23
1 김김김 Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ. Applied Electronic Circuit #7 1 2007102832 김김김

Applied Electronic Circuit

  • Upload
    helen

  • View
    77

  • Download
    1

Embed Size (px)

DESCRIPTION

Applied Electronic Circuit. #7 . 2007102832 김명준. Instrumentation Amplifier : IA. High Input Impedance Low Output Impedance Accurate and Stable Gain (1 ~ 1000) High CMRR . Instrumentation Amplifier : IA. 이득가변. For CMRR Tuning. Instrumentation Amplifier : IA. Differential Mode Input – - PowerPoint PPT Presentation

Citation preview

Page 1: Applied  Electronic Circuit

1 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Applied Electronic Circuit

#7

1

2007102832 김명준

Page 2: Applied  Electronic Circuit

2 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Instrumentation Amplifier : IA

2

High Input Impedance

Low Output Impedance

Accurate and Stable Gain (1 ~ 1000)

High CMRR

Page 3: Applied  Electronic Circuit

3 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Instrumentation Amplifier : IA

3

For CMRR Tuning

+

-

O U T

v 1

v 2 +

-

O U T

R G

R 3

R 3

R 1

R 1

+

-

O U T

R 2

R 2 B

0

V o

R 2 A

이득가변𝑣𝑜=(1+2 𝑅3

𝑅𝐺) 𝑅2

𝑅1(𝑣2−𝑣1)

Page 4: Applied  Electronic Circuit

4 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Instrumentation Amplifier : IA

4

Differential Mode Input – Differential Mode Output Amplifier

One Chip Instrumentation Amplifier

AD620 or etc

Page 5: Applied  Electronic Circuit

5 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Dual OP AMP Instrumentation Amplifier

5

단점신호가 소자 통과 시 time delay 발생 !

이 에 비해 time delay 가 크다 .

→ phase distortion 발생

𝑣3=(1+ 𝑅3

𝑅4)𝑣1

𝑣𝑜=(1+ 𝑅2

𝑅1)𝑣2− 𝑅2

𝑅1𝑣3

¿ (1+ 𝑅2

𝑅1 )(𝑣2−1+

𝑅3

𝑅4

1+𝑅1

𝑅2

𝑣1)

Gain 조절 쉽지 않다

+

-

O U T V o

+

-

O U T

R 1R 2R 3R 4

0

V 1 V 2

Page 6: Applied  Electronic Circuit

6 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Ground loop

6

Stray capacitor

+

-

O U T

0

V o

C 1

C 2 0

R S 1

R S 2

도선 자체 저항

실제로는 도선에 연결된 Capacitor 가 아닌 매질을 통해 연결된 가상의 Capacitor

Page 7: Applied  Electronic Circuit

7 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Ground loop

7

𝕍1′ =

1𝑗𝑤𝐶1

𝑅𝑆1+ 1𝑗𝑤𝐶1

𝕍1

𝕍 2′ =

1𝑗𝑤𝐶2

𝑅𝑆2+ 1

𝑗𝑤𝐶2

𝕍 2

, but is possible.

𝑣𝑜≈ 𝐴𝐷𝑀 (𝑣2−𝑣1 )+ 𝐴𝐷𝑀 (𝑣2′ −𝑣1′ )+𝐴𝐶𝑀12 (𝑣2′ +𝑣1′ )

CMRR 감소의 원인

𝐶𝑀𝑅𝑅=20 log 12𝜋 𝑅𝑑𝑚𝐶𝑐𝑚

𝑅𝑑𝑚=|𝑅𝑆1−𝑅𝑆2|𝐶𝑐𝑚=

12 (𝐶1+𝐶2)

R 감소 방법 : lead wire 를 짧고 굵은 선으로 !

Page 8: Applied  Electronic Circuit

8 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Shield Cable

8

절연체cable

도자기 도체

절연체coaxial cable

Triaxial cable

Page 9: Applied  Electronic Circuit

9 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Shield

9

220V60Hz

Shield( 차폐 ) : 적절한 전압 유지

도체 ( 등전위면 )

Grounded Shield( 접지 차폐 )

Chassis

Page 10: Applied  Electronic Circuit

10 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Shield

10

220V60Hz

Ground Shield

Shield 가능

전원 전압에 의한 interference 제거오히려 더 나빠진다 → 원치 않는 DM current 더 생겨Leakage Current increased

𝑣𝑜𝑣 𝑠

+

-

IAShield 불가능

Page 11: Applied  Electronic Circuit

11 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Shield

11

Active Shield(Driven Shield)

𝑣𝑜𝑣 𝑠

+

-

IA

-+

-+

Cable 에 흐르는 전압과 같은 전압을 Shield 에 Drive

𝑣1𝑣1

𝑣2 𝑣2

Page 12: Applied  Electronic Circuit

12 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Shield

12

Active Shield & Ground Shield

-+

전체가 Ground Shield

Page 13: Applied  Electronic Circuit

13 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Transducer Bridge Amplifier

13

Resistive SensorTemperature ; Thermister, RTD

Light ; Photoresistor

Strain ; Straingage

Pressure ; piezo resistive sensor

𝑅→𝑅+∆𝑅=𝑅(1+𝛿)

𝛿=∆𝑅𝑅

물리량의 변화 -> 저항의 변화 -> 전압의 변화

Page 14: Applied  Electronic Circuit

14 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Bridge Circuit

14

𝑣1=𝑅2

𝑅1+𝑅2𝑣𝑅𝐸𝐹

일 때 ,

AC 사용할 수 있음Capacitive sensorInductive Sensor

𝑣2=𝑅4

𝑅3+𝑅4𝑣𝑅𝐸𝐹

→ Balanced

V R E F

R 1

R 2

R 3

R 4

V 1 V 2 V oO U T6

+3

-2

R E F5

V +7

V -4

R G 11

R G 28

R G

-V c c

V c c

Page 15: Applied  Electronic Circuit

15 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Conduction in Metal (Conductor)

15

𝔽=−𝑞𝔼=−𝑚𝕒 𝕧𝑑=𝜇𝔼

+e-

+e-

+e-

+e-

+e-

+e-

+e-

+e-

+e-

+e-

+e-

+e-

𝔼

mobility T↑,

n; 자유전자의 부피밀도전류밀도𝕁=𝑞𝑛𝜇𝔼 [ 𝐶 ∙𝑚𝑚3 ∙𝑠 ]=[ 𝐶

𝑚2 ∙𝑠 ]=[ 𝐴𝑚2 ]

conductivity

=

𝜎𝔼

Page 16: Applied  Electronic Circuit

16 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Conduction in Metal (Conductor)

16

N 개의 Free electron

𝔼

A

L

𝑛=𝑁

𝐴 ∙𝐿 [𝑚−3] T[s] 동안 L[m] 이동한다면 ,

Page 17: Applied  Electronic Circuit

17 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Conduction in Metal (Conductor)

17

¿𝜎 𝐴𝐿 𝐸𝐿=𝜎 𝐴

𝐿 𝑉

∴ 𝐼=𝜎 𝐴𝐿 𝑉

𝑉=1𝜎 ∙

𝐿𝐴 ∙ 𝐼=𝑅 ∙ 𝐼 𝑅=

1𝜎 ∙

𝐿𝐴

온도계수 (Temp wett.)

𝑇 ↑⇒𝜎 ↓⇒𝑅↑

𝑅 (𝑇 )=𝑅 (𝑇0 ) (1+𝛼𝑇 ) 𝑓𝑜𝑟 𝑃𝑡 𝑅𝑇𝐷

Page 18: Applied  Electronic Circuit

18 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Conduction in Metal (Conductor)

18

Ex. Pt RTD

𝑅 (𝑇=0℃ )=100𝛺 ,𝛼=0.00392/℃𝑅 (𝑇 )=100 (1+0.00392𝑇 )[𝛺]

𝑅 (25℃ )=109.8 [𝛺 ]

𝑅 (100℃ )=139.2[𝛺]

𝑅 (−15℃ )=94.12[𝛺 ]

𝑅+∆𝑅=𝑅 (1+∆𝑅𝑅 )

¿𝑅 (1+𝛿)

𝛿=𝛼 ∆𝑇 ∆𝑅=𝑅𝛿

Page 19: Applied  Electronic Circuit

19 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Conduction in Metal (Conductor)

19

Ex. Pt RTD

𝑣2=𝑅

𝑅+𝑅1𝑣𝑅𝐸𝐹

𝑣1=𝑅(1+𝛿)

𝑅1+𝑅(1+𝛿)𝑣𝑅𝐸𝐹

¿𝑅

𝑅+𝑅1𝑣𝑅𝐸𝐹+

𝛿

2+𝑅1

𝑅 + 𝑅𝑅1

+(1+ 𝑅𝑅1

)𝛿𝑣𝑅𝐸𝐹

𝑣𝑜=𝐴(𝑣1−𝑣2)

¿𝐴𝛿

2+𝑅1

𝑅 + 𝑅𝑅1

+(1+ 𝑅𝑅1

)𝛿𝑣𝑅𝐸𝐹

𝑖𝑓 , 𝛿≪1 ,𝑣𝑜≈𝐴 ∙𝑣𝑅𝐸𝐹

2+𝑅1

𝑅 + 𝑅𝑅1

𝛿∝𝑇

V R E F

R 1

R 1

R

V 1 V 2 V oO U T6

+3

-2

R E F5

V +7

V -4

R G 11

R G 28

R G

-V c c

V c c

(xA)

R(1+δ )

iRTD 𝑖

Page 20: Applied  Electronic Circuit

20 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Conduction in Metal (Conductor)

20

Ex. Pt RTD𝑣𝑅𝐸𝐹=15𝑉𝑅 (𝑇 )=𝑅 (1+𝛿 (𝑇 ))

¿100 (1+0.00392𝑇 )[Ω ]

𝑃 𝑅𝑇𝐷<0.2𝑚𝑊To prevent self heating

𝑃 𝑅𝑇𝐷=𝑖𝑅𝑇𝐷2 ∙𝑅

𝑖𝑅𝑇𝐷=√ 𝑃𝑅𝑇𝐷

𝑅 =√ 0.2𝑚𝑊100Ω

=1.41𝑚𝐴최종적으로 0.1V/℃ 의 출력을 얻기 위하여

T: 0~100℃ → : 0~10V

𝑖𝑅𝑇𝐷=15

𝑅1+𝑅(1+𝛿)≈ 15𝑅1

=1𝑚𝐴 Ω

margin

Page 21: Applied  Electronic Circuit

21 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Conduction in Metal (Conductor)

21

Ex. Pt RTD

h𝑤 𝑒𝑛𝛿≪1𝑣𝑜≈

𝐴 ∙𝑣𝑅𝐸𝐹

2+𝑅1

𝑅 + 𝑅𝑅1

𝛿∆ 𝑇=1℃

근사식이 아닌 식을 사용하면 , 근사식인 경우에 비해 약 0.26℃ 차이 발생

Page 22: Applied  Electronic Circuit

22 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Bridge Balancing

22

1% 저항 , 5% 전원 사용 Bridge Arm 에 흐르는 전류를 제어 → 민감도 조절

Balancing ( 영점 조정 )

14-16V

0-2V2mA

14V

1mA1mA

전원 : V 변동

V R E F

R 1

R 1

R

V 1 V 2 V oO U T6

+3

-2

R E F5

V +7

V -4

R G 11

R G 28

R G

-V c c

V c c

R 3

R 2

<

<

R(1+δ)

(xA)

Page 23: Applied  Electronic Circuit

23 김명준

Dept. of Biomed. Eng. BME303:Applied Electronic Circuit Kyung Hee Univ.

Bridge Balancing

23

To be safe,

라 가정ⓐ 점의 전압 =14V

전압 =0~2V𝑅2

2+𝑅1+𝑅= 14

1𝑚𝐴=14 𝑘Ω

에 흐르는 전류 = 2mA

𝑅3=2𝑉2𝑚𝐴=1𝑘Ω

𝑅2

2+𝑅1+𝑅= 14

1𝑚𝐴=14 𝑘Ω⇒14 𝑘Ω±140Ω

280 변화To be safe,

Choose

𝑅1=14𝑘Ω−100Ω−5002 Ω=13.65𝑘Ω

∴ h𝑐 𝑜𝑜𝑠𝑒 𝑅1=13.7𝑘Ω(∵13.65𝑘Ω𝑖𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡)

𝐴=257.8𝑉 /𝑉