5
CONTENTS Preface Chapter 1 Chemical Engineering Aspects of Nuclear Power Introduction Nuclear Fission Nuclear Fuels Nuclear Reactor Types Fuel Processing Flow Sheets Fuel-Cycle Operations Fuel Reprocessing lsotope Separation Nuclear Fusion References Problems Chapter 2 Nuclear Reactions 1 Nuclides 2 Radioactivity 3 Decaychains 4 Neutron Reactions 5 The Fission Process 6 7 Growth and Decay of Nuclides with Simultaneous Radioactive Decay, Neutron Absorption, and Continuous Processing Derivation of the Bateman Equation (2.17) by Laplace Transforms Nomenclature References Problems Chapter 3 Fuel Cycles for Nuclear Reactors 1 Nuclear Fuels 2 Effects of Irradiation on Nuclear Fuels 3 Fuel and Poison Management Xiii 1 1 2 5 7 10 15 20 22 23 24 25 26 26 27 35 42 53 63 76 78 80 81 84 84 87 90

1 Content Isi

Embed Size (px)

DESCRIPTION

hmmm

Citation preview

  • CONTENTS

    Preface

    Chapter 1 Chemical Engineering Aspects of Nuclear Power Introduction Nuclear Fission Nuclear Fuels Nuclear Reactor Types Fuel Processing Flow Sheets Fuel-Cycle Operations Fuel Reprocessing lsotope Separation Nuclear Fusion References Problems

    Chapter 2 Nuclear Reactions 1 Nuclides 2 Radioactivity 3 Decaychains 4 Neutron Reactions 5 The Fission Process 6

    7

    Growth and Decay of Nuclides with Simultaneous Radioactive Decay, Neutron Absorption, and Continuous Processing Derivation of the Bateman Equation (2.17) by Laplace Transforms Nomenclature References Problems

    Chapter 3 Fuel Cycles for Nuclear Reactors 1 Nuclear Fuels 2 Effects of Irradiation on Nuclear Fuels 3 Fuel and Poison Management

    X i i i

    1

    1 2 5 7

    10 15 20 22 23 24 25

    26 26 27 35 42 53

    63

    76 78 80 81

    84 84 87 90

  • .iii CONTENTS

    4 5 6 7

    Chapter 4 1 2 3 4 5 6 7

    Chapter 5 1 2 3 4 5 6 7 8 9

    10

    Chapter 6 1 2 3 4 5 6 7 8 9

    10

    Chapter 7 1 2

    Fuel Management in a Large Pressurized-Water Reactor Fuel-Cycle Costs Hand Calculation of Fuel-Cycle Performance Fuel-Cycle hiaterial Flow Sheets Nomenclature References Problems

    Solvent Extraction of Metals Applications Extractable Metal-Organic Complexes Solvent Extraction Principles Distribution Coefficients Solvent Requirements Theory of Countercurrent Equilibrium Extraction Solvent Extraction Equipment Nomenclature References Problems

    Uranium Uranium Isotopes Uranium Radioactive Decay Series Metallic Uranium Uranium Compounds Uranium Solution Chemistry Sources of Uranium Uranium Resource Estimates Concentration of Uranium Uranium Refining Production of Uranium Metal References Problems Thorium Uses of Thorium Thorium isotopes Thorium Radioactivity Metallic Thorium Thorium Compounds Thorium Solution Chemistry Thorium Resources Concentration and Extraction of Thorium Purification of Thorium Conversion of Thorium Nitrate to Oxide, Fluoride, Chloride, or Metal References Problems Zirconium and Hafnium Uses of Zirconium and Hafnium Natural Occurrence

    105 113 126 144 151 153 154

    157

    157 157 160 165 172 173 198 21 1 212 214 216

    21 6 217 222 223 229 232 234 236 266 274 280 28 1 283

    283 283 285 287 289 293 294 298 30 7

    309 315 317 318

    318 319

  • CONTENTS ix

    Chapter 8

    1 2 3

    4 5

    Chapter 9 1 2 3 4 5 6

    Chapter 10 1 2 3 4 5 6 7 8

    Chapter 11 1 2 3 4 5

    Production and Rice Zirconium and Hafnium Metal and Alloys Zirconium and Hafnium Compounds Extraction of Zirconium and Hafnium from Zircon Separation of Zirconium and Hafnium Production of Metallic Zirconium and Hafnium Alternatives for Producing Hafnium-Free Zirconium from Zircon References Problems

    Properties of Irradiated Fuel and Other Reactor Materials Fission-Product Radioactivity Radioactivity of the Actinides Effect of Fuel-Cycle Alternatives on Properties of Irradiated Fuel Radioactivity from Neutron Activation Neutron Activity in Recycled Fuel Nomenclature References Problems

    Plutonium and Other Actinide Elements General Chemical Properties of the Actinides Properties of Protactinium Properties of Neptunium Properties of Plutonium Properties of Americium Properties of Curium References Problems

    Fuel Reprocessing Objectives of Reprocessing Composition of Irradiated Fuel History of Reprocessing The Purex Process Reprocessing Thorium-Based Fuels Reprocessing LMFBR Fuels Neptunium Recovery in Reprocessing Prevention of Criticality in Reprocessing Plants References Problems

    Radioactive Waste Management Introduction High-Level Waste Non-High-Level Waste Special Radioactive Waste Disposal of Radioactive Waste

    319 320 323 330 333 342

    348 348 350

    352 352 364

    381 39 1 401 404 405 406

    401

    407 420 424 426 449 45 1 454 45 6 457

    45 7 45 7 45 8 466 514 527 537 547 556 563

    565 565 567 604 609 61 3

  • x CONTENTS

    6

    Chapter 12

    1 2 3 4 5 6 7 8 9

    10

    11 12 13 14 15

    Chapter 13

    1 2 3 4 5 6 7 8 9

    10 11

    12 13 14 15 16

    Assessment of Long-Term Safety References Problems

    Stable Isotopes: Uses, Separation Methods, and Separation Principles Uses of Stable Isotopes Isotope Separation Methods Terminology Stage Properties Types of Cascade The Simple Cascade The Recycle Cascade The Ideal Cascade Close-Separation Cascade Separative Capacity, Separative Work, and Separation Potential Differential Equation for Separation Potential Equilibrium Time for Isotope Separation Plants Squared-off Cascade Generalized Ideal Cascade Three-Component Isotope Separation Nomenclature References Problems

    Separation of Isotopes of Hydrogen and Other Light Elements Sources of Deuterium Deuterium Production Processes and Plants Separation Factors in Distillation Distillation of Hydrogen Distillation of Water Electrolysis Electrolysis and Steam-Hydrogen Exchange Separation Factors in Deuterium Exchange Processes Number of Theoretical Stages in Exchange Columns Monothermal Exchange Processes Dual-Temperature Water-Hydrogen Sulfide Exchange Process Dual-Temperature Ammonia-Hydrogen Exchange Process Methylamine-Hydrogen Exchange Processes Dual-Temperature Water-Hydrogen Exchange Processes Exchange Processes for Separation of Lithium Isotopes Exchange Processes for Other Elements Nomenclature References Problems

    618 624 626

    627 627 629 644 647 65 1 65 3 654 65 8 665

    667 674 677 684 685 693 70 1 703 70 5

    708 708 710 71 2 717 722 738 749 756 760 7 62

    767 792 797 799 800 80 1 804 806 808

  • CONTENTS xi

    Chapter 14 Uranium Isotope Separation Introduction Isotopic Content of Uranium Uranium Enrichment Projects Gaseous Diffusion The Gas Centrifuge Aerodynamic Processes Mass Diffusion Thermal Diffusion Laser Isotope Separation Nomenclature References Problems

    Appendixes A Fundamental Physical Constants B Conversion Factors C Properties of the Nuclides D Radioactivity Concentration Limits for Selected

    Radionuclides

    812 812 813 815 818 847 876 895 906 914 922 925 929

    933

    933 935 937

    979

    Index 983

    Front MatterPrefaceTable of Contents1. Chemical Engineering Aspects of Nuclear Power1.1 Introduction1.2 Nuclear Fission1.3 Nuclear Fuels1.4 Nuclear Reactor Types1.5 Fuel Processing Flow Sheets1.5.1 Uranium Fuel1.5.2 Thorium Fuel

    1.6 Fuel-Cycle Operations1.7 Fuel Reprocessing1.8 Isotope Separation1.9 Nuclear FusionReferencesProblems

    2. Nuclear Reactions2.1 Nuclides2.1.1 Make-up of Nuclides2.1.2 Balancing Nuclear Reactions

    2.2 Radioactivity2.2.1 Types2.2.2 Rate of Radioactive Decay2.2.3 Alpha Radioactivity2.2.4 Beta Radioactivity2.2.5 Gamma Radioactivity2.2.6 Positron Emission2.2.7 Electron Capture2.2.8 Spontaneous Fission

    2.3 Decay Chains2.3.1 Batch Decay2.3.2 Continuous Production2.3.3 Continuous Production and Shutdown

    2.4 Neutron Reactions2.4.1 Capture Reactions2.4.2 Fission Reactions2.4.3 Reaction Rates2.4.4 Cross Sections2.4.5 Neutron Speeds in Reactors2.4.6 Neutron Flux2.4.7 Effective Cross Sections2.4.8 Half-life for Neutron Reactions

    2.5 The Fission Process2.5.1 Fissile Materials2.5.2 Fission Products2.5.3 Energy Release in Fission

    2.6 Growth and Decay of Nuclides with Simultaneous Radioactive Decay, Neutron Absorption, and Continuous Processing2.6.1 Batch Operation2.6.2 Continuous Production2.6.3 135 Xe Fission-Product Poisoning2.6.4 135 Xe Transient after Reactor Shutdown2.6.5 149 Sm Chain

    2.7 Derivation of the Bateman Equation (2.17) by Laplace Transforms2.7.1 Properties of Laplace Transforms2.7.2 Derivation of the Bateman Equation (2.17)

    NomenclatureReferencesProblems

    3. Fuel Cycles for Nuclear Reactors3.1 Nuclear Fuels3.2 Effects of Irradiation on Nuclear Fuels3.3 Fuel and Poison Management3.3.1 Objectives3.3.2 Drawbacks of Batch Irradiation of Uniform Fuel and Poison3.3.3 Idealized Methods of Fuel and Poison Management3.3.4 Reactivity-limited Burnup in PWR with Modified Scatter Fueling

    3.4 Fuel Management in a Large Pressurized-Water Reactor3.4.1 Reactor Construction3.4.2 Reactor Performance, Cycle 13.4.3 Reactor Performance, Cycle 23.4.4 Reactor Performance, Cycle 33.4.5 Approach to Steady State

    3.5 Fuel-Cycle Costs3.5.1 Procedure for Calculating Fuel-Cycle Costs3.5.2 Steady-State Fuel-Cycle Costs

    3.6 Hand Calculation of Fuel-Cycle Performance3.6.1 Neutron Energy Cycle3.6.2 Neutron Balance for Reference Design3.6.3 Neutron Balance for Operating Reactor3.6.4 Reactor Example3.6.5 Change of Composition with Flux Time3.6.6 Composition Changes in PWR3.6.7 Reactivity Changes in PWR3.6.8 Effect of Fuel Management Method on Burnup

    3.7 Fuel-Cycle Material Flow Sheets3.7.1 LWR Fueled with Slightly Enriched Uranium3.7.2 LWR Fueled with Plutonium and Natural Uranium3.7.3 The HTGR3.7.4 The LMFBR

    NomenclatureReferencesProblems

    4. Solvent Extraction of Metals4.1 Applications4.2 Extractable Metal-Organic Complexes4.3 Solvent Extraction Principles4.4 Distribution Coefficients4.4.1 Element Being Extracted4.4.2 Oxidation-Reduction Potential4.4.3 Nature of Solvent4.4.4 Complexing Agents4.4.5 Concentration of Salting Agent4.4.6 Correlation of Equilibrium Extraction Data4.4.7 Presence of Other Extractable Species4.4.8 Hydrogen Ion Concentration

    4.5 Solvent Requirements4.6 Theory of Countercurrent Equilibrium Extraction4.6.1 Extracting Cascade4.6.2 Extracting Cascade with Constant Distribution Coefficients4.6.3 The Extracting-scrubbing Cascade4.6.4 Limiting Flow Ratios for the Extracting-scrubbing Cascade4.6.5 Extracting-scrubbing Cascade with Constant Distribution Coefficients4.6.6 Extracting-scrubbing Cascade: Numerical Procedure for Use with Variable Distribution Coefficients

    4.7 Solvent Extraction Equipment4.7.1 Requirements4.7.2 Types of Equipment4.7.3 Mixer-Settlers4.7.4 Centrifugal Contactor4.7.5 Rotary Annular Contactor4.7.6 Rotating Disk Contactor4.7.7 Spray Column4.7.8 Packed Columns4.7.9 Pulse Columns

    NomenclatureReferencesProblems

    5. Uranium5.1 Uranium Isotopes5.1.1 Natural Uranium5.1.2 232 U and 233 U5.1.3 236 U and 237 U5.1.4 239 U

    5.2 Uranium Radioactive Decay Series5.2.1 238 U Decay Series5.2.2 235 U Decay Series5.2.3 Radioactive Decay of 237 U, 237 Np, and 233 U5.2.4 Radioactivity in Uranium Mines and Refineries

    5.3 Metallic Uranium5.3.1 Uses5.3.2 Phases of Uranium5.3.3 Density and Thermal Expansion5.3.4 Chemical Reactivity

    5.4 Uranium Compounds5.4.1 Uranium Valence States4.4.2 Uranium Oxides5.4.3 Uranium Carbides5.4.4 Uranium Nitride5.4.5 Uranium Hydride5.4.6 Uranium Halides5.4.7 Uranium Hexafluoride

    5.5 Uranium Solution Chemistry5.5.1 Oxidation States of Uranium in Aqueous Solution5.5.2 Uranium(IV) Solutions5.5.3 Uranyl Solutions5.5.4 Solvent Extraction of Uranyl Compounds

    5.6 Sources of Uranium5.6.1 Principal Uranium-containing Minerals5.6.2 Low-Grade Sources of Uranium

    5.7 Uranium Resource Estimates5.7.1 World Resources5.7.2 United States

    5.8 Concentration of Uranium5.8.1 Steps in Producing Refined Uranium Compounds5.8.2 Concentration Methods5.8.3 U.S. Uranium Mills5.8.4 Uranium Concentration by Carbonate Leaching5.8.5 Acid Leaching of Uranium Ores5.8.6 Solvent Extraction of Uranium from Leach Liquors5.8.7 Uranium Concentration by Anion Exchange5.8.8 Uranium from Seawater5.8.9 Radioactive Effluents from Uranium Mills

    5.9 Uranium Refining5.9.1 Uranium Refineries5.9.2 Purification of Uranium Concentrates5.9.3 Conversion of UNH to UO 35.9.4 Reduction of UO 3 to UO 25.9.5 Hydrofluorination of UO 2 to UF 45.9.6 Fluorination of UF 4 to UF 65.9.7 Allied Chemical Process for Converting Uranium Concentrates to UF 65.9.8 Conversion of UF 6 to UF 4 and UO 2

    5.10 Production of Uranium Metal5.10.1 Difficulties5.10.2 Alternative Methods5.10.3 Heat Balances in Uranium Metal Production5.10.4 Production of Uranium Metal by Reduction of UF 4 with Magnesium

    ReferencesProblems

    6. Thorium6.1 Uses of Thorium6.2 Thorium Isotopes6.2.1 Naturally Occurring Thorium Isotopes6.2.2 Synthetic Thorium Isotopes

    6.3 Thorium Radioactivity6.4 Metallic Thorium6.4.1 Uses6.4.2 Phases6.4.3 Density and Thermal Expansion6.4.4 Thermodynamic Properties6.4.5 Thermal and Electrical Conductivity6.4.6 Chemical Reactivity

    6.5 Thorium Compounds6.5.1 Thorium Valence States6.5.2 Thorium Dioxide6.5.3 Thorium Carbides6.5.4 Thorium Nitrides6.5.5 Thorium Hydrides [M2]6.5.6 Thorium Halides

    6.6 Thorium Solution Chemistry6.6.1 Solubility of Thorium Compounds in Aqueous Solution6.6.2 Solvent Extraction of Thorium Compounds

    6.7 Thorium Resources6.7.1 Principal Thorium-containing Minerals6.7.2 World Thorium Resources6.7.3 U.S. Thorium Resources6.7.4 Thorium Production6.7.5 Thorium Requirements

    6.8 Concentration and Extraction of Thorium6.8.1 Concentration of Monazite6.8.2 Composition of Monazite6.8.3 Processes for Opening Up Monazite6.8.4 Caustic Soda Process6.8.5 Sulfuric Acid Processes6.8.6 Separation of Thorium, Rare Earths, and Uranium from Monazite by Solvent Extraction6.8.7 Separation of Thorium from Other Minerals by Solvent Extraction

    6.9 Purification of Thorium6.10 Conversion of Thorium Nitrate to Oxide, Fluoride, Chloride, or Metal6.10.1 Conversion of Thorium Nitrate to ThO 26.10.2 Production of ThF 46.10.3 Production of ThCl 46.10.4 Production of Thorium Metal

    ReferencesProblems

    7. Zirconium and Hafnium7.1 Uses of Zirconium and Hafnium7.2 Natural Occurrence7.3 Production and Price7.4 Zirconium and Hafnium Metal and Alloys7.4.1 Phases7.4.2 Density and Thermal Expansion7.4.3 Thermodynamic Properties7.4.4 Thermal and Electrical Conductivity7.4.5 Chemical Reactivity7.4.6 Zirconium Alloys

    7.5 Zirconium and Hafnium Compounds7.5.1 Valence States7.5.2 Zirconium Dioxide7.5.3 Zirconium Carbide7.5.4 Zirconium Nitride7.5.5 Zirconium Hydrides7.5.6 Zirconium Halides7.5.7 Compounds of Hafnium7.5.8 Aqueous Chemistry of Zirconium and Hafnium

    7.6 Extraction of Zirconium and Hafnium from Zircon7.6.1 Composition of Zircon7.6.2 Zircon Extraction Processes7.6.3 Chlorination of Zircon7.6.4 Alkali Fusion7.6.5 Fluosilicate Fusion

    7.7 Separation of Zirconium and Hafnium7.7.1 Methods7.7.2 Fractional Crystallization7.7.3 Solvent Extraction of Thiocyanates7.7.4 Solvent Extraction with TBP7.7.5 Selective Reduction of Double Fluorides by Aluminum

    7.8 Production of Metallic Zirconium and Hafnium7.8.1 Difficulties7.8.2 Available Processes7.8.3 Kroll Process7.8.4 The Hot-Wire Process7.8.5 Electrolysis of Fused Salts

    7.9 Alternatives for Producing Hafnium-Free Zirconium from ZirconReferencesProblems

    8. Properties of Irradiated Fuel and Other Reactor Materials8.1 Fission-Product Radioactivity8.1.1 Activity in Irradiated Fuel8.1.2 Chemical Composition of Fission Products8.1.3 Neutron Absorption by Long-lived Fission Products8.1.4 Toxicity of Inhaled or Ingested Fission Products8.1.5 Effects of Fuel-Cycle Alternatives on Fission Products in Irradiated Fuel

    8.2 Radioactivity of the Actinides8.2.1 Actinide Radioactivity in Uranium and Uranium-Plutonium Fuel8.2.2 Preprocessing Storage Time for Irradiated Uranium Fuel8.2.3 Radioactive Decay of Recycled Plutonium8.2.4 Long-term Radioactivity of Actinides from Uranium-Plutonium Fuel8.2.5 Actinide Reactions in Thorium Fuel8.2.6 Growth of 232 U in Irradiated Uranium-Thorium Fuel8.2.7 Growth of 228 Th and Gamma Activity in Separated Uranium8.2.8 234 Th in Separated Thorium8.2.9 228 Th in Irradiated Thorium

    8.3 Effect of Fuel-Cycle Alternatives on Properties of Irradiated Fuel8.4 Radioactivity from Neutron Activation8.4.1 Tritium from Neutron Activation8.4.2 14 C8.4.3 35 S, 33 P, and 36 Cl in HTGR Fuel8.4.4 Nonvolatile Radionuclides Activated in Fuel-Element Structure

    8.5 Neutron Activity in Recycled Fuel8.5.1 Light-Element (, n) Reactions8.5.2 Neutrons from Spontaneous Fission

    NomenclatureReferencesProblems

    9. Plutonium and Other Actinide Elements9.1 General Chemical Properties of the Actinides9.1.1 Electronic Configurations9.1.2 Hydrolytic Behavior9.1.3 Complex Formation9.1.4 Oxidation-Reduction Reactions in Aqueous Solutions9.1.5 Summary

    9.2 Properties of Protactinium9.2.1 Protactinium Isotopes9.2.2 Metallic Protactinium9.2.3 Protactinium Compounds9.2.4 Protactinium Solution Chemistry

    9.3 Properties of Neptunium9.3.1 Neptunium Isotopes9.3.2 Metallic Neptunium9.3.3 Neptunium Compounds9.3.4 Neptunium Solution Chemistry

    9.4 Properties of Plutonium9.4.1 Plutonium Isotopes9.4.2 Plutonium Radioactivity9.4.3 Plutonium Electronic Structure9.4.4 Plutonium Metal9.4.5 Plutonium Compounds9.4.6 Plutonium Solution Chemistry9.4.7 Plutonium Conversion9.4.8 Production of Plutonium Metal

    9.5 Properties of Americium9.5.1 Americium Isotopes9.5.2 Metallic Americium9.5.3 Americium Compounds9.5.4 Americium Solution Chemistry

    9.6 Properties of Curium9.6.1 Curium Isotopes9.6.2 Metallic Curium9.6.3 Curium Compounds9.6.4 Curium Solution Chemistry

    ReferencesProblems

    10. Fuel Reprocessing10.1 Objectives of Reprocessing10.2 Composition of Irradiated Fuel10.3 History of Reprocessing10.3.1 Bismuth Phosphate Process10.3.2 Redox Process10.3.3 Trigly Process10.3.4 Butex Process10.3.5 Purex Process10.3.6 Thorex Process10.3.7 Other Aqueous Processes10.3.8 Nonaqueous Processes10.3.9 Pyrometallurgical Processes10.3.10 Pyrochemical Processes10.3.11 Fluoride Volatility Processes

    10.4 The Purex Process10.4.1 Steps in Purex Process10.4.2 Principal Reprocessing Plants10.4.3 Decladding10.4.4 Dissolution10.4.5 No x Absorption10.4.6 Off-gas Treatment10.4.7 Primary Decontamination10.4.8 Plutonium Partitioning10.4.9 Uranium Purification10.4.10 Plutonium Purification10.4.11 Solvent Reuse10.4.12 Aqueous Waste Processing10.4.13 Nitric Acid Recovery10.4.14 Barnwell Nuclear Fuel Plant10.4.15 Distribution Equilibria in Purex Systems10.4.16 Example of Use of Purex Equilibrium Data10.4.17 Physical Properties of TBP and Its Mixtures with Hydrocarbons, Water, and Nitric Acid10.4.18 Degradation of TBP-Hydrocarbon Mixtures

    10.5 Reprocessing Thorium-Based Fuels10.5.1 History10.5.2 Decladding Thorium-based Fuels10.5.3 Dissolution of ThO 2 -UO 2 Fuel10.5.4 Feed Pretreatment10.5.5 Thorex Solvent Extraction at Hanford10.5.6 Two-Stage Acid Thorex Process for High Burnup Fuel10.5.7 JUPITER Pilot Plant10.5.8 Phase Equilibria in Thorex Systems

    10.6 Reprocessing LMFBR Fuels10.6.1 Differences from LWR Fuels10.6.2 Principal Steps in Reprocessing LMFBR Fuel10.6.3 Problem Areas10.6.4 Decay Heat Removal10.6.5 Deactivation of Sodium10.6.6 Voloxidation10.6.7 Retention of Iodine10.6.8 Dissolution10.6.9 Purex Process for LMFBR Fuel

    10.7 Neptunium Recovery in Reprocessing10.7.1 Use of Neptunium10.7.2 Sources of Neptunium10.7.3 Oxidation-Reduction Equilibria in Neptunium Recovery10.7.4 Distribution Coefficients in Neptunium Recovery10.7.5 Kinetics of Neptunium Oxidation and Reduction10.7.6 Neptunium Recovery Examples10.7.7 Neptunium Recovery Process

    10.8 Prevention of Criticality in Reprocessing Plants10.8.1 Factors Affecting Criticality Safety10.8.2 Single-Parameter Limits for Fissile Nuclides10.8.3 Multiparameter, Concentration-dependent Limits for Criticality Control

    ReferencesProblems

    11. Radioactive Waste Management11.1 Introduction11.1.1 Definition11.1.2 Classification11.1.3 Sources

    11.2 High-Level Waste11.2.1 Characterization of Liquid HLW11.2.2 Projections of HLW Generation11.2.3 Alternatives for Commercial HLW Management11.2.4 Tank Storage11.2.5 Solidification Products11.2.6 Solidification Processes11.2.7 Actinide Partitioning

    11.3 Non-High-Level Waste11.3.1 Volume Reduction11.3.2 Recovery of Transuranium Elements11.3.3 Immobilization

    11.4 Special Radioactive Waste11.4.1 Tritium11.4.2 129 I11.4.3 85 Kr

    11.5 Disposal of Radioactive Waste11.5.1 Basic Considerations on Geologic Disposal11.5.2 Design of Repositories in Salt Formations11.5.3 Other Disposal Techniques

    11.6 Assessment of Long-Term Safety11.6.1 Evaluation of Barriers between Waste and People11.6.2 Significant Period of the Hazard

    ReferencesProblems

    12. Stable Isotopes: Uses, Separation Methods, and Separation Principles12.1 Uses of Stable Isotopes12.1.1 235 U12.1.2 Deuterium12.1.3 Lithium Isotopes12.1.4 10 B12.1.5 13 C12.1.6 15 N12.1.7 Oxygen Isotopes

    12.2 Isotope Separation Methods12.2.1 235 U12.2.2 Deuterium12.2.3 Lithium Isotopes12.2.4 10 B12.2.5 13 C12.2.6 15 N12.2.7 Heavy Oxygen Isotopes12.2.8 Recapitulation of Separation Methods

    12.3 Terminology12.3.1 Separating Unit, Stage, and Cascade12.3.2 Measures of Composition

    12.4 Stage Properties12.4.1 Terminology12.4.2 Separation Factors12.4.3 Differential Stage Separation

    12.5 Types of Cascade12.6 The Simple Cascade12.7 The Recycle Cascade12.7.1 Material-Balance Relations12.7.2 Number of Ideal Stages12.7.3 Minimum Number of Stages: Constant Separation Factor12.7.4 Minimum Reflux Ratio12.7.5 Practical Reflux Ratio

    12.8 The Ideal Cascade12.8.1 Heads Separation Factor12.8.2 Number of Stages12.8.3 Reflux Ratio12.8.4 Shape of Ideal Cascade12.8.5 Total Flow Rates

    12.9 Close-Separation Cascade12.10 Separative Capacity, Separative Work, and Separation Potential12.10.1 Definitions12.10.2 Applications of Sparative Capacity and Separative Work12.10.3 Costs from Separative Work12.10.4 Toll Enrichment Charges12.10.5 Cost of Enriched Uranium12.10.6 Optimum Tails Composition

    12.11 Differential Equation for Separation Potential12.12 Equilibrium Time for Isotope Separation Plants12.12.1 Operating Procedure during Start-up12.12.2 Relation between Equilibrium Time and Inventory12.12.3 Inventory of Ideal Cascade12.12.4 Relation between Equilibrium Time and Separative Work12.12.5 Inventory Functions12.12.6 Equilibrium Time Example

    12.13 Squared-off Cascade12.14 Generalized Ideal Cascade12.14.1 Separation Factor12.14.2 Cut12.14.3 Separative Capacity12.14.4 Special Cases12.14.5 Separative Capacity of Low-Enrichment, Two-Up, One-Down Ideal Cascade

    12.15 Three-Component Isotope Separation12.15.1 Separation Factors12.15.2 Three-Component Value Function12.15.3 Three-Component Separation Example12.15.4 Number of Stages

    NomenclatureReferencesProblems

    13. Separation of Isotopes of Hydrogen and Other Light Elements13.1 Sources of Deuterium13.2 Deuterium Production Processes and Plants13.3 Separation Factors in Distillation13.3.1 Terminology13.3.2 Relation of Separation Factor to Vapor Pressures13.3.3 Separation Factors

    13.4 Distillation of Hydrogen13.5 Distillation of Water13.5.1 Primary Concentration of Deuterium13.5.2 Final Concentration of Deuterium by Distillation of Water13.5.3 Separation of 18 O by Distillation of Water

    13.6 Electrolysis13.6.1 Electrolysis of Water13.6.2 Analysis of Electrolysis

    13.7 Electrolysis and Steam-Hydrogen Exchange13.7.1 Principle of Process13.7.2 History13.7.3 Trail Plant13.7.4 Recovery of Deuterium from Electrolytic Hydrogen by Exchange with Liquid Water Under Pressure

    13.8 Separation Factors in Deuterium Exchange Processes13.9 Number of Theoretical Stages in Exchange Columns13.10 Monothermal Exchange Processes13.10.1 Monothermal Ammonia-Hydrogen Exchange13.10.2 Monothermal Water-Hydrogen Sulfide Exchange

    13.11 Dual-Temperature Water-Hydrogen Sulfide Exchange Process13.11.1 Principle of Process13.11.2 History13.11.3 Simplified Analysis of Process13.11.4 Detailed Process Flow Sheet for GS Plant13.11.5 Materials of Construction13.11.6 Economics13.11.7 Detailed Analysis of Process13.11.8 Improved GS Flow Sheets

    13.12 Dual-Temperature Ammonia-Hydrogen Exchange Process13.13 Methylamine-Hydrogen Exchange Processes13.14 Dual-Temperature Water-Hydrogen Exchange Processes13.15 Exchange Processes for Separation of Lithium Isotopes13.16 Exchange Processes for Other Elements13.16.1 Separation Factors13.16.2 Separation of Nitrogen Isotopes

    NomenclatureReferencesProblems

    14. Uranium Isotope Separation14.1 Introduction14.2 Isotopic Content of Uranium14.3 Uranium Enrichment Projects14.3.1 Processes Developed by Manhattan Project14.3.2 Current Industrial Uranium Enrichment Projects14.3.3 Processes Under Development

    14.4 Gaseous Diffusion14.4.1 Principle14.4.2 History14.4.3 U.S. Process Equipment14.4.4 French Process Equipment14.4.5 Flow of Gases through Diffusion Barrier14.4.6 Mixing Efficiency14.4.7 Stage Characteristics14.4.8 Minimum Power Requirement of Gaseous Diffusion Process

    14.5 The Gas Centrifuge14.5.1 Principle14.5.2 History14.5.3 Description of Centrifuges14.5.4 Mechanical Performance of Centrifuges14.5.5 Separation Performance of Gas Centrifuge

    14.6 Aerodynamic Processes14.6.1 Introduction14.6.2 The Separation Nozzle Process14.6.3 The South African UCOR Process

    14.7 Mass Diffusion14.7.1 Mass Diffusion Stage14.7.2 Mass Diffusion Column14.7.3 Sweep Diffusion14.7.4 Separation of Uranium Isotopes by Cascade of Mass Diffusion Stages

    14.8 Thermal Diffusion14.8.1 General Description14.8.2 Partial Separation of Uranium Isotopes14.8.3 Theory of Thermal Diffusion Separation

    14.9 Laser Isotope Separation14.9.1 Introduction14.9.2 Laser Isotope Separation of Uranium Metal Vapor14.9.3 Laser Isotope Separation of UF 6

    NomenclatureReferencesProblems

    AppendixesIndex