12 Helgeland

  • Upload
    chava

  • View
    230

  • Download
    0

Embed Size (px)

Citation preview

  • 7/29/2019 12 Helgeland

    1/26

    Gas kick due to hydrates in the drillingfor offshore natural gas and oil

    ! ! !Leif Rune Helgeland

    Andreas Andersen Kinn

    Ole Flokketveit Kvalheim

    Anders Wenaas

    Department of Petroleum Engineering and Applied Geophysics

    NTNU, Trondheim, November 2012

    !

    i

  • 7/29/2019 12 Helgeland

    2/26

    Abstract

    Dissociationofgashydratesareinvestigatedasapossiblereasonforgaskicksduringdrilling.

    Gashydratesaresolidice-likestructurescontaininggasmolecules.Thebasicprinciplesofgas

    hydratesandkicksareexplained,andmethodsfordiscoveringgashydratezonesbefore

    drillingcommencesarereviewed.AnappraisalwellontheShenziBieldinthenorthernGulfof

    Mexicothatmayhavehadahydraterelatedkickisusedasanexample.Gashydratesarealso

    investigatedasapossiblecontributiontothe2010DeepwaterHorizonaccident.

    Themainfocusisonavoidinggashydrateproblemswhendrilling,describingvariousdrilling

    methodsandmuddesignsfoundmainlyinSPEliterature.ManagedPressureDrillingand

    drillingwithcasingaredescribedasdrillingmethods.Mudweight,compositionand

    temperatureofthemudarefoundtobeimportantfactors.

    EarlyidentiBicationofhydratezonesbyacquiringseismicdatawasfoundtobeakeyfactorin

    ordertotakepreventiveactionsbeforehydrateproblemsoccur.Itwasfoundthatafurther

    understandingofhydratesisneededtoeffectivelysolvethechallengescurrentlyfaced.

    ii

  • 7/29/2019 12 Helgeland

    3/26

    Table of contents

    1. Introduction! 12. Gas hydrates

    !2

    2.1.Formation of gas hydrate zones! 42.2.Detection of gas hydrates! 5

    3. Gas kick! 74. Drilling through hydrates! 9

    4.1.Possible hydrate-related kick in the deepwater Gulf of Mexico! 104.2.Deepwater Horizon did hydrates cause the blowout?! 12

    5. Avoiding gas hydrate problems ! 145.1.Drilling techniques to help prevent problems with hydrates [24]! 155.2.Drilling fluid design [25]! 165.3.Cement [27]! 17

    6. Discussion! 187. Conclusion! 198. Abbreviations ! 209. References ! 21

    iii

  • 7/29/2019 12 Helgeland

    4/26

    1. Introduction

    Gashydrateshavealwaysprovidedchallengesinoffshoreproductionofnaturalgasandoil.

    Themostcommonproblemispluggingofpipesandsubseaequipment,asubjectthathas

    beenthoroughlyinvestigatedanddocumented.Thispaperwillfocusonproblemsregarding

    hydratedissociationleadingtokicksduringdrillingoperations.Kicksasaresultofhydrate

    dissociationhasnotbeengivenmuchattention,butithaspreviouslybeendocumentedboth

    kicksandblowoutscausedbydrillingthroughhydratebearingsediments.

    Sincepresenceofhydratescanresultinbothkicksandblowoutsitisimportanttounderstand

    thebehaviorofhydrates,wheretheyarelocatedandhowwecanavoidtheproblemsweare

    facingtodayregardinghydrates.Currentlythemostprominentdrillinghazardrelatedto

    hydratesisunawarenessofitspresenceintheformation.Inordertodrillthroughhydratesin

    asafemanner,earlydetectionofitspresenceisakeyfactor.Collectingseismicdataisone

    waytomapthepresenceandlocationofhydrates.Ifthedatagivesindicationofhydratesin

    theformation,actioncanbetakentosecureasafedrillingoperation.

    GashydratesisalsobelievedtohavebeenacontributingfactorintheDeepwaterHorizon

    accidentintheGulfofMexico.Formationofgashydrateshamperedthecontainmentofthe

    blowoutafterthecatastrophewasafact.

    1

  • 7/29/2019 12 Helgeland

    5/26

    2. Gas hydrates

    Gashydratesaresolidice-likestructures

    containinggasmolecules.Theybelongtoa

    groupofsubstancescalledclathrates,whichisa

    chemicalsubstanceconsistingofacrystal

    structureofonetypeofmoleculetrappingand

    containingasecondtypeofmolecule[1].Inthe

    caseofgashydrates,watercreatesthecrystal

    structureandnaturalgasmoleculesare

    trappedinside,asshowninFigure2.1.

    Threedifferentstructuresofhydrateshave

    beenidentiBied:I,IIandH.Theseareillustrated

    inFigure2.2.Gashydratesusuallyforminthe

    twoBirststructures.StructureIconsistsof46watermolecules,formingsmallandlargecages.

    Thesmallcageisshapedlikeapentagonaldodecahedron(ageometricalshapewithtwelve

    BlatfaceseachhavingBiveangels,written512),andthelargecageisshapedlikeahexagonal

    truncatedtrapezohedron(14Blatfaces,twelveofthemwithBiveanglesandtwowithsix

    angles,written51262).StructureIIconsistsof136watermolecules,alsoformingsmalland

    largecages.ThesmallcageisthesameasintypeI,butthelargeoneisshapedlikea

    hexadecahedron(16Blatfaces,twelveofthemwithBiveanglesandfourofthemwithsix

    angles,written51264)[2].Thesetwostructuresarestabilizedwhengasmoleculesaretrapped

    insidethecages[3].

    2

    Figure 2.1: Gas molecules trapped inside a crystal water

    structure [1]

  • 7/29/2019 12 Helgeland

    6/26

    Gasesthatarelikelytoformhydratesalongwithwaterare[4]:

    Lightalkanes(methaneandiso-butane)

    Carbondioxide

    HydrogensulBide

    Nitrogen

    Oxygen

    Argon

    Animportantfeatureofgashydratesisthatonecubicmeterofsolidhydratecancontainupto

    180standardcubicmetersofgas,dependingonthegas.Methaneisthepredominantgasin

    naturaloccurringhydrates,makingup>99%ofhydrateintheoceanBloor[5].Formethane,

    thevalueisabout164sm3[6].

    Gashydratesformwhenwaterandgassesaremixedatrelativelyhighpressuresand

    relativelylowtemperatures.Whilewaterformicecrystalsattemperaturesof0Candbelow,

    gashydratescanformattemperaturesabovethisassoonasthepressureishigherthanafew

    tensofbars,asshowninFigure2.3.Typicalconditionsforformationofhydratesare

    pressuresabove30barsandtemperaturesbelow20C[3].Shallowdepthsoffshorecanhave

    3

    Figure 2.2: Structures of hydrates [3].

  • 7/29/2019 12 Helgeland

    7/26

    theseproperties,usuallybetween100mand500mbelowtheoceanBloor[4].Thedepth

    wheregashydrateswillformiscalledtheGasHydrateStabilityZone(GHSZ).

    2.1. Formation of gas hydrate zones

    Themethaneingashydratesisformedbybacteriainaprocesscalledanaerobicbacterial

    methanogenesis.acteriahavebeenfoundatdepthsofupto800mbelowtheseaBloorin

    marinesediments,andcanbeactiveattemperaturesupto113Candpressuresabove1000

    bar[8].Thismeansthatthemethanemaybeformedwithinthegashydratestabilityzone

    (GHSZ),oritcanmigratefromdeepersedimentsuntilitreachestheGHSZ.Atthisdepth,it

    willformgashydratesifwaterispresent.

    Gashydratesinoffshoresedimentscanexistinmanydifferentforms.InBinesilt/clayitoften

    appearsasnodulesandveins,whileincoarse-grainedsedimentsitoftenformsas

    disseminatedgrainsandporeBillings[6].Differentformsofgashydrateoccurrencesare

    showninFigure2.4.

    4

    Figure 2.3: Gas hydrate phase diagram [7].

  • 7/29/2019 12 Helgeland

    8/26

    2.2.Detection of gas hydrates

    TobeabletoplanhowtomoveforwardindrillingthroughHydrateearingSediments(HS),

    itiscrucialtodetectthezonesbeforedrillingcommences.Inordertodothis,acoustical

    methodsareused,speciBicallycollectionofseismicdata.Thepresenceofgashydratesin

    sedimentswillbeclearlyindicatedontheseismicdata,asitsacousticvelocityisveryhigh

    (around3.3km/s,whichisabouttwicethevelocityofnormalsediments)[9].Two

    characteristicsinseismicdataareusedtodetecthydratelocations;ottomSimulating

    ReBlection(SR),andaphenomenoncalledblanking.

    SRsarethemostwidelyusedindicatorforgashydratezonesoffshore.TheSRsmarkthe

    phaseboundarybetweentheGHSZandthefreegaszonebelow.Seismicdatarecordsthe

    reBlectionstrength,whichisproportionaltothechangeofacousticimpedance(theproductof

    velocityanddensity).Asboththedensityandseismicvelocityinfreegasismuchlowerthan

    ingashydrates,theboundarybetweenthezonesproducesaverystrongreBlectioninthe

    seismicdata[9].

    Inseismicdata,blankingisalocationwherethereisreductioninseismicreBlections,

    resultinginanearlyblankzone.Thepresenceofgashydratesinporousmediaincreasesthe

    averageacousticalvelocityinthelayers,resultinginreducedvelocitycontraststhatare

    5

    Figure 2.4: Potential gas hydrate occurrences [6].

  • 7/29/2019 12 Helgeland

    9/26

    requiredtocreatestrongreBlections.Ingashydratezones,blankingwillthereforeoccur

    abovetheSR[9].lankingandSRsareshowninFigure2.5below.

    6

    Figure 2.5: Blanking and BSR [9].

  • 7/29/2019 12 Helgeland

    10/26

    3. Gas kick

    ThedeBinitionofakickisBlowofformationBluidsintothewellboreduringdrilling.Formation

    Bluidswillenterthewellborewheneverthewellborepressuredropsbelowtheporepressure

    (giventhattheporesarepermeable).TheformationBluidwillkickthedrillingmudoutof

    thewell,resultinginasuddenincreaseinmudpitvolumeonthesurface[10].

    Kickscanbecategorizedintwogroups[11]:

    Underbalancedkicks:ThistypeofkickistheresultofmudweightbeinginsufBicientof

    keepingtheformationBluidtrapped.Thiscanhappenwhendrillingthroughzones

    withhigherpore-pressurethanexpected,ifthedrillingBluidislightenedornotto

    speciBicationtobeginwith.

    Inducedkicks:Thistypeofkickoccursifdynamicandtransientpressureeffectslower

    thepressureinthewell.Forexamplewhenpullingdrillstringoutofthewell.

    Kicksduetohydratedissociationwillbeexplainedinchapter4.

    Whendetectingakick,itisimportanttotakeactiontopreventfurtherlossofcontrolofthe

    well.Fordrillersitisimportanttobeabletopredictgasbehavior,assmallvolumesofgascan

    bepotentiallydangerousbecauseofthehugeexpansion.

    Ifthemaximumallowedannularshut-inpressureishigherthanthecasingpressure,killing

    thewellisthestandardprocedure.Inordertokillawell,anewoverbalanceintheborehole

    7

    Figure 3.1: Formation fluid entering wellbore [10]

  • 7/29/2019 12 Helgeland

    11/26

    mustberestored.Pumpingdrillingmudwithhigherdensityrestoresthisoverbalance.There

    aretwomainkilling-methodsusedintheindustrytoday[12]:

    Drillersmethod,inthismethodtheformationBluidisdisplacedbeforeinjectingthekill

    mud.Thisisthemostcommonmethodofrestoringanoverbalanceafterakickhas

    beendetected.

    Engineersmethodorthewait&weightmethodasitisoftencalled,increasesthemud

    weightandstartspumpinginkillmudimmediately.

    Failuretotakeproperactionwhenakickisdetectedcaninworstcasescenariosleadtothe

    developmentofablowout.AblowoutistheuncontrolledBlowofreservoirBluidsintothe

    wellbore.Themosttroublesomeblowoutsaretheundergroundblowouts,wherereservoir

    BluidfromazonewithhighpressureBlowsintoazonewithlowerpressurewithinthe

    wellbore[11].UndergroundblowoutsareverydifBiculttobringundercontrol,anditmay

    takemonthstostoptheblowout.Ablowoutcanresultinseriousdamage.Lossofhumanlives,

    largematerialandeconomicallossesarecommon.

    8

  • 7/29/2019 12 Helgeland

    12/26

    4. Drilling through hydrates

    WhenHSaredrilledthroughachangeinpressureandtemperaturemayoccurandcausethe

    hydratestobecomeunstable[13].Asexplainedinchapter2,if1m3ofmethanehydrate

    dissociate,itwillproduce164m3methanegas.Whenavolumechangelikethathappensitwill

    resultinakick,orinworstcasescenarioablowout.Attheshallowdepthswheregashydrates

    usuallyareencountered,theblowoutpreventer(OP),riser,choke-andkilllinesare

    normallynotinstalled[4].Hydratedissociationintheformationmaycauseproblemswith

    wellborestabilityandsubsurfaceequipment,whichcanleadtoreducedefBiciencyandsafety

    issuesofdrillingoperations.Gashydratescanalsobeencounteredatgreaterdepthswhenthe

    OPandriserareinstalled.Equipmentonsurfaceandsubsurfacearemoreexposedtodanger

    inthiscasebecausetherapidlyincreaseinvolumewillinvolveahugestrainonthe

    equipment[4].Wellboreinstabilityduetohydratedissociationismainlycausedbytwo

    problems:

    Whenthehydratesdissociateinthewellbore,thedrillingmudwillexperiencea

    reductionindensityandachangeinrheologyduetodissolvedgas.Thismayleadtoan

    enlargementofthewellboreandevencollapseofthehole.

    Whenhydratesdissociate,thesurroundingsedimentsmayexperienceanincreasein

    permeabilityandareductioninstrength[13].

    WhendrillingthroughHS,severalproblemscanbeencountered.Someoftheseare:

    Subsidence,stuckpipe,gasleakingontheoutsideofthecasingandaninefBicientcementjob.

    AnotherproblemisthatthedrillingwindowinHSisnotwellunderstood.Whendrilling

    throughgashydratesyouneedtostayabovethecollapsepressure,belowthefracture

    pressure,andatthesametimemanagethedissociationtemperatureandpressureofthe

    hydrates[15].Failuretodothiscanleadtoagaskick.

    WhendissolvedgasBlowstowardsthesurface,hydratesmayagainform.Someofthe

    problemsthatmaybeencounteredonsubsurfaceequipmentaredescribedbelow[4]:

    ChokeandKill-lineplugging:ThiscausesdifBicultyintheuseofthelinesduringwell

    circulation

    9

  • 7/29/2019 12 Helgeland

    13/26

    PlugformationatorbelowtheOP:Well-pressuremonitoringbelowtheOPs

    becomesimpossibleordifBicult

    Plugformationaroundthedrillstringintheriser,OPsorcasing:Makesthedrill

    stringmovementaproblem

    PlugformationbetweenthedrillstringandOPs:Thiscausesproblemsinthefull

    closureoftheOPswhennecessary

    PlugformationintheramcavityoftheOPs:CausesdifBicultyinopeningtheOPs

    fully.

    UnawarenessofHSwhendrillingawelliscurrentlythemostprominentdrillinghazard.

    [15].Inthefuturewearemostlikelyforcedtodrillindeeperwaters,arcticenvironmentsand

    possiblyproducehydratesasasourceofenergy.Inordertodothisinasafemannerweneed

    tounderstandandcontroltheproblemswecurrentlyarefacingregardinggashydrates.

    4.1.Possiblehydrate-relatedkickinthedeepwaterGulfofMexico

    AnappraisalwellontheShenziBieldinthenorthernGulfofMexicoexperiencedissuesrelated

    topossiblehydrateformationsaftercementingthe22casing.Thewaterdepthatthis

    particularwellis1323meters.Insuchgreatwaterdepthsthepressureandtemperature

    conditionsareidealforhydratestoforminastablestructure.

    10

    Figure 4.1: Graphical sketch displaying the problems that may be encountered when drilling through HBS [4]

  • 7/29/2019 12 Helgeland

    14/26

    Thedrillingoperationwasperformedasfollowing:The22casingwasdrilledtoadepthof

    2203metersMDandcementedinplace.WhenthecementreturnsreachedtheseaBloor,a

    minorannularBlowofBluidizedsedimentsdroppingfromthecementportsweredetectedbya

    subsearemotelyoperatedvehicle(ROV).Furtherdrillingoperationswhereputonholdfor

    overaweektocheckandrepairequipment.DuringthisweektheROVdetectedadecreasein

    BlowofBluidizedsediments,untilonlybubbleswereBlowingslowlyoutofthecementports

    whichwerepartiallycloggedwithhydrates.TheROVcollectedsomesamplesofthebubbles

    anditwasdeterminedtobe100%methane.Thedrillingwasresumedand16casingwasset

    insaltat3560meters.TheROVdetectedthattheBlowrateofbubblesincreasedduringboth

    drillingoperationsandwhenthecasingwascementedinplace.Ontheotherhand,adecrease

    ofbubbleBlowrateweredetectedwhendrillingoperationswereputonholdforleakofftest

    andequipmentrepairs.AccordingtotheinformationfromtheROVtheBluidizedsediments

    seemstobearesultofanexothermicreactionduringcementingandthecirculationofwarm

    drillingmudthroughthewell.ThisevidencestronglysuggeststhattheBluidizedsediments

    andsubsequentgasbubbleswerearesultofdissociatedin-situgashydrates[17].

    asedonthefactthatBluidizedsedimentsandbubbleswereBlowingoutofthecementports,

    animproved3DseismicobtainedfrommeasurementswhiledrillingwasscreenedforSRs

    andothergeophysicalindicationsofhydratedeposits.Amaximumnegativeamplitudeextractionwasgeneratedonthesurfacetoapproximately914metersbelowmudlineto

    identifypossiblehigh-amplitudegasanomalies.Theresultsgaveseveralindicationsof

    shallowgasanomalies,theshallowestatonly405metersbelowmudline.Aplotofthegas

    anomalieswheremadeandiscalledaSR,whichisexplainedinchapter2.2.

    Althoughhydratedissociationinthisparticularcasedidnotnegativelyimpactthedrilling

    operation,besidesstoppingdrillingforaweek,itisworthnoticingthatmassivedissociation

    ofhydratescouldpresentapotentialrisk.Earlyobservationsofpossiblehydratedissociation

    arethereforepreferred.Possibletechniquesfordeterminingtheamount,distributionand

    presenceofhydratesaregeotechnicalinvestigations,MeasuringWhileDrilling,borehole

    wirelineloggingandseismicinversions[17].

    .

    11

  • 7/29/2019 12 Helgeland

    15/26

    4.2.DeepwaterHorizondidhydratescausetheblowout?

    Thesemi-submersiblerigDeepwaterHorizon

    experiencedagasreleaseandasubsequentexplosionat

    21:49CentralTimeonthe20thofApril2010[18].The

    blowoutoccurredwhendrillinganexploratorywellin

    theMacandoBieldintheGulfofMexicoat1500meters

    seadepth.Therewere126personsworkingontherig

    atthetimeoftheaccident,whereaselevenpersonslost

    theirlives[19].

    Complicationsfromthecementjobareconsideredas

    oneofthereasonstotheaccidentatDeepwaterHorizon.Halliburtonperformedthecement

    job[20].Just20hoursbeforetheaccident,cementwaspumpeddownthewelltosetcasing[21].TheseabedintheGulfofMexicoiswellknownforcontainingvastamountsofgas

    12

    Figure 4.2: 3-D seismic showing gas anomalies, this kind of plotting is called a BSR. [17]

    Figure 4.3: Incident site [19]

  • 7/29/2019 12 Helgeland

    16/26

    hydrates.Aswillbeexplainedinchapter5.3,thesettingofcementleadstoreleaseofheat.

    Thecementwillbeindirectcontactwiththeformation,asitispumpedbetweenthecasing

    andtheformation.Onetheoryisthattheheatreleasedfromthecementcouldhaveaffected

    thestabilityofgashydratesintheformation,leadingthemtomelt.Anotheristhatmeltingof

    hydratesduringdrillingcreatedlargecavesinthewell,sothatwhencementwaspumped,it

    wasnotsufBicienttocementtheentirecasinginplace.Furthermeltingofthehydrateswould

    thenleadtoagaskickoutsidethecasing,andwithnocementtostopthegas,itwouldreach

    thesurface.Survivorsoftheaccidentexplainedthatjustbeforetheexplosion,thepressure

    hadbeenreducedinthedrillcolumnandheatwasappliedtosetthecementsealaroundthe

    wellhead.Anexpandingbubbleofmethanethenbrokethroughvarioussafetybarriersbefore

    explodingontheplatform[22].

    Gashydratesalsoplayedamajorroleinthefailureofcontainingtheleakduringdrillingofthe

    reliefwell.Pconstructeda100tonnedomeplanningtoplaceitovertheleak,guidingtheoil

    throughafunneltobecollectedonavessel,asshowninBigure4.4.Thedomewasplacedover

    theleakthe7thofMay.Tendayslatertheyconcludedthattheoperationwasafailure.Asoil

    andgaswastransferredupthefunnel,thegasreactedwithwatertoformgashydrates,and

    quicklypluggedthepipe[20].

    13

    Figure 4.4: Dome placed over the leak [23]

  • 7/29/2019 12 Helgeland

    17/26

    5. Avoiding gas hydrate problems

    HShasbeendrilledthroughsuccessfully,eventhoughtherehavebeenreportedcasesof

    blowoutscausedbyhydratedissociation.othinitialformationcharacteristicsandbottom-

    holeconditionslikemudtemperatureandpressure,willdecidetheamountofgashydrate

    thatisdissociated.

    TodrillsafelythroughHS,wehavetodevelopabetterunderstandingofgashydrates,so

    thatweareabletoidentifyproblemsthatmayoccurandhowtopreventthem.Some

    techniquesadoptedsofar[13]:

    CoolingthedrillingBluid.

    Increasingthemudweighttostabilizethehydrates,butavoidingfracturingtheHS.

    AddingchemicalinhibitorsandkineticadditivestothedrillingBluidtopreventhydrate

    formationandtoreducehydratedestabilizationintheformation.

    Acceleratingdrillingbyrunningcasingimmediatelyafterhydratesareencountered

    andusingacementofhighstrengthandlowheatofhydration.

    Tostaywithinasafeoperationalenvelopewhendrillingthroughgashydrates,youhaveto

    assesstheallowabledrillingparameters:

    MudWeight

    Composition

    Temperature

    Youalsohavetoevaluatefactorslike[13]:

    EffectofdrillingBluidonheatingtheformationandchangingthestressesandpore

    pressure

    Effectofheatontheformationsthermodynamicstabilityofthehydratesandwellbore

    stability

    EffectofreductioninHSstrengthandlossofcohesionduetohydratedissociation.

    Therefore,modelingwellborestabilityinHSrequiresconsiderationofvariousmechanisms

    14

  • 7/29/2019 12 Helgeland

    18/26

    GashydratescancauseproblemsbothduringandafterHSareencountered.Whendrilling

    through,piecesofhydratearecarriedupbytheBluidandturnedintogasbecauseofpressure

    andtemperaturechanges.Oncepastthezone,gashydrateatthefrontoftheholecancontinue

    todissociateduetotemperatureandpressureinthemud.othscenariosreleasesgasintothe

    mud,alteringitsrheology,whichcanbedangerousifnottakenintoconsiderationwhen

    designingthemud.Soitisimportanttochoosetherightdrillingmethodandmud,todeal

    withtheissuebothduringandafterdrilling.

    5.1. Drilling techniques to help prevent problems with hydrates [24]

    ManagedPressureDrilling(MPD)

    MPDhaveauniqueapplication,itisadrillingprocessusedtocontrolthepressureproBile

    throughoutthewellbore.MPDtechniquesmaypreventformationinBluxbyascertainingthe

    pressuresinthewellborewithintheenvironmentlimits.Itallowsforfastercorrectiveaction,

    asitmayincludecontrolofbackpressure,Bluiddensity,Bluidrheology,annularBluidlevels,

    circulatingfrictionandholegeometry.ThisprovidesbettercontrolifformationinBluxis

    encountered,whichmeansthatthistechniquecanbeusedinwellswithnarrowpressure

    windows.

    SlimandInsulatedMarineRiser

    Drillingindeep-seaandcoldwater,thereisaneedforinsulatedrisers.Slimmerrisermeans

    thereturnswillhavehighervelocity.WhendrillingthroughHStherewillbelesstimefor

    heattransfertowarmthereturns,whichagainminimizesthedissociationofhydrates.

    Drillingwithcasing

    Theformationmightberatherfragileandthewellboreshouldbecasedasquicklyaspossible.

    Aone-tripdrillingsystem,thatcarriescasingwithitandthepossibilityforfastcementing

    couldbetheanswer.Drillingwithcasingsolvesthis.Insteadofdrillpipe,casingisusedand

    cementedinplaceassoonasthesectionisdrilled.Thisprotectswellborefromtheformation

    andHSandpreventsinBlux.

    15

  • 7/29/2019 12 Helgeland

    19/26

    5.2. Drilling fluid design [25]

    WhendesigningadrillingBluidtobeagashydrateinhibitor,characteristicsincludedshouldbe[26]:

    Lowestpossibledensitywithmaximumhydratesuppression

    CompatibilitywithmostcommondrillingBluidcomponents

    CompatibilitywithmostsaltstobalancehydratessuppressionandBluiddensity

    Provideshaleinhibitionforadequateboreholeanddrillcuttingsstability

    Ashydratescanforminpipes,OP,risersetc.itisimportantthatonceawellisintheGHSZ,

    hydrateinhibitors/suppressorsareaddedtothedrillingBluid.

    Wellsarebeingdrilleddeeper,andtheneedforimprovedandcustomizeddrillingBluidto

    handlethevaryingconditionisneeded.Itmustdealwithchangingmudlinetemperaturesto

    preventhydratesfromformingandmaintainingthedrillingBluidproperties.Agoodwaytodo

    thisismakingsalinedrillingBluids,whichmeansaddingsalts.Thishasprovensuccessfulin

    wellsdowntoabout2300minthegulfofMexico.HighperformancedrillingBluidsisagoodwaytohelpstophydratesfromblockingtheOPandchokelines.TheNorthSeahasalower

    mudlinetemperature,sothermodynamicinhibitorsmaynotbesufBicienttopreventhydrates

    fromformingandadditionaladditivesmightbeneeded.

    Syntheticbasedmud

    Syntheticbasedmudisalowtoxicityoilbasedmud.Dependingonthepressure,themudwill

    absorbthegasandreducetheamountofgasreachingtheOPsandchokelines.

    KineticInhibitorsandCrystalModiiers

    Anotherwayistoslowdowntheprocessandpreventtheagglomerationofgashydrate

    formation,onewaytodothatisbyusingcrystalmodiBiers.Thisisaprocessthatusesmostly

    polymericandsurfactant-basedchemicalstoalterthenucleation(aphysicalreactionthat

    occurswhenpartsofasolutionstartstoprecipitateout)andgrowthofhydratecrystals.Can

    alsousekineticinhibitorstopreventcriticalnucleifromappearingandbythatinhibiting

    formation.Thesechemicalswillnotstopgashydratesfromdissociating,butinhibiting

    16

  • 7/29/2019 12 Helgeland

    20/26

    formationofitinpipes,OPetc.Thechallengewiththismethodisthesurfaceacitivityofthe

    kineticinhibitorandchoosingtherightchemicalsinhighsalinitydrillingBluid.

    Gashydratepills

    Gashydratepillscontainhighlyinhibitiveformulationsandcanbeutilizedwhenneeded.This

    meansthatthepillsareplacedinOPs,chokeandkilllinesetc.andwhenagaskick,shut

    downorabandonmentoccurs,thesepillsareactivated,preventinggashydratefromforming.

    5.3. Cement [27]

    Ascasingisruninthehole,ithastobecementedinplaceasfastaspossibletostabilizethe

    wellbore.Cementhasanexothermicreactionwithwater,heatingthecement.Thehydration

    ratedependsonthevariouscomponentsofthedrillingBluidandalsoonthetemperatureof

    thesurroundings.Deepwaterwellsarearealchallengeconsideringthelowsurrounding

    temperatures.Lowertemperatureswilldecreasethehydrationrate,causingthecementtoset

    moreslowly.Theheatreleasedwillthenhavemoretimetodestabilizethegashydratesand

    possiblyweakenthecement.Tobeabletodealwiththisproblem,cementdesignedto

    preventdestabilizationofgashydrateshastobeused.Ingredientshavetobechosen

    dependingonwellpropertiesandtestingtheadiabatictemperaturerisetoBindamixthatdo

    notreleaseheatabovethehydratedestabilizationpoint.OneexampleofthiscanbeusingC2S

    insteadofC3S,asC2Sonlyreleasesalmostathirdoftheheattothesurroundingscompared

    toC3S.

    2C3S+6HC3S2H3+3CH;H=-114KJ/mole

    2C2S+4HC3S2H3+3CH;H=-43KJ/mole

    IfrunningcasingasquicklyaspossibleafterdrillingpasttheHSzoneandchoosingtheright

    cementslurry,youcanavoidalotofproblemsandmakeasaferwell.

    17

  • 7/29/2019 12 Helgeland

    21/26

    6. Discussion

    Therehasonlybeenreportedminorincidentsofkicksduetohydratedissociationduring

    drilling.Asweareforcedintocolderenvironments,suchasthearctic,thismaybecomea

    morecommonproblem.Hydratescanbeencounteredatshallowdepthsandprettymuchall

    overtheglobe.Thevastdistributionofhydratesgivesreasontobelievethatkicksdueto

    hydratedissociationoccurfairlyoften.

    Dissociationofhydratesmayhavebeenacontributingfactorintheblowoutaccidenton

    DeepwaterHorizon.Whetherornotthisactuallywasacontributingfactor,israther

    uncertain.ItisdocumentedandwellknownthattheGulfofMexicocontainsvastamountsof

    gashydrates,whichposestheopportunitythathydratesmayhavedissociatedandcreateda

    largebubbleofmethane.IfthiswasthecaseonDeepwaterHorizon,itmayalsohaveoccurred

    inotherplacesaswell.

    InordertoBindmorehydrocarbonsinthefuturewearemostlikelyforcedintoareaswhere

    hydratesarestronglypresent.Whetherornothydrateswillposeadrillinghazardinthese

    areasissomewhatunclear,butiflargeamountsofhydratesareencountereditmaypose

    someseriousrisksthatshouldbetakeninaccountduringwellplanning.

    18

  • 7/29/2019 12 Helgeland

    22/26

    7. Conclusion

    Thispaperhasexplainedanddiscussedhydratechallengeswhendrillingforoffshorenatural

    gasandoil.Gaskicksasaresultofhydratesarenotcommonintheindustrytoday,butitis

    likelytoseemoreofthisinthefutureastheindustrypushesforwardtolookfor

    hydrocarbonsinmoreextremelocations.

    HydrateswerealsoinvestigatedasapotentialcontributorintheDeepwaterHorizonaccident.

    Hydrateswasfoundtobeapossiblecontributingfactortotheaccident,anditmadeattempts

    oflimitingtheextentofthedamagesharder.Attemptstoplaceadomeontopofthewell

    failedduetohydratespluggingthepipe.

    Differentmethodsofalteringthemudpropertyanddifferentdrillingtechniqueswere

    investigatedaspreventivemeasuresagainsthydrateforming.EarlyidentiBicationofhydrate

    zonesbycollectionofseismicdatawasalsofoundtobekeytoensurethatpreventiveactions

    canbetakenbeforehydrateproblemsoccur.

    Althoughsomesolutionswereproposedinthispapertopreventhydrateproblemsitwas

    foundthatafurtherunderstandingofhydratesisneededtoeffectivelysolvethechallenges

    ahead.

    19

  • 7/29/2019 12 Helgeland

    23/26

    8. Abbreviations

    OP-lowoutpreventer

    SR-ottomSimulatingReBlection

    GHSZ-Gashydratestabilityzone

    HS-HydrateearingSediments

    MPD-ManagedPressureDrilling

    ROV-RemotelyOperatedVehicle

    20

  • 7/29/2019 12 Helgeland

    24/26

    9. References

    [1]: Skalle, P., Pressure control during oil well drilling, Chapter 7, Special offshore safety issues,

    second edition: Ventus Publishing,http://bookboon.com/en/textbooks/geoscience/pressure-control-

    during-oil-well-drilling (accessed 3 October 2012).

    [2]: Wikipedia, Clathrate hydrate [online]. http://en.wikipedia.org/wiki/

    Clathrate_hydrate#Natural_gas_hydrates (accessed 17 October 2012).

    [3]: Sinquin, A., Palermo, T. and Peysson, Y.: Rheological and Flow Properties of

    Gas Hydrate Suspensions, Oil and Gas Science and Technology Journal.

    [4]: Amodu, A. A., Drilling through gas hydrate formations: possible problems and suggested

    solutions, MS thesis, Texas A&M University, Texas, Houston (August 2008).

    [5]: Dillon, W.P. and Max, M.D., Oceanic Gas Hydrates, Chapter 6,Natural Gas Hydrate in

    Oceanic and Permafrost Environments, 2003.

    [6]: Thomas, C. P., Methane hydrates: Major energy source for the future or wishful thinking?,

    SPE-71452, paper presented at the SPE 2001 Annual Technical Conference and Exhibition, New

    Orleans, Louisiana, U.S.A., 30 September-3 October 2001. http://dx.doi.org/10.2118/71452-MS.

    [7]: Sandengen, K., Hydrates and Glycols [online], Downloaded from:http://www.ipt.ntnu.no/

    ~jsg/undervisning/naturgass/lysark/LysarkSandengen2010.pdf (accessed 5 October 2012).

    [8]: Dillon, W.P. and Max, M.D., Oceanic Gas Hydrates, Chapter 8,Deep Biosphere: Source of

    Methane for Oceanic Hydrate, 2003.

    [9]: Dillon, W.P. and Max, M.D., Oceanic Gas Hydrates, Chapter 13, The U.S. Atlantic

    Continental Margin; the Best-Known Gas Hydrate Locality, 2003.

    [10]: Skalle, P., Pressure control during oil well drilling, Chapter 1,Introduction.

    [11]: Schlumberger Oilfield glossary, Blowout [online]. http://www.glossary.oilfield.slb.com/

    Display.cfm?Term=blowout (accessed 19 October 2012).

    [12]: Skalle, P., Pressure control during oil well drilling, Chapter 4, Standard killing methods.

    21

    http://www.glossary.oilfield.slb.com/Display.cfm?Term=blowouthttp://www.glossary.oilfield.slb.com/Display.cfm?Term=blowouthttp://www.glossary.oilfield.slb.com/Display.cfm?Term=blowouthttp://www.glossary.oilfield.slb.com/Display.cfm?Term=blowouthttp://www.glossary.oilfield.slb.com/Display.cfm?Term=blowouthttp://www.ipt.ntnu.no/~jsg/undervisning/naturgass/lysark/LysarkSandengen2010.pdfhttp://www.ipt.ntnu.no/~jsg/undervisning/naturgass/lysark/LysarkSandengen2010.pdfhttp://www.ipt.ntnu.no/~jsg/undervisning/naturgass/lysark/LysarkSandengen2010.pdfhttp://dx.doi.org/10.2118/71452-MShttp://en.wikipedia.org/wiki/Clathrate_hydrate#Natural_gas_hydrateshttp://en.wikipedia.org/wiki/Clathrate_hydrate#Natural_gas_hydrateshttp://en.wikipedia.org/wiki/Clathrate_hydrate#Natural_gas_hydrateshttp://en.wikipedia.org/wiki/Clathrate_hydrate#Natural_gas_hydrateshttp://bookboon.com/en/textbooks/geoscience/pressure-control-during-oil-well-drillinghttp://bookboon.com/en/textbooks/geoscience/pressure-control-during-oil-well-drillinghttp://bookboon.com/en/textbooks/geoscience/pressure-control-during-oil-well-drillinghttp://www.glossary.oilfield.slb.com/Display.cfm?Term=blowouthttp://www.glossary.oilfield.slb.com/Display.cfm?Term=blowouthttp://www.glossary.oilfield.slb.com/Display.cfm?Term=blowouthttp://www.glossary.oilfield.slb.com/Display.cfm?Term=blowouthttp://www.ipt.ntnu.no/~jsg/undervisning/naturgass/lysark/LysarkSandengen2010.pdfhttp://www.ipt.ntnu.no/~jsg/undervisning/naturgass/lysark/LysarkSandengen2010.pdfhttp://www.ipt.ntnu.no/~jsg/undervisning/naturgass/lysark/LysarkSandengen2010.pdfhttp://www.ipt.ntnu.no/~jsg/undervisning/naturgass/lysark/LysarkSandengen2010.pdfhttp://dx.doi.org/10.2118/71452-MShttp://dx.doi.org/10.2118/71452-MShttp://en.wikipedia.org/wiki/Clathrate_hydrate#Natural_gas_hydrateshttp://en.wikipedia.org/wiki/Clathrate_hydrate#Natural_gas_hydrateshttp://en.wikipedia.org/wiki/Clathrate_hydrate#Natural_gas_hydrateshttp://en.wikipedia.org/wiki/Clathrate_hydrate#Natural_gas_hydrateshttp://bookboon.com/en/textbooks/geoscience/pressure-control-during-oil-well-drillinghttp://bookboon.com/en/textbooks/geoscience/pressure-control-during-oil-well-drillinghttp://bookboon.com/en/textbooks/geoscience/pressure-control-during-oil-well-drillinghttp://bookboon.com/en/textbooks/geoscience/pressure-control-during-oil-well-drilling
  • 7/29/2019 12 Helgeland

    25/26

    [13]: Khabibullin, T., Falcone, G. and Teodoriu, C., Drilling Through Gas Hydrate Sediments:

    Managing Wellbore Stability Risks, SPE-131332, June 2006. http://dx.doi.org/10.2118/131332-

    MS.

    [14]: Kadaster, A. G., Millheim, K. K. And Thompson, T. W., The planning and drilling of hot ice

    #1 Gas hydrate exploration well in the Alaskan arctic, SPE/IADC-92764, paper presented at the

    SPE/IADC Drilling Conference, Amsterdam, TheNetherlands, 23-25 February 2005. http://

    dx.doi.org/10.2118/92764-MS.

    [15] Qadir, M. I., Gas hydrates: A fuel for future but wrapped in drilling challenges, SPE-156516,

    paper presented at SPE/PAPG Annual Technical Conference, Islamabad, Pakistan, 22-23November

    2011. http://dx.doi.org/10.2118/156516-MS.

    [16]:Nimblett,J.N.,Shipp,R.C.andStrijbos,F.,GasHydrateasaDrillingHazard:Examples

    fromGlobalDeepwaterSettings,OTC17476,paperpresentedatthe2005Offshore

    TechnologyConference,Houston,Texas,U.S.A.,2-5May2005.http://dx.doi.org/10.4043/17476-

    MS.

    [17]: Williamson, S. C., McConnell, D. R. and Bruce, R. J., Drilling Observations of Possible

    Hydrate-Related Annular Flow in the Deepwater Gulf of Mexico and Implications on Well

    Planning, OTC 17279, paper presented at the 2005 Offshore Technology Conference, Houston,

    Texas, U.S.A., 2-5 May 2005. http://dx.doi.org/10.4043/17279-MS.

    [18]: Rogers, S.,BP oil spill: the official Deepwater Horizon disaster timeline [online]. http://

    www.guardian.co.uk/news/datablog/2010/sep/09/bp-oil-spill-deepwater-horizon-timeline (in press;

    published online 9 September 2010, accessed 11 October 2012).

    [19]: BP, Deepwater Horizon accident [online]. http://www.bp.com/sectiongenericarticle800.do?

    categoryId=9036575&contentId=7067541 (accessed 24 October 2012).

    [20]:JonesJ.C.,The2010GulfCoastOilSpill2010,Birstedition:VentusPublishing,http://

    bookboon.com/no/laereboker/petroleum-gas-olie/the-2010-gulf-coast-oil-spill(accessed21

    October2012).

    [21]:Shoegren,E.,Cementing Becomes One Focus In Gulf Oil Probe [online]. http://

    www.npr.org/templates/story/story.php?storyId=126536457(inpress;publishedonline5

    May2010,accessed17October2012).

    22

    http://www.npr.org/templates/story/story.php?storyId=126536457http://bookboon.com/no/laereboker/petroleum-gas-olie/the-2010-gulf-coast-oil-spillhttp://www.bp.com/sectiongenericarticle800.do?categoryId=9036575&contentId=7067541http://www.bp.com/sectiongenericarticle800.do?categoryId=9036575&contentId=7067541http://www.bp.com/sectiongenericarticle800.do?categoryId=9036575&contentId=7067541http://www.bp.com/sectiongenericarticle800.do?categoryId=9036575&contentId=7067541http://www.guardian.co.uk/news/datablog/2010/sep/09/bp-oil-spill-deepwater-horizon-timelinehttp://dx.doi.org/10.4043/17279-MShttp://dx.doi.org/10.4043/17476-MShttp://dx.doi.org/10.4043/17476-MShttp://dx.doi.org/10.4043/17476-MShttp://dx.doi.org/10.2118/156516-MShttp://dx.doi.org/10.2118/156516-MShttp://dx.doi.org/10.2118/92764-MShttp://dx.doi.org/10.2118/131332-MShttp://dx.doi.org/10.2118/131332-MShttp://www.npr.org/templates/story/story.php?storyId=126536457http://www.npr.org/templates/story/story.php?storyId=126536457http://www.npr.org/templates/story/story.php?storyId=126536457http://www.npr.org/templates/story/story.php?storyId=126536457http://bookboon.com/no/laereboker/petroleum-gas-olie/the-2010-gulf-coast-oil-spillhttp://bookboon.com/no/laereboker/petroleum-gas-olie/the-2010-gulf-coast-oil-spillhttp://bookboon.com/no/laereboker/petroleum-gas-olie/the-2010-gulf-coast-oil-spillhttp://bookboon.com/no/laereboker/petroleum-gas-olie/the-2010-gulf-coast-oil-spillhttp://www.bp.com/sectiongenericarticle800.do?categoryId=9036575&contentId=7067541http://www.bp.com/sectiongenericarticle800.do?categoryId=9036575&contentId=7067541http://www.bp.com/sectiongenericarticle800.do?categoryId=9036575&contentId=7067541http://www.bp.com/sectiongenericarticle800.do?categoryId=9036575&contentId=7067541http://www.guardian.co.uk/news/datablog/2010/sep/09/bp-oil-spill-deepwater-horizon-timelinehttp://www.guardian.co.uk/news/datablog/2010/sep/09/bp-oil-spill-deepwater-horizon-timelinehttp://www.guardian.co.uk/news/datablog/2010/sep/09/bp-oil-spill-deepwater-horizon-timelinehttp://www.guardian.co.uk/news/datablog/2010/sep/09/bp-oil-spill-deepwater-horizon-timelinehttp://dx.doi.org/10.4043/17279-MShttp://dx.doi.org/10.4043/17279-MShttp://dx.doi.org/10.4043/17476-MShttp://dx.doi.org/10.4043/17476-MShttp://dx.doi.org/10.4043/17476-MShttp://dx.doi.org/10.4043/17476-MShttp://dx.doi.org/10.2118/156516-MShttp://dx.doi.org/10.2118/156516-MShttp://dx.doi.org/10.2118/92764-MShttp://dx.doi.org/10.2118/92764-MShttp://dx.doi.org/10.2118/92764-MShttp://dx.doi.org/10.2118/92764-MShttp://dx.doi.org/10.2118/131332-MShttp://dx.doi.org/10.2118/131332-MShttp://dx.doi.org/10.2118/131332-MShttp://dx.doi.org/10.2118/131332-MS
  • 7/29/2019 12 Helgeland

    26/26

    [22]: Schwartz, N. and Weber, H. R., APNewsBreak: Series of failures led to rig blast [online].

    http://www.businessweek.com/ap/financialnews/D9FIBKV00.htm (in press; published online 7

    May 2010).

    [23]: BBC News, Oil spill in Gulf of Mexico in maps and graphics, [online]. http://

    news.bbc.co.uk/2/hi/8651333.stm (in press; published online 10 May 2010, accessed 29 October

    2012).

    [24]: Hannegan, D., Todd, R. T., Pritchard, D. M. and Jonasson, B., MPD Uniquely Applicable to

    Methane Hydrate Drilling, SPE-91560, paper presented at the SPE/IADC Underbalanced

    Technology Conference and Exhibition, Houston, Texas, U.S.A., 11-12 October 2004. http://

    dx.doi.org/10.2118/91560-MS.

    [25]: Ebeltoft, H., Yousif, M. And Sgrd, E., Hydrate Control During Deepwater Drilling:

    Overview and New Drilling-Fluids Formulations, SPE-68207, March 2001. http://dx.doi.org/

    10.2118/68207-PA.

    [26]: Halliday, W., Clapper, D. K. and Smalling, M., New Gas Hydrate Inhibitors for Deepwater

    Drilling Fluids, IADC/SPE-39316, paper presented at the 1998 SPE/IADC Drilling Conference,

    Dallas, Texas, U.S.A., 3-6 March 1998. http://dx.doi.org/10.2118/39316-MS.

    [27]: Ravi, K. And Moore, S., Cement Slurry Design to Prevent Destabilization of Hydrates in

    Deewater Environment, SPE-113631, paper presented at the 2008 Indian Oil and Gas Technical

    Conference and Exhibition, Mumbai, India, 4-6 March 2008. http://dx.doi.org/10.2118/113631-MS.

    http://dx.doi.org/10.2118/113631-MShttp://dx.doi.org/10.2118/39316-MShttp://dx.doi.org/10.2118/68207-PAhttp://dx.doi.org/10.2118/68207-PAhttp://dx.doi.org/10.2118/113631-MShttp://dx.doi.org/10.2118/113631-MShttp://dx.doi.org/10.2118/39316-MShttp://dx.doi.org/10.2118/39316-MShttp://dx.doi.org/10.2118/68207-PAhttp://dx.doi.org/10.2118/68207-PAhttp://dx.doi.org/10.2118/68207-PAhttp://dx.doi.org/10.2118/68207-PAhttp://dx.doi.org/10.2118/91560-MShttp://dx.doi.org/10.2118/91560-MShttp://dx.doi.org/10.2118/91560-MShttp://dx.doi.org/10.2118/91560-MShttp://news.bbc.co.uk/2/hi/8651333.stmhttp://news.bbc.co.uk/2/hi/8651333.stmhttp://news.bbc.co.uk/2/hi/8651333.stmhttp://news.bbc.co.uk/2/hi/8651333.stmhttp://www.businessweek.com/ap/financialnews/D9FIBKV00.htmhttp://www.businessweek.com/ap/financialnews/D9FIBKV00.htm