

Activité - PMAX

≈≈

Veille-0 mW Veille-0 mW

Cas

idéa

l

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 132

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous vs Synchronous : speed adaptation

Temps (µs)

Vitesse

SMAX

t 1

Cas

idéa

l

≈≈

t 3

≈≈t 2

≈≈

50%

(µs)

t 1

≈≈

ASP

RO

Vitesse

SMAX

50% t 3

≈≈

t 2

≈≈

6µs 6µs

(µs)

SMAX

S. A

RM t 1

≈≈

3.74ms

≈≈t 2

≈≈

166µs

≈≈

≈≈

50% t 3

(µs)

t 1

≈≈

SMAX

lpA

RM

37µs 37µs

≈≈t 2

≈≈

50% t 3

(µs)

t 1

≈SMAX

Cru

soe

300µs

t 3

≈≈t 2

≈≈

300µs

50%

Page 67: Asynchronous Circuits Design - Portland State University

67

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 133

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Dynamic Voltage Scaling/Scheduling

• Benefits of an asynchronous processor :

– No software to manage the processor or the peripherals activity (run, idle, sleep)

– Consumption in sleep mode = consumption in idle mode (ratio higher than 100 for the synchronous processors)

– Wake up/stop at very high frequency for the processor and the peripherals (thousands of cycles for a synchronous processor)

– Speed and energy controlled by the voltage only(switching time much smaller : factor of 2 to 5)

– Large voltage range(more and more critical with the supply voltage decreasing)

ASPRO

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 134

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous Circuits Design

• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes

• Design methodologies and tools• Asynchronous circuits properties and potentials• Design experiments

– Contact-less Smart Card– ASPRO RISC microprocessor– Towards fully asynchronous systems

• Conclusion and prospects

Page 68: Asynchronous Circuits Design - Portland State University

68

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 135

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Contactless Smart-Card Chip

• "SoC" for Contactless Smart-Card– Power reception system

(on-chip coil)

– ISO 14443-B std compliant

– 8-bit CISC AsynchronousMicrocontroller designed withstandard cells (Mica)

– Rom– Rams

Collaboration with France Telecom/R&DCmos 0.25 µm STMicroelectronics

[IEEE-JSSC July 2001]

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 136

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

0,05,0

10,015,0

20,0

25,0

30,0

35,0

1 1,5 2 2,5 3 3,5

Supply

Mip

s

0,0

20,0

40,0

60,0

80,0

100,0

PO

wer

(mW

)

Mips Power(mW)

Mica : an 8-bit CISC QDI Asynchronous µC

– 1-of-4 DI codes for arith. and reg.– 1-of-n DI codes for the control– Complexity

• 145 000 transistors (0.25 µm)• 1 M transistors with memories• 13 mm² with pads (prototype)• PGA120 package for the prototype

– Test• BIST (approx. 300 instr)• functional at 1er silicon

between 3v et 0.65 v– 24 Mips / 28 mW @ 2.5V– 4,3 Mips / 800 µW @ 1V

Supply(V) Mips Core Current (mA) Power(mW) Mips/Watt1 4,3 0,8 0,8 5503,6

1,5 11,9 3,1 4,7 2560,22 18,6 6,7 13,3 1398,0

2,5 23,8 11,2 28,0 850,33 27,8 16,3 48,9 568,1

3,5 31,3 22,0 77,0 405,8

Page 69: Asynchronous Circuits Design - Portland State University

69

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 137

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

MICA : Architecture

Memory16 Kbytes RAM2 Kbytes ROM

PC

Index registers Data registersM

ain

deco

der

ALU 16-bits ALU 8-bits

Read data

Write data

Statusregister

Smart card interfaceFlash memoriesSerial linksAddress

Instruction

SP

Write data

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 138

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

MICA : Instruction SetArithmetic/logic Register

Add, Addc, Sub, Subb, Inc, Dec, NegAnd, Or, Xor, Not,Cbn (clear bit n), Sbn (set bit n), Tbn (test bit n)Rol, Ror, Rcl, Rcr (rotate without and with carry)Shl, Shr, Shrs (shift left, shift right unsigned and signed)

IndexAddx, Subx

Load/Store RegisterLd, Ldp, Stp (load, store peripheral), StCp (copy from memory to memory is available)Pl (push & load)Psh, Pshsr (push, push status register) , Pop

IndexPshx, Popx

Control flow Rti, Rts, Jmp, JsrBcc, Bsrcc (cc = a,eq,ne,cc,cs,l,le,lt,lte,g,ge,gt,gte,vc,vs)

Misc Nop, Wfi, Eint, Dint (enable and disable interrupt)

Page 70: Asynchronous Circuits Design - Portland State University

70

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 139

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Contactless Smart-Card Chip• Asynchronous Logic relaxed Design constraints

– Not sensitive to supply voltage variations→Power reception system (capacitances

area, voltage regulation)

– Lower current peaks→ The Micro-controller can be running

during the communications withoutdisturbing the load modulation.

– Maximum processing power deliveredaccording to the power received

Collaboration with France Telecom/R&D

Asynchronous8 bit µcontroller

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 140

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous Circuits Design

• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes

• Design methodologies and tools• Asynchronous circuits properties and potentials• Design experiments

– Contact-less Smart Card– ASPRO RISC microprocessor– Towards fully asynchronous systems

• Conclusion and prospects

Page 71: Asynchronous Circuits Design - Portland State University

71

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 141

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

ASPRO : a RISC Microprocessor

• A QDI Asynchronous 16 Bit RISC Microprocessor

=> Performance=> Standard-Cells=> Ease of design (4 m.y)

- Architecture(out of order completion)- System Board

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 142

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

ASPRO

• QDI asynchronous logic• Standard Cells • 500 KTr for the core• 6.3 MTr with memories• Total area is 42 mm2

• CMOS 0.25µm 6 metal layers STMicroelectronics

• Use of standard tools except - CHP2VHDL translator- Synthesis

Page 72: Asynchronous Circuits Design - Portland State University

72

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 143

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

ASPRO– Functional at first silicon : 0.65V and 3.0V– 140 MIPS (max)– ASPRO includes DSP capabilities (MACC unit, brv...),

RIF routine runs at 115 MIPS, 500 mW (including memories)– Serial links (2 phase) : 50Mbit/s

FIR routine

0

50

100

150

200

250

1 1,2 1,4 1,6 1,8 2 2,3 2,5

Supply Voltage (V)

Cu

rren

t (m

A)

Ram current

Core current

0,0

50,0

100,0

150,0

1 1,2 1,4 1,6 1,8 2 2,3 2,5

Supply Voltage (V)

Mip

s

0

50

100

150

200

250

Cur

rent

(m

A)

Mips Total current

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 144

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

ASPRO

• Processor’s main featuresMemories

- program : 16 kwords on chip48 kwords off chip

- data : 64 kbytes on chip

16 general purpose registersOn chip peripherals

- 2 parallel ports- 4 bidirectional serial links (2Φ )

Custom units- added to the peripheral area- embedded in the data path

Three supply voltagesInterrupt mechanism

Peripherals

Data Memory

Program Memory

Program Memory InterfacePC Unit

Decode Unit

Bus Interface & FifosRegister File

Port A

Inter-processor links

Interrupts

Parallel ports

Ld/St Unit

Branch Unit

Custom Unit

ALU

Page 73: Asynchronous Circuits Design - Portland State University

73

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 145

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

ASPRO• ASPRO’s instruction set

Alu instructions : std arithmetic, logic and shift/rotate- min/max, bit reverse, slt/sltu (no status register)

Load/Store instructions : byte/word load and store- basic addressing mode is indirect with displacement- immediate load is provided (16 bit values)- load relative address (relocatable code)- program memory load/store through a dedicated register (boot)

Program flow instructions- conditional relative branch (eq,ne,lt,ltu) => delayed or not- djmp, dbsr, djsr => delayed

Custom instructions : 64 slots- mpy, macc (integer, fixed point, rounding and saturation modes)

(16 x 16) + 40 => 40 bit

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 146

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

ASPRO : a RISC Microprocessor• ASPRO• Flash memories• Reset/Interrut logic• Peripherals : 2φ Serial Links & Parallel Ports

Daughter board

Switches&

LEDs

Interrupt Reset

=> A multi-processor system

Mother board

Page 74: Asynchronous Circuits Design - Portland State University

74

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 147

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous Circuits Design

• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes

• Design methodologies and tools• Asynchronous circuits properties and potentials• Design experiments

– Contact-less Smart Card– ASPRO RISC microprocessor– Towards fully asynchronous systems

• Conclusion and prospects

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 148

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Towards Fully Asynchronous Smart Devices

• Camera• Image processing• RF communication

→ Integration on a single chip– Modular– Event driven– Low power– Low noise

Page 75: Asynchronous Circuits Design - Portland State University

75

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 149

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous Circuits Design

• Asynchronous circuit design principles• Basic structures and asynchronous circuit classes• Design methodologies and tools• Asynchronous circuits properties and potentials• Design experiments• Conclusion and prospects

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 150

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Conclusions et prospects

Delay insensitivity? circuits are insensitive to IR drop phenomenon? circuits are insensitive to PVT variations? characterization efforts can strongly be reduced

This is a serious solution to « easily » and « rapidly » design IPsusing advanced CMOS processes, 65nm, 42 nm …

Page 76: Asynchronous Circuits Design - Portland State University

76

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 151

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Asynchronous circuits in SoCs

Analog

Hard 1

Hard 2

Soft 1

Soft 2

Soft 3

Soft4

Asynchronous communication systems- flexible (clock, power)- performance/cons.- transport/synchronization

Logic functions embedded in analog blocks- low noise/power.- no clock

Power Management- Voltage scaling (Vdd, Vt)

Soft asynchronous blocks- power- security- noise

Système de com. asynchronePM

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 152

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Conclusion and Prospects

• High quality/complexity demonstrators exist• Commercial products available• Some new are coming (smart card)• Companies (Handshake solutions, Theseus Logic,

Fulcrum, Silistix, Achronix)

→ Strong need of efficient CAD Tools !→ Asynchronous circuits testing is still a major issue !

Page 77: Asynchronous Circuits Design - Portland State University

77

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 153

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Links

• TIMA CIS grouphttp://tima.imag.fr/cis/

• Asynchronous bibliography :http://www.win.tue.nl/cs/pa/wsinap/async.htmlhttp://www.cs.man.ac.uk/amulet

• Tools :http://www.lsi.upc.es/~jordic/petrifyhttp://www.cs.columbia.edu/async/minimalist/minimalist_homepage.htmlhttp://www.cs.man.ac.uk/amulet/projects/balsahttp://www.async.elen.utah.edu/

Ecole IN2P3 d’Electronique28 Juin 2006, RoscoffMarc Renaudin 154

TIMA -CNRS-INPG-UJF

46 Av. Félix Viallet38031 Grenoble Cedex

CIS group"Concurrent Integrated Systems"

Links• Commercial circuits :

http://www.sharpsdi.comhttp://www-us.semiconductors.com/pip/PCA5007H http://www-us.semiconductors.com/pip/PCA5010H

• European "Asynchronous Circuit Design" Working Group :http://www.scism.sbu.ac.uk/ccsv/ACID-WG